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New facilities explore warm dense matter (WDM) at conditions with extreme densities (exceeding
ten times condensed matter densities) so that electrons are degenerate even at temperatures of
10 − 100 eV. Whereas in the non-degenerate region correlation effects such as Debye screening
are relevant for the ionization potential depression (IPD), new effects have to be considered in
degenerate plasmas. In addition to the Fock shift of the self-energies, the bound-state Pauli blocking
becomes important with increasing density. Standard approaches to IPD such as Stewart-Pyatt and
widely used opacity tables (e.g., OPAL) do not contain Pauli blocking effects for bound states. The
consideration of degeneracy effects leads to a reduction of the ionization potential and to a higher
degree of ionization. As an example, we present calculations for the ionization degree of carbon
plasmas at T = 100 eV and extreme densities up to 40 g/cm3, which are relevant to experiments
that are currently scheduled at the National Ignition Facility.

I. INTRODUCTION

The availability of new experimental facilities allows exploration of matter under warm dense matter (WDM)
conditions [1], where strong correlations in the ionic system and degeneracy of the electron system are of relevance.
The region of densities and temperatures that can be probed has been extended towards multi-megabar pressures
and temperatures up to tens of eV at synchrotrons, with pulsed power, high-power optical and free-electron-lasers or
other methods of high-pressure experimental technique. There, strong correlations and quantum effects have to be
treated consistently, and simple models and approximations are pushed beyond their applicability limits.

Within the model of the partially ionized plasma, WDM consists of free electrons (particle density ne) and ions
ai with different ionization states Zi and densities ni (including the neutral atom with Z0 = 0). It is characterized
by the ionization degree Z̄ = ne/na, na =

∑
i ni being the particle density of all nuclei. However, concepts such as

the partially ionized plasma and the ionization degree have to be analyzed and applied with care, because medium
effects which influence the properties of isolated atoms and ions become more dominant with increasing density,
leading to shift and broadening of energy levels and eventually to the disappearance of bound states (Mott effect, see
Ref. [2]). Nevertheless, the concept of the composition of a partially ionized plasma is a useful tool to investigate the
consequences of the appearance of bound states on thermodynamic properties, conductivity, optical spectra, Thomson
scattering spectra, and other physical properties. However, near the Mott transition where the bound states merge
with the continuum and are dissolved, the subdivision into (weakly) bound states and free states, including resonances,
becomes questionable, and there exists no clear criterion to subdivide the electron subsystem into ”free” and ”bound”
electrons. As discussed below, a many-body theory provides a consistent approach to WDM allowing for a systematic
treatment of correlations including bound state formation.

The properties of atoms and ions immersed in a dense plasma are modified owing to medium effects. This refers
also to the ionization energy Ii of the ion ai in the charge state Zi, which at least is necessary to remove one electron
from the ground state to the continuum of free electrons. As a consequence, the ionization potential Ii is modified

compared to its vacuum value I
(0)
i . The ionization potential depression (IPD) ∆Ii = I

(0)
i − Ii is a particular property

of WDM presently under intense discussion. In the low-density, weakly coupled limit, the shift of the energy of charged
particles is given by screening. For an ion (atom) with charge state Zi, the well-known Debye result for the energy

shifts (see, e.g., Refs. [3, 4]) leads to a reduction of the ionization potential IDebye
i = I

(0)
i − ∆IDebye

i as compared

to the unperturbed ionization energy I
(0)
i . For the global ionization process ai 
 ai+1 + e (further particles must

participate to realize conservation laws), we find the IPD in Debye approximation

∆IDebye
i = κclass(Zi + 1)

e2

4πε0
, κ2

class =
e2

ε0kBT

(∑
i

Z2
i ni + ne

)
. (1)
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A more general expression for the screening parameter (inverse Debye radius) κ = 1/rD which takes into account also
the degeneracy of electrons, is given below in Sec. II C.

At high densities where the ions are strongly correlated, the ion sphere model, see [5], is more appropriate. In
contrast to the Debye approximation, the density dependence of the shift is weaker (∝ n1/3). Semi-empirical inter-
polations have been proposed by Ecker and Kröll (EK) [6] and Stewart and Pyatt (SP) [7] which are frequently used
for estimating the IPD. In the SP approach, the IPD is given according to

∆ISP
i =

3

2

(Zi + 1)e2

4πε0rIS

[
(1 + s3)2/3 − s2

]
(2)

with the ion sphere radius rIS = (3Zi/(4πne))
1/3 and s = (κrIS)−1. New experiments on high density plasmas [8–14]

cannot be explained using any of these simple approximations, and the need for a better approach is obvious when
going to extreme conditions where the ions are strongly coupled.

According to Crowley [15], the chemical picture has to be replaced by a physical picture based on quantum sta-
tistical many-body theory [3, 4]. In this work, such a systematic treatment of different plasma effects is worked out
using Green-function techniques. Alternatively, numerical simulations such as path integral Monte-Carlo (PIMC)
simulations [16, 17] have been used to give a systematic approach to properties of WDM. Because of the fermion
sign problem, PIMC simulations of two-component plasmas are restricted presently to high temperatures and high
densities.

The electron-ion interaction is strong in the low-temperature region where bound state formation is relevant. A very
successful and practicable approximation is density-functional theory (DFT) for electronic structure calculations in
combination with molecular dynamics simulations for the ions (DFT-MD). It has proven to predict results for WDM
states, see, e.g., Ref. [18]. Using standard expressions for the exchange-correlation part of the (free) energy, detailed
properties of the electron system like the density of states as well as the ionic structure factor are obtained. Electron-
electron correlations are treated approximately using appropriate expressions for the energy-density functional. For
the treatment of IPD using this formalism see Refs. [9–12].

Coming back to the quantum statistical approach using Green-function techniques, the shift of the continuum is
related to the single-particle self-energy. A systematic discussion of the energy spectrum of hydrogen atoms in dense
plasmas within the Green function approach has been given by Seidel et al. [19]. An improved treatment of the self-
energy using the Montroll-Ward expression, which gives the Debye shift in the low-density limit, has been proposed
recently by Lin et al. [20]. Using the fluctuation-dissipation theorem, the inverse dielectric function is related to the
dynamical structure factor. With known expressions for the ion-ion structure factor (SF), the calculated IPD show a
better agreement with experimental data.

If going to even higher densities, in addition to the strong coupling of the ions, the degeneracy of electrons becomes
important. Related effects, in particular Pauli blocking and Fock shifts, are not included in the approaches to the
IPD [7, 20] discussed so far. The electron degeneracy parameter is defined as

Θ =
T

TFermi
=

2mekBT

~2
(3π2ne)

−2/3 . (3)

In the region of the temperature-density plane, where Θ ≤ 1, a classical description is no longer valid. Instead, quantum
effects, in particular the Pauli principle as a consequence of the antisymmetry of the many-electron (fermonic) wave
function, lead to so-called exchange terms. The related condition neΛ

3
e ≥ 1 with neΛ

3
e = ne(2π~2/mekBT )3/2 =

8/(3π1/2)Θ−3/2 is well known as a condition where the classical gas approach is not applicable, and the quantum
description based on the Fermi distribution function must be applied. For instance, in carbon plasmas at T = 100 eV,
the electrons become degenerate at electron density ne ≈ 4 × 1024 cm−3 corresponding to a carbon mass density of
20 g cm−3. New experiments are planned and will be performed, for instance, at the National Ignition Facility (NIF)
in Livermore to explore WDM [21] at very high densities where plasmas become degenerate even at temperatures of
the order of 100 eV.

New physics becomes of importance in degenerate systems. Whereas at lower densities, in the classical region,
dynamical screening is the most important medium effect, at extreme high densities exchange effects become of
increasing relevance. Note that SP is widely used to calculate IPD and ionization at these extreme conditions, see
also [22]. However, degeneracy effects such as bound-state Pauli blocking and Fock shifts are not consistently included.
Pauli blocking effects have been extensively investigated for light clusters (2H, 3H, 3He, 4He) in nuclear matter [23],
see also Ref. [24] as a mechanism of hadron dissociation. For hydrogen plasmas they have been discussed in Ref. [25].

In this work we give a systematic treatment of the effects of degeneracy within a Green function approach and
its consequences for IPD in the region of very high densities where standard approaches such as SP or widely used
opacity tables like OPAL [22] become inapplicable. In the following Sec. II we consider the effective wave equation
for few-particle (bound) states in a plasma environment and discuss Pauli blocking and Fock shifts. We apply these
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results to carbon plasmas at high densities in Sec. III, where a significant increase of the ionization degree compared
to the frequently used SP model is obtained. Pauli blocking effects are also of relevance for K-edge shifting [26] to be
discussed in the conclusions.

II. IN-MEDIUM SCHRÖDINGER EQUATION

A. Low-density limit of the plasma composition

We consider an element a (e.g., carbon C in Sec. III) in the WDM region. Let us first recall the low-density limit
where the in-medium effects can be neglected. The model of partially-ionized plasma (PIP) considers a plasma which
is composed of different ions (ai) with charge number Zi at partial density ni (including neutral atoms), as well as free
electrons at density ne. The components of the PIP can react, changing the state of excitation, including ionization and
recombination processes. Thermodynamic equilibrium is described by relations between the corresponding chemical
potentials of the different components.

The ideal electron chemical potential for arbitrary degeneracy follows from the expression for the density

ne = ge

∫
d3p

(2π)3

1

exp[β~2p2/(2me)− βµe] + 1
(4)

where β = 1/(kBT ). The factor ge = 2 accounts for spin degeneracy. The Fermi distribution can be replaced by the
Boltzmann distribution in the classical case exp(βµe)� 1 so that exp(βµe) ≈ ne(2πβ~2/me)

3/2/2.
The density ni,n̂ of ions with its fully known quantum state n̂, characterized by the complete set of quantum numbers

including total momentum, spin, angular momentum, etc., is given by the chemical potential µi,n̂. For instance, for
the two-body problem, the complete set of quantum numbers n̂ = {P, γ, ν} contains in addition to the center-of mass
momentum P and the channel quantum number γ further intrinsic quantum numbers ν which describe the intrinsic
excitation. The channel quantum number γ contains, e.g., spin and angular momentum depending on the observables
which are conserved in the two-body interaction.

In the low-density limit, where the interaction between the particles and clusters can be neglected (with exception
of reacting collisions), the summation over the total momentum P can be performed, and we obtain in thermodynamic
equilibrium the well-known relation for the ideal gas

ni,γ,ν =

∫
d3P

(2π)3
e−β~

2P 2/(2M)+βµi,γ,ν =
1

Λ3
eβµi,γ,ν , (5)

where Λ = [2πβ~2/M ]1/2 is the thermal wavelength of the ions. We restrict us to the region of thermodynamic
parameters where the ions can be treated classically, M is the ion mass (dependence on charge number is neglected).
The specific chemical potentials µi,γ,ν are gauged so that only the kinetic energy of the cluster owing to the center-
of-mass motion is considered. The potential energy, in particular the binding energies of ions, must be considered
separately.

The description is simplified if we consider also the sum over intrinsic degrees of freedom, similar to the spin
degeneracy in the case of the electron component. With respect to the ground state {γ, ν} = (0) of the ion ai with
the chemical potential µi for this ground state, the excitation energy is denoted by Ei,γ,ν (we assume that the energy
of the intrinsic motion does not depend on P). Chemical equilibrium is achieved if the condition µi,γ,ν = µi + Ei,γ,ν
holds. For the total contribution of ions ai with charge Zie we have

ni =
∑
γ,ν

ni,γ,ν =
1

Λ3

∑
γ,ν

eβ(µi+Ei,γ,ν) =
1

Λ3

∑
γ

σi,γ(T )eβµi (6)

with the intrinsic partition function in the channel γ

σi,γ(T ) =
∑
ν

eβEi,γ,ν . (7)

In a further step, we can also perform the sum over the different channels to obtain the full intrinsic partition function
σi(T ) =

∑
γ σi,γ(T ) of the ion ai so that

ni =
1

Λ3
σi(T )eβµi . (8)
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Compared to the expression for the free electrons (4), the spin summation is contained in the summation over γ, and
the intrinsic excitations are taken into account because the ion ai is in general a composite particle. An important
issue is that the summation over ν in Eq. (6) has to be performed not only over the bound states but also over the
continuum of scattering states.

For the summation over the continuum of scattering states, the quantum number ν is replaced by the energy E of
relative motion. We denote the scattering phase shift in the channel γ as δi,γ(E). According to Beth and Uhlenbeck
[27], for the intrinsic partition function σi,γ(T ) the following expression is derived

σi,γ(T ) =

bound∑
ν

(
e−βEi,γ,ν − 1

)
+

1

πkBT

∫ ∞
0

dE e−βEδi,γ(E). (9)

In particular, calculating the pressure as function of density and temperature by integration of n(T, µi, µe), the result
(9) gives an exact expressions for the second virial coefficient [27]. More details concerning the intrinsic partition
function in the low-density limit are presented in App. A.

Within a quantum statistical approach, a generalized Beth-Uhlenbeck formula is derived which can be used also
at higher densities. It has a similar form like Eq. (9) but contains medium-dependent quasiparticle energies Ei,γ,ν
and scattering phase shifts δi,γ(E), see Eq. (15) in the following Sec. II B. In this work, we use this generalized
Beth-Uhlenbeck formula to calculate the composition and the ionization degree in WDM.

At this point, an important comment is necessary. Different expressions are known for the intrinsic partition
function σi(T ), see App. A. They all give exact results for the second virial coefficient, but the separation of a bound
state part is difficult. Usually, only the bound state contribution to the intrinsic partition function σi(T ) is taken
into account to define the degree of ionization which, as a consequence, is model dependent. In this work we propose
another concept shown in the subsequent Sec. II B. The total density can be decomposed into a free quasiparticle
density and a correlated one. This can be used to define the ionization degree, including the contribution of scattering
states. In particular, the correlation part contains, in addition to contributions of the bound states, also a contribution
owing to resonances if they exist. No clear physical criterion is known to define bound states near the continuum
edge, because there is no principal difference between the physical properties of a broadened, weakly bound state and
a resonance state in the continuum.

Measured properties, e.g., the second virial coefficient and the corresponding thermodynamic variables such as
pressure and free energy, are not model-dependent. The calculation of these properties should take into account
both, bound as well as scattering states. They are independent of the artificial subdivision into bound and scattering
state contributions. A cluster decomposition can be used to determine the single quasiparticle contribution and few-
particle correlations in a model-independent way. This concept gives the possibility to generalize the concept of the
composition of partially ionized plasmas (PIP) valid in the low-density limit to a region of higher densities.

Reactions in PIP include also ionization and recombination processes ai,γ,ν+s
 ai+1,γ′,ν′ +e+s′. The conservation
laws (in particular of energy and momentum) demand, for instance, the collision with a third particle s (spectator)
or the emission/absorption of a photon. In thermodynamical equilibrium, these processes lead to a relation between
the chemical potentials µi introduced above for the ground state of the corresponding ionic components of the PIP.
Using the notation Ii (ionization potential) for the lowest excitation energy Ei,0 of the ionic ground state to become
ionized, the condition for chemical equilibrium reads

µi = µi+1 + µe + Ii . (10)

The bound state energy−Ii (ground state energy of the ion ai relative to the continuum of ai+1+e) can be implemented
as potential energy in the scaling of the chemical potentials of each ion charge state. Inserting relation (10) in Eq.
(8), the Saha equation is obtained which determines the concentration of the different components of the PIP.

If there are several ionization states Zi, the repeated use of Eq. (10) leads to a coupled system of Saha equations.
Finally, only the chemical potentials of the electrons and the ionic nuclei remain, corresponding to the conserved total
number of electrons and nuclei of the WDM. Taking into account electrical neutrality, the thermodynamic state of
WDM is defined by the total mass density ntotal

a and the temperature T . The composition of the PIP model, including
the degree of ionization Z̄, follows from the solution of the coupled system of Saha equations (8), (10). Results for
the composition within the PIP model in the low density region, neglecting the interaction between the components,
are well known. According to the mass-action law, the ionization degree Z̄ increases with increasing T , but decreases
with increasing ntotal

a . Results for the ionization degree of the ideal carbon plasma are given below in Fig. 2.

B. Quantum statistical approach for interacting plasmas

The definition of the composition of a dense system is not free of model assumptions so that one should use a
systematic quantum statistical approach to calculate physical properties. Nevertheless, the composition of a PIP
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and a corresponding ionization degree are useful concepts for low-density plasmas, but have to be handled with care
in the high-density region. In the present work, we consider thermodynamics to define the composition and the
ionization degree of the PIP. Instead of the contribution of free electrons to the total density, free quasiparticles with
medium-dependent energies are considered. The remaining part of composition describes correlations, in particular
the contribution of bound states. A quantum statistical approach to the composition of a PIP is obtained from the
equation of state which relates the total densities of electrons ntotal

e and nuclei ntotal
a to the temperature T = 1/(kBβ)

and the chemical potentials µe, µa,

ntotal
e (T, µe, µa) =

1

Ω

∑
1

∫ ∞
∞

dω

2π

1

eβ(ω−µe) + 1
Ae(1, ω) (11)

with the spectral function Ae(1, ω), the single-particle states are denoted by wave number vector and spin, |1〉 =
|p1, σ1〉, and Ω the system volume. A corresponding relation holds also for ntotal

a . Both the variables µe, µa are related
to each other because of charge neutrality. With the charge number Za of the nuclei, we have ntotal

e = Za n
total
a . The

relation (11) gives an immediate access to the mass action law or, in plasma physics, the Saha equation. Having the
equations of state µc(T,Za n

total
a , ntotal

a ), c = a, e, at our disposal, thermodynamic potentials such as the free energy
F (T,Za n

total
a , ntotal

a ) are obtained by integration. From this, all other thermodynamic properties are derived. Note
that also the density of states is obtained from the spectral function.

The spectral function, which fulfills the normalization condition
∫
dω
2πAe(1, ω) = 1, is related to the self-energy

Σe(1, z),

Ae(1, ω) =
2 Im Σe(1, ω + i0)

[ω − Ee(1)− Re Σe(1, ω)]2 + [Im Σe(1, ω + i0)]2
. (12)

The self-energy, which is defined by the Dyson equation for the Green function as Ge(1, izν) = 1/[izν − Ee(1) −
Σe(1, izν)], can be calculated for given interaction using the technique of Feynman’s diagrams. For small Im Σe(1, ω+
i0), i.e. small damping of the quasiparticles, we have [28]

Ae(1, ω) ≈ 2π δ(ω − Equasi
e (1))

1− d
dzRe Σe(1, z)|z=Equasi

e −µe

− 2Im Σe(1, ω + i0)
d

dω

P
ω + µe − Equasi

e (1)
(13)

with the quasiparticle energy

Equasi
e (1) = Ee(1) + Re Σe(1, ω)|ω=Equasi

e
= Ee(1) + ∆e(1) (14)

and P denoting the principal value. For the self-energy Σe(1, z), a cluster decomposition can be performed, which
leads to mass action laws [29].

Considering two-particle contributions (T-matrix) to the self-energy, we obtain the generalized Beth-Uhlenbeck
formula for the virial expansion in the quasiparticle picture [28, 30]

ntotal
e (T, µe, µa) =

1

Ω

∑
1

fe(E
quasi(1)) (15)

+
1

Λ3

∑
i,γ

Zie
βµi

[
bound∑
ν

(e−βEi,γ,ν − 1) +
β

π

∫ ∞
0

dEe−βE
{
δi,γ(E)− 1

2
sin[2δi,γ(E)]

}]
,

fe(E) = {exp[β(E − µe)] + 1}−1, and Ei,γ,ν is the excitation energy of the ion ai, channel γ. The contribution of
free electrons is replaced by the contribution of quasi-single particles with shifted energies (14). The contribution of
the scattering states is reduced (sin-term in the last expression) because part of the interaction in the continuum,
in particular the contribution of Born approximation, is already accounted for introducing the quasi-single particle
contribution [30, 31]. As discussed in the following section II C, the bound state energies Ei,γ,ν and scattering
phase shifts δi,γ(E) are modified by the interaction with the surrounding plasma as well and are calculated from an
in-medium Schrödinger equation.

At this point we can perform a subdivision of the total electron density into a free part given by the (damped)
quasi-single particle contribution, and the remaining correlated density contribution. This definition of a free electron
density ne and the corresponding ionization degree is possible as long as the single-electron spectral function (12),
(13) shows a peak structure owing to the quasiparticle excitation. Within a cluster decomposition of the self-energy,
a similar decomposition can also be performed for the higher order T-matrix contributions, see the cluster-virial
expansion discussed for nuclear matter in Ref. [31].

As a consequence, the cluster contributions ni of the ionization state Zi to the ion density and the density of
electrons is not restricted to only the bound state contribution, but contains also continuum contributions given in
terms of the scattering phase shifts as shown in the second part of the right-hand side of Eq. (15).
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C. In-medium Schrödinger equation and density effects

The ideal plasma with the unperturbed energies Ei,γ,ν of the bound states and the kinetic energies of the free states
cannot describe plasmas at high densities where interaction effects are important. For simplicity we consider here
the ionization degree of carbon at very high densities and/or temperatures where the carbon atoms are either fully
ionized or in the C5+ state, i.e. with one bound electron.

We consider the in-medium two-particle problem of the formation of the C5+ state, described by the two-particle in-
medium Schrödinger equation. A Green function approach [3, 4] leads to the following two-particle equation (quantum
number n̂ = {P, γ, ν}, total momentum P, spin variables not given explicitly)

[Ee(p) + Σe(p, z) + EC6+(k) + ΣC6+(k, z)]ψ5+
n̂ (p,k)

+[1− fe(p)∓ fC6+(k)]
∑
q

V eff
C6+,e(p,k,q, z)ψ

5+
n̂ (p + q,k− q) = E5+

n̂ ψ5+
n̂ (p,k) (16)

with the effective interaction

V eff
C6+,e(1, 2,q, z) = VC6+,e(q)

[
1−

∫ ∞
−∞

dω

π
Im ε−1(q, ω + i0) [nB(ω) + 1]

×
[

1

z − ω − EC6+(1)− Ee(2− q)
+

1

z − ω − EC6+(1 + q)− Ee(2)

]]
. (17)

We neglected higher order terms ∝ fc(p) = {exp[β(Ec(p) − µc)] ± 1}−1, the Fermi/Bose function for c = e,C6+.
VC6+,e(q) = −Z6e

2/ε0q
2 is the Coulomb interaction. Without any chemical potential, nB(ω) = [exp(βω)− 1]−1 is the

Bose distribution function.
The in-medium Schrödinger equation (16) contains the contribution of self-energies Σc as well as the contribution

of effective interaction including Pauli blocking. As a consequence, the energy eigenvalues E5+
n̂ of bound states as

well as of continuum states are dependent on density and temperature of the surrounding plasma. These ”dressed”
states are denoted as quasiparticle excitations. The Mott effect is the disappearance of a bound state if the ionization
potential I5+

γ,ν = E5+
cont − E5+

γ,ν goes to zero (Mott density). The continuum edge E5+
cont = ∆C6+(k = 0) + ∆e(p = 0)

is given by the quasiparticle shifts (14). The bound state energy E5+
γ,ν is a function of temperature and density. The

bound state part of the intrinsic partition function (6), (9), (15) has the form

σbound
C5+ (T ) =

bound∑
γ,ν

[
eβI

5+
γ,ν − 1

]
θ
(
I5+
γ,ν

)
, θ(x) =

{
1 if x > 0,
0 else,

}
(18)

with the channel γ (spin, angular momentum) and the intrinsic excitation ν. Later on we use this approximation for
the generalized Beth-Uhlenbeck (BU) formula (15) to define the density contribution of bound states. As a function
of temperature and density, the intrinsic partition function (18) is continuous at the Mott density. A more detailed
approach based on in-medium scattering phase shifts, see last term in Eq. (15), can also take into account resonances
in the continuum. In this work we neglect the contribution of in-medium scattering phase shifts. In the case of a
separable potential, the phase shifts are available, see Ref. [32], so that the contribution to the intrinsic partition
function can be evaluated. This issue may be subject of future investigations.

In the zero density limit where in-medium effects are absent, Eq. (16) reproduces the Schrödinger equation for the
hydrogen-like atom. Density effects arising from the dynamical self-energy Σc(p, z), the Pauli blocking (1−fe∓fC6+),
and the dynamical screening expressed by the dielectric function ε(q, z) in Eq. (17) have to be treated in appropriate
approximations. As mentioned above, the carbon ions can be treated classically so that the contribution ∓fC6+(k)
can be dropped. The Pauli blocking becomes relevant if the free electrons are degenerate. The contribution to the
shift of bound state energies is discussed in the following section II D.

Using the technique of Feynman diagrams, systematic approaches for the dielectric function ε(q, z) can be found [3].
A standard expression for the dielectric function is the random phase approximation (RPA) where the polarization
function is calculated in lowest order with respect to the interaction. In the static limit, the effective interaction

(17) gives the Debye result V Debye
C6+,e (1, 2,q, z) = VC6+,e(q)/(1 + κ2/q2) with the Debye screening parameter κ2 =∑

i Z
2
i e

2ni/(ε0kBT ) + κ2
e,

κ2
e =

4π

kBT
2

(
2π~2

mekBT

)−3/2
e2

4πε0

1√
π

∫ ∞
0

dt
t−1/2

et−βµe + 1
= 12π5/2 e2

4πε0
neβ

F−1/2(βµe)

(βEF )3/2
. (19)
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The expression for the Debye screening parameter κ includes the contribution of free electrons (κe) which eventually
become degenerate. Then, in contrast to the classical limit (1), the electron contribution is given by a Fermi integral
which, in the strongly degenerate limit, yields the Thomas-Fermi screening length instead of the Debye screening
length, see Refs. [3, 4, 22]. The electron chemical potential µe is given by Eq. (4).

For the dynamical self-energies Σe(p, z), ΣC6+(k, z) occurring in Eq. (16), a systematic expansion is possible in
terms of Feynman diagrams [3]. For the electron quasiparticle shift ∆e(p) (14) the expansion ∆e(p) = ∆Fock

e (p) +
∆corr
e (p) results. As lowest order with respect to interaction, the Fock shift for the electrons

∆Fock
e (p) = −

∑
q

e2

ε0q2
fe(p + q) (20)

is obtained (the Hartree term vanishes because of charge neutrality of the plasma). This shift is a typical quantum
effect. Because the ions are treated classically under the conditions considered here, the corresponding contribution
disappears. The further treatment of the electron contribution (20) is postponed to the following Sec. II D.

We consider in this section the next order of the expansion of ∆e(p), the correlation shift (Montroll-Ward shift)
∆corr
e (p). It describes the formation of a screening cloud and has been intensely investigated. In the so-called GW

approximation, the RPA expression for the screened interaction can be used, and we find the Debye shift

∆corr
e (p) = − κe2

8πε0
(21)

in the low-density, non-degenerate limit. Because this is a classical effect, describing the formation of the screening
cloud as solution of the Poisson-Boltzmann equation, it applies also to the ions ai which are shifted according to the
charge number Zi,

∆corr
i (p) = −κZ

2
i e

2

8πε0
, (22)

in particular Z6 = 6 for C6+. With these expressions, the IPD in Debye approximation (1) is found for the ioniza-
tion/recombination reaction ai + s
 ai+1 + e+ s′ discussed above.

It is an advantage of the many-particle approach that systematic improvements can be given. The correlation shift
has the general form

Re Σcorr
c (p, ω) = −P

∫
d3q

(2π)3

∫
dω′

π
Vcc(q)Im ε−1(q, ω′ + i0)

1 + n
B

(ω′)

ω − ω′ − Ec(p + q)/~
. (23)

P denotes the principal value, the index c denotes electron as well as, for our system here, the different carbon
ions. Instead of approximating the dielectric function by the RPA expression, which gives the Debye result, we can
use the fluctuation-dissipation theorem which relates the inverse dielectric function to the dynamical SF [20], For a
two-component plasma (free electrons with charge −e, ions with effective charge Z̄e and charge neutrality Z̄ni = ne),
the imaginary part of the inverse dielectric function can be expressed via the dynamical SFs, see also [33],

Im ε−1(q, ω + i0) =
e2

ε0 q2

π

~ (1 + nB(ω))

[
Z̄2 niSii(q, ω)− 2Z̄

√
neniSei(q, ω) + neSee(q, ω)

]
. (24)

After using a plasmon-pole approximation for S(q, ω) [20, 34], the dynamical response of the system is determined by
the plasmon pole frequency ωpl = (

∑
c e

2Z2
cnc/ε0mc)

1/2. Then, the integral over the frequency in (23) is executed.
Accounting for non-linear screening [20], the ionic contribution to the single-particle shift is related to the static SF

∆SF,ion−ion
i =

3(Zi + 1)e2Γi

2π2ε0rWS

√
(9π/4)2/3 + 3Γi

∫ ∞
0

dq

q2
SZZii (q), (25)

with rWS = (4πni)
−1/3 and Γi = Z2

i e
2/(4πε0kBTrWS). We can use known expressions for the SF such as the approx-

imation given in Ref. [35] for recent calculations [20]. As explained there, an improved description of experiments
[8–14] has been obtained. For future work [36], HNC calculations or DFT-MD simulations can be applied to implement
the structure factor in expression (25).

Instead of the phenomenological SP expression (2), the IPD is related to the dynamical ion structure factor. Within
the Green function approach, expression (25) can be improved in a systematic way considering higher order diagrams.
In particular, the electronic contribution to the correlated part of the self-energy shift ∆corr

e (p) can be improved.
Expressions for the Montroll-Ward term are found, e.g., in Ref. [3].
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In this work, we are not concerned with the improvement of the correlated part of the self-energies that will be
considered in a forthcoming work, see also [3, 4, 20, 37, 38], but focus on the effects of degeneracy. As discussed
above, the Debye approximation for the correlation shift can be replaced by the Stewart-Pyatt expression or more
advanced approximations based on the dynamical structure factor if going to high densities. We consider here the SP
approximation (2) frequently used in IPD calculations, to have a result of reference. Results for the corresponding
IPD are shown in Fig. 1 below, where also the comparison with SF calculations [20] is given.

D. Degeneracy Effects

To investigate the effects of degeneracy, i.e. Pauli blocking and Fock shifts, we simplify the two-particle equation
(16). The ions are considered as non-degenerate so that their contribution to the Pauli blocking term is dropped. In
addition, we replace the dynamical screening by a statically screened (Debye) interaction V scr

C6+,e(q) and introduce the

quasiparticle shifts (14).

[Ee(p) + ∆e(p) + EC6+(k) + ∆C6+(k)]ψ5+
n̂ (p,k)

+[1− fe(p)]
∑
q

V scr
C6+,e(q)ψ5+

n̂ (p + q,k− q) = E5+
n̂ ψ5+

n̂ (p,k) . (26)

In adiabatic approximation, the motion of electrons is separated from the motion of ions. More systematically,
we introduce Jacobian coordinates, the center-of mass momentum P and the relative momentum prel. We use a
separation ansatz for the wave function ψ5+

n̂ (p,k) = Φn̂(P)φn̂(prel). The center-of-mass motion is given by a plane
wave. In limit me �M where prel ≈ p, we obtain for the relative motion

[Ee(p) + ∆e(p)]φn̂(p) + [1− fe(p)]
∑
q

V scr
C6+,e(q)φn̂(p + q) = E5+

n̂,relφn̂(p) (27)

so that E5+
n̂ = EC6+(k) + ∆C6+(k) + E5+

n̂,rel.

The Fock shift of an electron with momentum p is given by the expression (20). In the limit of strong degeneracy,
T � TF, we approximate the Fermi distribution function as step function, fe(p) = θ(pF−p). The Fermi wave number
follows as pF = (3π2ne)

1/3. At zero temperature, we find for the Fock shift

∆Fock
e,T=0(p) = − e2

4πε0

1

πp
Re

[
p pF + (p2

F − p2) arctan

(
p

pF

)]
. (28)

The contribution of the Fock shift ∆Fock
e (0) to the shift of the continuum edge is given by the value at p = 0.

At T = 0 we have for the shift of the continuum edge ∆Fock
e,T=0(0) = − 2

π
e2

4πε0
pF . At finite T , the Fock shift of the

continuum edge, Eq. (20) at p = 0, is calculated numerically.
Considering the bound states of the in-medium Schrödinger equation (26), the ions a5, two contributions arise

owing to the electron degeneracy: the Fock shift (20) which modifies the kinetic energy in the Schrödinger equation
as well as the Pauli blocking term in front of the interaction potential. Because the Fermi function occurring in
both contributions depends on T and ne, the solution E5+

n of the Schrödinger equation (26) also depends on these
parameters. Both contributions to the shift of E5+

n , the Pauli blocking and the Fock shift, are found solving the
equation (27) for the relative motion.

As example we give the shift ∆0 = ∆bound,Fock
0 + ∆bound,Pauli

0 of the ground state energy E5+
0 in perturbation

theory. The two-particle Schrödinger equation without any medium corrections has the well-known hydrogen-like

ground state solution E
(Z−1)+
0 = −Z2 e4

(4πε0)2
me
2~2 = −13.602Z2 eV with Z = 6 for the case considered here, and

φ0(p) = 8
√
πa3

Z

1

(1 + a2
Zp

2)2
, ψ0(r) =

1√
πa3

Z

e−r/aZ , (29)

aZ = 4πε0
Ze2

~2

me
= aB/Z.

The Fock shift ∆bound,Fock
0 of the bound state energy results in perturbation theory as average of the momentum-

dependent Fock shift (20) with this unperturbed wave function (29),

∆bound,Fock
0 = −

∑
p,q

φ2
0(p)

e2

ε0q2
fe(p + q) = −32

π

∫ ∞
0

dp
p2a3

Z

(1 + a2
Zp

2)4
∆Fock
e (p) . (30)
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An explicit expression can be given for zero temperature (T = 0)

∆bound,Fock
0,T=0 = − e2

4πε0

2

πaZ

5a3
Zp

3
F + 3a5

Zp
5
F

(a2
Zp

2
F + 1)2

. (31)

Compared to the Fock shift ∆Fock
e (0) of the continuum edge, the bound state Fock shift ∆bound,Fock

0 is determined by
the momentum-dependent Fock shift (20). The latter becomes smaller near the Fermi momentum, so that the bound
state Fock shift is also smaller compared to the Fock shift of the continuum edge.

The Pauli blocking shift is given by

∆bound,Pauli
0 = −

∑
p,q

φ0(p)fe(p)VC6+,e(q)φ0(p + q) =
Ze2

4πε0

16a2
Z

π

∫ ∞
0

fe(p)
p2dp

(1 + a2
Zp

2)3
(32)

which becomes at T = 0

∆bound,Pauli
0,T=0 =

Ze2

4πε0

2

πaZ

[
aZpF (a2

Zp
2
F − 1)

(a2
Zp

2
F + 1)2

+ arctan(aZpF)

]
. (33)

At finite temperatures, the integrals in Eqs. (30), (32) are calculated numerically. Note that both effects, the Fock
shift and the Pauli shift, have different sign and compete partially. Calculations are shown in the following Sec. III,
see Fig. 1.

III. RESULTS FOR DEGENERATE PLASMAS

A. Pauli blocking in carbon plasmas

We present results for the ionization degree of carbon plasmas in the WDM regime. The composition of the carbon
plasma for given mass density and temperature is determined by the abundances of ions Ci+ with different charge
Zie, Zi = 0, 1, . . . , 6 (including the neutral atom). The composition of the partially ionized plasma (PIP) is described
by the partial densities, Eq. (6), obtained in Sec. II B.

To start with we briefly recall the ideal PIP model neglecting any medium effects. This approximation is applicable
in the low-density region where we have nearly free motion of the constituents of the PIP. In this limiting case, we
consider noninteracting ions Ci+ in its ground state and bound excited states. The electrons which are not bound
to ions are considered as free electrons. The densities of the different components of the plasma are connected by
the neutrality condition

∑
i Zini = ne. The ionization energies Ii necessary to separate an electron from the carbon

ion Ci+ are known (I
(0)
0 = 11.2603 eV, I

(0)
1 = 24.3833 eV, I

(0)
2 = 47.8878 eV, I

(0)
3 = 64.4939 eV, I

(0)
4 = 392.087

eV, I
(0)
5 = 489.9933 eV). In addition, the excited states must be included, data can be found in Ref. [39]. To have

convergent results, the Planck-Larkin expression (A6) is used for the intrinsic partition function. The solution of the
Saha equations for the partial densities of different ions (ground state and excited state) gives the average ionization
degree Z̄ and the corresponding free electron density ne = Z̄nC as function of the temperature T and the density of
carbon nuclei nC in the charge-neutral equilibrium state. Results for Z̄ are shown below in Fig. 2 (”ideal mixture”) for
T1 = 100 eV as function of ne. The convergent Planck-Larkin intrinsic partition functions are [39] σPL

5 (T1) = 266.241,
σPL

4 (T1) = 54.197, σPL
3 (T1) = 1.6889, σPL

2 (T1) = 1.2345, σPL
1 (T1) = 0.5459, and σPL

0 (T1) = 0.08885. For the ideal
electron gas, the classical approximation has been compared to the ideal Fermi gas (4), but effects of degeneracy are
small in the region of density and temperature considered there. However, an ideal, noninteracting plasma model
with occasional reactions to establish chemical equilibrium is not appropriate for a dense plasma where interactions
have to be taken into account.

We now discuss the in-medium effects such as Debye screening and its improvements by SP and SF as well as Pauli
blocking and Fock shifts, which determine the quasiparticle energies in the dense plasma for the hydrogen-like ion
C5+. Results for the different contributions to the in-medium shifts are shown for T = 100 eV as function of the free
electron density ne in Fig. 1. For the ground state of C5+, the ionization potential in free space is I

(0)
5 = 489.9933

eV. It is reduced by screening. Improving the Debye result for the correlation part, the SP approximation (2) gives
a Mott density nSP

e,Mott = 6.89× 1025 cm−3 where the bound state merges with the continuum. Within the quantum

statistical approach [20] determined by the ionic structure factor (”SF,ions”), the IPD is larger, see Fig. 1. The
corresponding Mott density for T = 100 eV follows as nSF

e,Mott = 3.78× 1025 cm−3.
With increasing density, the effects of degeneracy of the electron subsystem become of increasing importance.

Whereas the Fock shifts ∆Fock
e (0) (20) of the continuum edge and, even more, the Fock shift of the bound state (30)
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Figure 1: Ionization potential depression (IPD) of C5+ as function of the free electron density ne at fixed temperature T = 100
eV. The Fock shift of the continuum edge (cont. Fock), Eq. (20) at p = 0, together with the Stewart-Pyatt (SP) IPD (2) yields
the shift of the continuum (cont. Fock+SP). For the ion C5+ in its ground state, the Pauli shift (32) (Pauli) and the bound
state Fock shift (30) (bound Fock) as well as the sum of both (bound Fock+Pauli) are presented. For comparison, the IPD
obtained from the ionic structure factor shift of the continuum (SF, ions) as improvement of the SP model [20] is also shown.
The Mott transition is predicted at ne = 1.3 × 1025 cm−3. Upper scale: Carbon mass density.

remain small, the Pauli blocking (32) becomes relevant for the dissolution of the bound state. Taking into account

all effects of degeneracy, the Mott density is further reduced and the value ndeg
e,Mott = 1.28 × 1025 cm−3 is obtained.

Note that the condition Θ = 1, where the free electron system becomes degenerate, for a temperature of T = 100
eV is satisfied at an electron density ndeg

e = 4× 1024 cm−3, which corresponds to a mass density of 20 g cm−3 for a
carbon plasma as mentioned in the Introduction. Above this density, degeneracy effects, in particular Pauli blocking
and Fock shifts, have to be considered. Similar results are obtained also for the other ionization states of carbon.

In conclusion, the ionization potential Ii = I
(0)
i + ∆corr

i + ∆deg
i contains contributions due to correlations as well as

degeneracy. At low densities the composition of the partially ionized plasma is well described using the IPD in Debye
approximation or its improved versions, the semi-empirical SP or the quantum statistical SF approaches, which also
include strong correlation effects. The effects of degeneracy, in particular Pauli blocking, become of relevance in the
region of higher densities where the free-electron system is degenerate, Θ ≤ 1. The region, where the plasma is nearly
fully ionized, is strongly modified if Pauli blocking is taken into account.

To demonstrate the effect of Pauli blocking on Z̄, we performed calculations of the ionization degree of carbon as
function of the free electron density at a fixed temperature T = 100 eV, see Fig. 2. Arbitrary ionization stages Zi of
carbon as well as excited states according to the NIST tables [39] have been included. For the contributions of free
and bound electrons to the density, we use the definition (15) but neglect the contribution of scattering states (18).
The term -1 in the bound state contribution makes this part continuous near the Mott density where the bound state
disappears. It compensates partly the contribution of scattering states according to the Levinson theorem. Together
with the extraction of the Born approximation, which is transferred to the quasiparticle shift [28, 30], we assume that
the continuum contribution to the correlated density (second term of the right-hand-side of Eq. (15) becomes small
and can be neglected. For further discussion see the conclusions, Sec. IV.

The calculation of the intrinsic partition functions and the corresponding partial densities has been performed in a
self-consistent way. Starting from the given T and the number density nC of carbon nuclei, the free electron density
ne, the electron chemical potential and the shifts are calculated, adopting a value Z̄ of the ionization degree. The
Fock and Pauli shifts are immediately calculated with the free electron density. For the Stewart-Pyatt shift (2) we
need, in addition to the free electron density, also the screening parameter κ (1), (19), where

∑
i Z

2
i ni ≈ Z̄

∑
i Zini
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Figure 2: Average ionization degree Z̄ of carbon as function of the free electron density ne for temperature T = 100 eV.
Ideal mixture with electron treated classically (ideal,class) and as Fermi gas (ideal, deg), OPAL and Stewart/Pyatt (BU,SP)
are also shown. BU denotes the use of the Beth-Uhlenbeck expression (15), (18) for the intrinsic partition function, SP the
Stewart-Pyatt contribution Eq. (2). In addition the SP expression (2), the full IPD (BU,SP,Pauli) contains the Fock shift of
the continuum (20) at p = 0 as well as the Fock shift of the bound state (30) and the Pauli blocking (32).

has been used. Choosing the density of ions C6+, the partial densities of all ion states are calculated solving the
Saha equations (8), (10) with these shifts, as well as the free electron density and the ionization degree. Then, the
self-consistent solution for Z̄ was found. After that, the density of ions C6+ is changed to reproduce the given carbon
number density. Finally, κ is calculated consistently with the partial densities according Eqs. (1), (19). As a result,
for given T and nC , we found the densities of all components of the partially ionized plasma, as well as the ionization
degree Z̄.

Neglecting all in-medium effects, the approximation of an ideal mixture discussed above, becomes increasingly worse
when ne exceeds the value 1023 cm−3. The account of IPD according to SP (denoted as ”BU,SP” in Fig. 2) gives an
ionization degree of about Z̄ = 4 even at very high densities. This is also obtained from OPAL [22]. These values are
used when measurements have been compared to theory [40, 41], see below Sec. III B. More recent quantum statistical
approaches [20] which relate the IPD to the ionic structure factor give a slightly higher value for the ionization degree
not shown here.

The ionization degree Z̄ is found to be further increased if degeneracy effects, the Fock shift and the Pauli blocking,
are taken into account. The corresponding ionization degree is shown in Fig. 2 (denoted as ”BU,SP,Pauli”). The

value Z̄ = 6 appears for densities larger than the Mott density ndeg
e,Mott = 1.29×1025 cm−3, i.e. at a much lower density

than predicted by the SP model. The Mott effect gives full ionization if all bound states merge with the continuum
of delocalized electron states. This is clearly seen using the virial form (15) of the intrinsic partition function, if only
bound states are taken into account.

Of interest are the properties of WDM at high densities where the plasma becomes highly ionized. Because there
is no sharp transition to the fully ionized plasma, we consider the value Z̄ = 5.9 for the ionization degree as a nearly
fully ionized carbon plasma with only 10 percent hydrogen-like carbon ions. This concentration is decreasing with
increasing temperature. In Fig. 3, we show graphs of constant ionization degree Z̄ = 5.9 (iso-ionization line) in the
phase diagram T, nC (or T, ne with the relation ne = 5.9nC) for which the plasma is nearly fully ionized. Iso-ionization
lines with Z̄ = 5.9 in carbon are calculated for different approximations.

For an ideal mixture of non-interacting components in chemical equilibrium, treating the electrons classically, the
temperature T ideal

Z̄=5.9
(ne) increases with increasing density. This behavior is only slightly shifted to lower temperatures

if the IPD according to SP (2) is included. Two corrections can immediately be done: the quantum description of
the electron gas according to Eq. (4) which determines the relation between density and chemical potential necessary
for the chemical equilibrium (10), and the term −1 occurring in the Beth-Uhlenbeck expression (15). Neglecting the
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T ideal
5.9 for the ideal mixture is compared with the ideal Beth-Uhlenbeck expression TBU,ideal

5.9 (15), (18), neglecting any medium

effects. The account of the correlation shifts for the IPD, given by the Stewart-Pyatt model (2), yields the graph TBU,SP,class
5.9

for a classical free-electron gas or TBU,SP,deg
5.9 for the Fermi gas. In addition to the SP shift, the full IPD contains the Fock shift

of the continuum (20), p = 0, as well as the Fock shift of the bound state (30) and the Pauli blocking (32). It gives the graph

TBU,SP,Pauli
5.9 .

IPD, the bound states are not dissolved with increasing density. As compared to the ”ideal” curve T ideal
5.9 , the more

consistent TBU,ideal
5.9 which contains the Beth-Uhlenbeck form (18) of the intrinsic partition function, is shifted to lower

values, but also increases monotonically with density.
According to Eq. (18), only bound states are taken into account, i.e., the ionization potential of the bound state

must be positive. The Mott effect becomes visible if the IPD compensates the vacuum ionization potential I
(0)
i . The

corresponding TBU,SP,deg.
5.9 in Fig. 3 using the Stewart-Pyatt approximation for the IPD shows a strong deviation from

the other curves. (Note that the classical result for the electron chemical potential used for TBU,SP,class.
5.9 gives only

small deviations.) In particular, for electron densities higher than the Mott density nSP
e,Mott given above, all electrons

are free, and the iso-ionization curve for TBU,SP,deg
5.9 abruptly goes to zero. Even larger is the effect if exchange terms,

in particular Pauli blocking, are included. The curve TBU,SP,Pauli
5.9 in Fig. 3 indicates that the region of full ionization

is reached already at the Mott density ndeg
e,Mott consistent with the results shown in Fig. 1.

The strong influence of the IPD on the onset of full ionization, where T5.9 is shifted to lower temperatures if Pauli
blocking is taken into account, leads to higher values for the average degree of ionization Z̄. Higher values of Z̄
have been observed in experiments [40, 41] when comparing to OPAL [22], which neglects degeneracy effects such as
bound-state Pauli blocking.

B. Comparison to other approaches and experiments

The ionization degree of carbon at T = 100 eV has also been considered in Ref. [42]. The calculations used an
average atom model with different boundary conditions to mimic a band width, and the bound state contribution
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was defined by the part of the band below the energy of the continuum edge. Qualitatively, the results are similar
to the results for the ionization degree shown in Fig. 2, denoted as ”BU,SP,Pauli”, and full ionization is predicted
near the Mott density. Similar calculations have been performed recently for lower temperatures and densities in Ref.
[43]. It is not clear to which extent correlation and degeneracy effects obtained from a systematic quantum statistical
approach are already contained in those semi-empirical approaches.

Recently, WDM has been treated successfully within DFT approaches, see, e.g., [44, 45]. Calculations for carbon
plasmas [26, 53] have been performed, where results for the pressure and the internal energy are obtained. As an
approach that is very appropriate to investigate condensed matter, the DFT formalism also describes Pauli blocking
and the formation of band structures. However, composition, ionization degree Z̄, and IPD are not directly accessible
within this approach, see also below Sec. IV.

Carbon ionization Z̄ at WDM conditions was measured in experiments [40, 41] with CH using x-ray Thomson
scattering, see Tab. I. The observed ionization degree of carbon ions was higher than the predictions of SP. In Ref.
[41], the mean charge Z̄ = 4.9 was measured at density 6.7 g/cm3 and T = 86 eV which is higher than the prediction
Z̄ = 4.18 from SP. This discrepancy is only partly resolved using the SF approach [20] for this two-component plasma
in the simulations where a value Z̄ = 4.79 has been reported. In contrast to pure carbon plasmas, ionic structure
factors SCC, SCH, SHH for the different components have to be taken into account, and an increase of the ionization
degree was obtained. Further work is in progress [36].

material T ρ nC Z̄exp Z̄SP ∆I5SP Z̄SP, deg ∆I5,SPSP, deg ∆I5,degSP, deg Θ

[eV] [g cm−3] [cm−3] [eV] [eV] [eV]

CH [40] 8 ± 1 4.5 ± 0.5 2.08 × 1023 4 ± 0.5 2.04 90.47 4.0 114.02 54.45 0.213

CH [41] 86 6.74 3.12 × 1023 4.9 4.18 125.8 4.26 126.74 38.53 1.69

C 8 4.15 2.08 × 1023 - 2.88 101.7 4.0 113.9 46.9 0.247

C 86 6.22 3.12 × 1023 - 4.21 125.7 4.29 126.6 31.8 1.94

C 100 40 2.01 × 1024 - 4.14 236.9 5.19 258.1 182.4 0.574

Table I: Ionization degree Z̄ of carbon at WDM conditions. The treatment within the Stewart-Pyatt (index SP) approach
is compared to a treatment where also the effects of degeneracy (index SP, deg) are taken into account. In addition to the

ionization degrees in the respective approaches also the SP contribution ∆I5,SPSP, deg to the shift of the ionization potential as

well as the contribution owing to the effects of degeneracy ∆I5,degSP, deg are given, which contains in addition to the Fock shifts

(20), (30) also the Pauli blocking term (32). Θ = T/TFermi is the electron degeneracy parameter (3). For T = 8 eV (strong
degeneracy), the Mott condition (18) with Ii,γ,ν + EF > 0 has been used. The different contributions for the energy shifts for
the bottom line are visualized in Fig. 1 for ne ≈ 1025 cm−3, just before the Mott transition.

Taking Pauli blocking into account leads to a further increase of the ionization degree. We show some results for the
energy shifts and ionization degree for pure carbon plasmas as well as for CH plasmas in Tab. I. The temperatures T
and mass densities ρ are in accordance with the parameter values given in the experiments [40] and [41]. The number
densities nC of carbon atoms are calculated with the molar mass number 12 for C and 13 for CH. We treat the CH
plasma in a simple approximation where the H component is fully dissociated into a proton and an electron. Both the
additional proton and electron will change the screening parameter κ by adding the proton to the ionic contribution
in Eq. (1), and it will change the free electron density as ne = (Z̄ + 1)nC . The influence of the additional electron on
the chemical equilibrium between the different carbon ions, as expressed by the coupled Saha equations, is complex
and is calculated self-consistently. The increase of the screening parameter κ leads to an increase of the ionization
degree. However, the additional electrons owing to the ionized H atoms can partially enter the ionic bound states
as described by the Saha equations. This leads to a decrease of the ionization degree, because more bound electrons
appear and the average charge of carbon ions is decreasing. To compare CH plasmas to C plasmas, a calculation
for pure carbon plasmas with identical T and carbon number density nC is shown in Tab. I. In addition, we chose
T = 100 eV and ρ = 40 g/cm3, which is of interest for future experiments.

The composition was calculated with the generalized Beth-Uhlenbeck expression (15) where the in-medium bound
state energies are shifted. With the Mott condition Ii,γ,ν > 0, see Eq. (18), the contribution of scattering states
is neglected. Here, Ii,γ,ν = Ei,γ,ν − Ei, cont denotes the ionization energy of the ion ai in the state γ (channel,
e.g. angular momentum) and excitation ν, and Ei, cont is the continuum edge of the ion ai+1 and the electron. For
the lowest temperature, in the case of strong degeneracy, contributions of scattering states are of relevance because
boundstate-like correlations exist for energies below the Fermi energy EF = ~2p2

F /2me. As shown in [32], for strong

degeneracy the Mott condition Ii,γ,ν +EF > 0 can be used. The shift of the ionization potential ∆I5,SP
SP, deg is the IPD

according to SP for the ion C5+, see Fig. 1. The additional shift owing to the effects of degeneracy is denoted as
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∆I5,deg
SP, deg = −∆Fock

e + ∆bound,Pauli + ∆bound,Fock which contains in addition to the Fock shifts (20), (30) also the Pauli

blocking term (32). The total IPD when taking degeneracy effects into account is the sum of these two contributions:

∆I5
SP, deg = ∆I5,SP

SP, deg + ∆I5,deg
SP, deg. The index ”SP” refers to a calculation where only the SP term for the IPD is

considered, the index ”SP,deg” refers to a calculation where both, SP and degeneracy, are taken into account for IPD.
For the latter case, the electron degeneracy parameter Θ = T/TFermi (3) is also given.

As shown in Tab. I, taking the effects of degeneracy into account (in particular Pauli blocking), leads to an increase
of the ionization degree Z̄. This effect is marginal for non-degenerate plasmas (Θ > 1) but becomes important in
degenerate plasmas (Θ� 1). The calculations for CH plasmas and C plasmas with corresponding plasma parameters
are not very different. With respect to the experimental data, the inclusion of degeneracy effects gives better results.
Our exploratory considerations should be completed by including further contributions such as the structure factor
effects [20] or the polarization of the ion core. A more detailed description will be given in forthcoming work. In
addition, the range of validity of the perturbation theory must be checked.

Until now, experimental data show higher ionization degrees compared to the usually used SP approximation or the
OPAL data tables. The Pauli blocking discussed in our work can be considered as a possible mechanism in degenerate
plasmas which contributes to the increase of the ionization degree. Experiments for pure carbon plasmas at very high
densities up to 40 g/cm3 are in preparation at the NIF. We expect that these experiments will show the relevance of
the Pauli blocking effect as a mechanism to increase the charge state of carbon ions in degenerate WDM states.

IV. CONCLUSIONS

The Pauli blocking has to be taken into account for extreme high-density WDM when the electrons are strongly
degenerate. This exchange effect seems to be essential for the appearance of high ionization degrees as compared to
standard approaches considering only screening effects, e.g., SP used for opacity tables like OPAL [8, 13–15, 40, 41, 46–
49]. Within the many-body approach described in the present work, further effects such as the polarization shift of
the bound states can be considered, and the correlation (Montroll-Ward) contribution to the electron self-energy can
be improved taking higher-order Feynman diagrams into account. For instance, ion correlations expressed by the
dynamical ionic structure factor have been considered recently [20]. Another interesting effect is that Pauli blocking
is only approximately described by the ideal Fermi distribution in Eq. (27). In general, correlations and bound state
formation also contribute to phase space occupation so that it deviates from the ideal Fermi distribution, see [23]. In
addition, the perturbative treatment of Pauli blocking is improved if the full solution of the in-medium Schrödinger
equation (27) is worked out, see also Refs. [3, 19, 37].

The concept of the ionization degree or plasma composition is a useful approach to PIP but has to be used with
care, in particular with respect to the inclusion of scattering states. The ordinary chemical picture which considers
the PIP as a mixture of different components, the free particles as well as the bound clusters, neglects the correlations
between these components. The so-called physical picture, where only the ”elementary” constituents (electrons and
nuclei) and their interaction are considered, provides a consistent description of WDM. The drawbacks of the ordinary
chemical picture are avoided if spectral functions are considered, which are well defined at arbitrary densities. Single-
quasiparticle states and bound states are approximations for the spectral functions where the energy levels are shifted
and broadened because of the interaction with the plasma environment. In particular, the broadening of energy levels
(Inglis-Teller effect [50, 51]) has to be considered if the signatures of bound states as separate peaks in the spectra
disappear.

A challenge is the use of density-functional theory [9–12] where the single-particle density of states is evaluated.
Assuming that the broadening of the bands is less important for the integral over the spectral function, see Eq. (11),
the shifts of the bands can be compared with the level shifts in our approach. Work in this direction is in progress
[52], see also [53] where orbital-free molecular dynamics is performed, and the sensitivity of the equations of state,
obtained there, to the choice of exchange-correlation functionals is investigated. Correct results for thermodynamic
quantities are also available from PIMC calculations [16] in the high-temperature region where the difficulties using
a nodal structure are less relevant. Controversies such as the treatment of strongly degenerate systems [26, 54] where
µe ≈ EF may be resolved within the quantum statistical approach, considering the contribution of scattering phase
shifts, see [55]. For the strongly degenerate electron gas, bound-state like contributions do not disappear if the bound
state merges with the continuum of scattering states. At zero temperature, correlations in the continuum give a
contribution to the correlated density until the bound state merges with the Fermi energy.

The full solution of the quantum statistical approach, including the contribution of scattering states, is needed
to obtain a consistent description of physical properties of the partially ionized plasma [32]. This is possible in the
”physical” picture, i.e. the solution of the many-body problem for interacting electrons and nuclei. The ordinary
”chemical” picture is improved using the quasiparticle concept. Instead of free particles, single-quasiparticle states are
introduced which contain already contributions of interaction in mean-field approximation. In addition, correlations
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are defined which contain not only the in-medium bound states, but also the correlations in the continuum.
The Pauli blocking is a quantum effect based on the antisymmetrization of the many-electron wave function. It is

only approximately described by an empirical potential for the interaction of bound states. A consistent description is
given within the physical picture, solving the few-particle in-medium Schrödinger equation (so-called Bethe-Salpeter
equation) which contains the phase-space occupation in the interaction term. The expression for an uncorrelated
medium (26) given by the Fermi distribution function should be improved taking correlations in the medium into
account, see Refs. [56]. In conclusion, the Pauli blocking is essential to describe the dissolution of bound states and
the increase of the ionization degree at high densities when the WDM is strongly degenerate.
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Appendix A: Exact relations for the second virial coefficient and the Planck-Larkin expression for the
intrinsic partition function

According to Beth and Uhlenbeck [27], the contribution of correlations from the channel γ to the intrinsic partition
function is expressed in terms of the bound state energies Ei,γ,ν and the scattering phase shifts δi,γ(E),

σi,γ(T ) =

bound∑
ν

e−βEi,γ,ν +

∫ ∞
0

dE

π
e−βE

d

dE
δi,γ(E). (A1)

After integration by parts and using the Levinson theorem [57, 58], the alternative expression (9) is obtained. A
remarkable property of both relations, (9) and (A1), is that they contain only properties which can be measured, but
not the interaction potential.

However, in the case of Coulomb interactions, scattering phase shifts can not be defined in the standard way because
of the long-range character of the Coulomb potential. This problem has been investigated in plasma physics for a long
time, see Refs. [3, 4, 22, 59]. We give here a result for the intrinsic partition function of hydrogen-like ions. Using
the abbreviations ξab = −eaeb/(kBTλab), λab = ~/

√
2mabkBT , mab = mamb/(ma + mb), we have up to the second

order of the fugacity za = expβµa the exact result (see, e.g. Ref. [3, 60])

na = za −
κe2

2
−
∑
b

zb

[
−π

3
(βeaeb)

3 ln(κλab) +
π

2
β3e2

ae
4
b − 2πλ3

ab

(
Q1(ξab)± δab

(−1)sa

sa + 1
Q2(ξab)

)]
+O(z3/2

a ln za) . (A2)

Here, the direct terms are described by the function

Q1(ξ) = −
√
π

8
ξ2 − ξ3

6

(
C

2
+ ln 3− 1

2

)
+
∑
p=4

√
πζ(p− 2)

Γ(p/2 + 1)

(
ξ

2

)p
, (A3)

with the Riemann zeta function ζ(x), the gamma function Γ(x), and C = 0.5772 being the Euler constant. The
exchange term (+ for fermions, - for bosons) reads

Q2(ξ) =

√
π

4
+
ξ

2
+
√
π ln 2

(
ξ

2

)2

+
π2

9

(
ξ

2

)3

+
∑
p=4

√
π(1− 22−p)ζ(p− 1)

Γ(p/2 + 1)

(
ξ

2

)p
. (A4)

We separate the electron-ion bound state contribution (with the step function θ(ξ) according (18))

Q1(ξ) = 2
√
π[σPL,bound(T ) + σPL,cont(T )] = 2

√
πσPL,bound(T )θ(ξ)− sign(ξ)Q1(−ξ)− 1

4

√
πθ(ξ)ξ2 (A5)
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with the Planck-Larkin bound state partition function

σPL, bound(T ) =

∞∑
n=1

2n2
[
e−βEn − 1 + βEn

]
(A6)

where n runs over the intrinsic quantum numbers (including spin) of all bound states, En = −e2/(4πε0aBn
2). The

total intrinsic partition function σPL,bound(T ) + σPL,cont(T ) is divided into a bound state part and a continuum part
both of which are convergent. As a peculiarity of the long-range Coulomb interaction where scattering phase shifts
cannot be introduced in the standard way, instead of Eqs. (9) and (A1) the definition (A6) can be used to define a
convergent bound-state part of the intrinsic partition function.

To calculate the plasma composition, usually only the bound state part of the intrinsic partition function is taken,
and the continuum contributions are neglected. Although the expressions (9), (A1), and (A6) for the intrinsic partition
function σi(T ) give exact results for the second virial coefficient, the subdivision into the contribution of bound states
and scattering states is different and the corresponding definition of composition and ionization degree is model-
dependent. In this work, another approach is proposed. Instead of free electrons, we consider the quasiparticle
contribution to the spectral function, and instead of electrons bound in ions we consider the correlated part of the
density, as shown with Eq. (15). This approach is based on a cluster decomposition of the self-energy [29] and allows
to include also the contribution of resonances.
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[29] G. Röpke, L. Münchow, and H. Schulz, Nucl. Phys. A 379, 536 (1982).
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[45] M. Schöttler and R. Redmer, Phys. Rev. Lett. 120, 115703 (2018).
[46] T. R. Preston et al., High Energ. Dens. Phys. 9, 258 (2013).
[47] M. Stransky, Phys. Plasmas 23, 012708 (2016).
[48] A. Calisti, S. Ferri, and B. Talin, Contrib. Plasma Phys. 55, 360 (2015); J. Phys. B 48, 224003 (2015).
[49] A. Calisti, S. Ferri, and B. Talin, J. Phys. B: At. Mol. Opt. Phys. 48, 224003 (2015).
[50] D. R. Inglis and E. Teller, Astrophys. J. 90, 439 (1939).
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