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We propose a surface energy for conically degenerate anchorings of uniaxial liquid crystal mesogens
by modifying tensorial Nobili-Durand surface energy that is usually employed for fixed anchoring
orientations with preferred polar angles. By minimizing Landau-de Gennes free energy and the
proposed surface energy, we obtain the equilibrium director configuration around a spherical colloid
in the uniform nematic liquid crystal. Our calculations show that the proposed surface energy can
cause boojum or/and Saturn-ring defect textures depending on the equilibrium conic angle. We
also study the interactions between two spherical colloids with the equilibrium conic angle 45◦,
where the surface energy provides both boojum and Saturn-ring defects on the surface of particles.
We compare the calculated anisotropic colloidal interactions with experimental observations [B.
Senyuk et al., Hexadecapolar Colloids, Nat. Comm. 7, 10659, 2016]. In agreement with experiment,
our results show two stable angular assemblies in the close particle-particle separations. Also, the
long-range elastic interactions are almost consistent with the hexadecapolar elastic distortion.

PACS numbers:

I. INTRODUCTION

Behavior of colloidal particles in a nematic liquid crys-
tal (NLC) host is controlled not only by the size and
shape of the particles [1–5], but also by the anchoring
alignment and strength of the liquid crystal mesogens on
the particle surface [6–10]. There are a wide range of
studies on micro and nano spherical colloids with planar
or normal anchorings in a uniform NLC [11–17]. The uni-
form alignment of the nematic orientation (i.e. director)
gets perturbed by the anchoring on the surface of the
particles, and then, spatial discontinuities of the direc-
tor field are often formed around the particles as points
or/and lines. These discontinuities, known as topologi-
cal defects, are strongly related to long- and short-range
colloidal interactions in the NLC host [18]. At large
distances, the colloid and its accompanying defect act as
a multipole elastic moment in analogy to those in the
electrostatics [10, 19–24]. The interaction between the
particles can be approximated by that between the mul-
tipole moments. In short particle-particle distances, on
the other hand, we sometimes observe that the defect
textures rearrange at the particle contact faces because
of the symmetry breaking of the director field [6, 7]. The
balance between the long- and the short-range interac-
tions can provide colloidal self-assemblies [2, 9]. The
anisotropic elastic interactions between the colloids in
the close distances overcome the Brownian motion and
enable regular one- or two-dimensional stable structures
to form [14].

In contrast to the spherical colloids, faceted colloids
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build up more complex structures, because of the defect
line deformations at the sharp edges [3, 4, 25–28]. Al-
though colloids with low symmetry open a new route for
the colloidal self-assembly with specific media elastic dis-
tortions, it has shown that the spherical colloids with var-
ious anchoring alignments can be still major candidates
in scientific and technological studies on colloids [8–10].

The surface functionalization of the spherical colloids
with different anchoring properties can induce complex
elastic distortions, and lead to the surface and the bulk
defect textures simultaneously in the uniform NLC. Such
particles that have specific surface properties are known
as Janus colloids [8]. They can potentially form novel
colloidal structures in comparison to particles with fully
planar or normal colloidal anchorings. Another inter-
esting idea for inducing complex elastic deformations
around the spherical colloids has been recently studied
by Senyuk and his co-workers. They imposed a coni-
cally degenerate boundary condition on the director at
the colloidal surfaces. In the uniform NLC fluid, these
particles induce hexadecapolar director distortions that
causes anisotropic colloidal interactions. Depending on
the study conditions, the colloidal interactions can spa-
tially form two-dimensional regular crystals with rhombic
unit cells or any possible three-dimensional lattices [9]. A
particle with the hexadecapolar symmetry behaves as a
16-pole moment in analogy to those in the electrostat-
ics. A specific distribution of charges on a spherical
particle corresponds to a filled g-orbital of the outermost
occupied electron shells of chemical elements [9, 10].

The colloids immersed in the NLC is described by ap-
propriate surface energies that satisfy the nematic meso-
gens orientations on the surface of the particles [29–33].
The normal and planar anchoring surfaces have been usu-
ally employed in studying the nematic colloids. To inves-
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tigate the colloids with complex anchorings such as the
conically degenerated anchoring theoretically, we need
new proper surface energies. It is quite useful to de-
scribe the surface energies with a tensorial form, because
it can describe the director field around the defects with-
out considering singularities [30, 31, 33]. To consider a
non-degenerate and fixed anchoring condition, a tenso-
rial quadratic surface energy was introduced by Nobili
and Durand (ND) [30]. Another tensorial surface energy
has been proposed by Sluckin and Poniewierski (SP) for
preferred orientations [31]. Fournier and Galatola (FG)
also proposed a smart surface energy for the degenerate
planar anchoring [33].

In this study, we modify the ND surface energy to de-
scribe the conically degenerate anchorings of the uniaxial
NLC. We mathematically compare the modified ND and
the SP surface energy behaviors around the equilibrium
conic angle by evaluating their reduced non-tensorial en-
ergies. By minimizing the Landau-de Gennes free energy
with the surface energies, we consider the director ar-
rangement on a spherical colloid in the uniform NLC for
different equilibrium conic angles. We also explain in-
teractions between two colloids with the modified ND
surface energy with the equilibrium conic angle 45◦ and
compare the results with experimental observations [9].

II. SURFACE ENERGY

To describe a nematic fluid, we use a traceless and sym-
metric tensor order parameter, Qij . In a uniaxial nematic
fluid, it is given as Qij(~r) = S(~r){3n̂i(~r)n̂j(~r) − δij}/2,
where S is the scalar order parameter, and n̂ is the unit
vector along the director orientation. The anchoring en-
ergy of the NLC molecules on the colloid surface is usu-
ally given as FS =

∫
∂Ω
fSdS, in which

∫
∂Ω

dS denotes
the integral over the colloid surfaces, and fS is a func-
tion of Qij . Here the anchoring strength W appears as
a coefficient in the surface energy density. In this study,
the surface scalar order parameter is assumed to be the
same with that in the bulk, Sb (see below). A degenerate
conical anchoring can potentially include all anchoring
situations from the normal to the degenerate planar an-
chorings, depending on the equilibrium conic angle, ψe.

Sluckin and Poniewierski (SP) have proposed a general
form of the surface energy as

fSP
S = c1ν̂iQij ν̂j+c2QijQji+c3ν̂iQikQkj ν̂j+c4(νiQijνj)

2,
(1)

where ν̂ is the unit normal vector of the surface, and
c1 c2, c3 and c4 are material constants [31]. The indices
(i, j, k) refer to Cartesian coordinates, and Einstein sum-
mation convention is assumed. Here we retain only the
first and the last terms, and ignore the others. In this
specific case, the SP surface energy is rewritten as,

f̃SP
S = W{ν̂iQij ν̂j − Sb P2(cosψe)}2, (2)

where P2(x) is the second-order Legendre polynomial
function of x. It can describe the conically degenerate

FIG. 1: (a) A schematic picture of the normal unit vector
ν̂ and nematic director orientation n̂ on the local surface.
n̂e is the equilibrium conical orientation. (b) A local right-
handed coordinate system to characterize equilibrium conical
orientation, n̂e. It is defined by the three unit vectors, ê(1),
ê(2) and ν̂(= ê(1) × ê(2)). ψe is the equilibrium conic angle
with respect to the normal unit vector [9].

anchoring of the uniaxial nematic liquid crystal. This SP
surface energy density reduces to a non-tensorial conical
anchoring energy as,

f̃SP
S = W

(
3Sb

2

)2

sin2(ψ + ψe) sin2(ψ − ψe), (3)

where n̂ · ν̂ = cosψ and n̂e · ν̂ = cosψe (see Fig. 1). This
non-tensorial form was also given by Ramdane et al. [32].
Around its minimum, ψ = ψe, it is mathematically ap-
proximated as

f̃SP
S 'W (3Sb/2)2{sin2(2ψe)(ψ − ψe)2

+ sin(4ψe)(ψ − ψe)3

+ (7 cos(4ψe)− 1)(ψ − ψe)4 + · · · }.
(4)

In this Taylor expansion, the coefficient of the quadratic
term, which evaluates the effective anchoring strength, is
given by W (3Sb/2)2 sin2(2ψe). This indicates that the
effective anchoring strength depends on ψe and, in par-
ticular, vanishes for the normal (ψe = 0◦) and the fully
planar (ψe = 90◦) anchoring conditions. When ψe = 0◦

and ψe = 90◦, the fourth order term becomes dominant.
To resolve this difficulty, we propose another surface

energy in a tensorial form by modifying the ND surface
energy scheme [30]. It is given by

fmND
S =

W

2

(
Qij −Qe

ij

) (
Qji −Qe

ji

)
. (5)

In this modified Nobil-Durand (mND) model, as shown
in Fig. 1(a), Qe

ij = Sb(3n̂e
i n̂

e
j − δij)/2 is locally deter-

mined by the equilibrium conical orientation, n̂e, on the
surface. The equilibrium conical orientation can freely
rotate azimuthally around the normal unit vector, ν̂. As
shown in Fig. 1(b), the equilibrium conical orientation is
defined by

n̂e = ν̂ cosψe + ê(2) sinψe, (6)
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where ê(2) = ν̂ × ê(1). ê(1) is a unit vector perpendicular
to the plane containing n̂ and ν̂. In order to preserve the
nematic symmetry, it is given by ê(1) = (û × ν̂)/|û × ν̂|,
where û is given by û = n̂ when n̂ · ν̂ ≥ 0, or û = −n̂
otherwise. To avoid a singularity in obtaining ê(1) when
ν̂ × n̂ = 0 in numerical minimizations, we add random
noises in the initial director so that ν̂×n̂ 6= 0. In contrast
to the original quadratic ND surface energy, in which the
equilibrium nematic tensor Qe is fixed, the mND surface
energy is non-quadratic potential because the equilibrium
tensor depends on the local tensor.

In the director notation, the mND surface density re-
duces to the Rapini-Papoular (RP) surface density [29]
as

fRP
S = W

(
3Sb

2

)2

{1−(n̂·n̂e)2} = W

(
3Sb

2

)2

sin2(ψ−ψe),
(7)

where n̂ · n̂e = cos(ψ − ψe). This form has been used
to study the nematic droplets with the conical anchor-
ing [34]. The RP surface anchoring behaves around its
minimum as fRP

S 'W (3Sb/2)2{(ψ−ψe)2−(ψ−ψe)4/3+
· · · }. Around the minimum, the anchoring strength is ef-
fectively given as W (3Sb/2)2, which is independent of ψe,
in contrast to the SP surface energy. Eq. (5) is applica-
ble for any conic angles, 0◦ < ψe ≤ 90◦. For ψe = 0◦,
it describes the standard ND approach for the perpen-
dicular anchoring as Qe

ij = Sb(3ν̂iν̂j − δij)/2. On the
other hand, it gives the degenerate planar anchoring as

Qe
ij = Sb(3ê

(2)
i ê

(2)
j − δij)/2 when ψe = 90◦.

Fournier and Galatola [33] also proposed another sur-
face energy with the degenerate planar anchoring in the
Landau-de Gennes form. Depending on the anchoring
strength, W , the surface energy enforces the nematic
mesogens to lie down on the surface along their projec-
tions. The surface energy density can be expressed as

fFG
S = W

(
Q̃ij − Q̃⊥ij

)(
Q̃ji − Q̃⊥ji

)
, (8)

where Q̃ij = (3Sb/2)n̂in̂j and Q̃⊥ij = (δik− ν̂iν̂k)Q̃kl(δlj−
ν̂lν̂j) are uniaxial parallel and projection tensors, respec-
tively. The FG surface energy density is simplified with
ψ as

fFG
S = W

(
3Sb

2

)2

(1 + sin2 ψ) sin2
(
ψ − π

2

)
· (9)

For a better insight, we compare the mND surface en-
ergy density (Eq. (7)) with the SP surface energy density
(Eq. (3)) at different equilibrium conic angles, ψe. As
shown in Fig. 2, the mND surface anchoring is more con-
cave around ψ = ψe in comparison with the SP surface
anchoring. In Figs. 2(b) and 2(c), the mND surface an-
choring has cusps ψ = 0◦ and 90◦, where the derivative
of the energy changes discontinuously. Both surface an-
chorings show the good agreement with each other when
ψe = 45◦. Also we compared the FG surface energy
density (Eq. (9)) with the mND and SP surface energy
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FIG. 2: Plots of the modified Nobili-Durand and Sluckin-
Poniewierski surface energies for the generate anchorings (a)
ψe = 0◦ (normal), (b) ψe = 20◦ and 70◦, (c) ψe = 45◦ and
(d) ψe = 90◦ (planar). In (d), the Fourier-Galatola surface
energy is also shown.

densities at ψe = 90◦. Figure 2(d) displays that the FG
surface anchoring has a steeper slope around the mini-
mum for the same anchoring strength, W .

III. NUMERICAL METHOD

In order to obtain the director field in the whole sys-
tem, we minimize the total free energy F = FLdG + FS

numerically. FLdG is the Landau-de Gennes free energy
of the bulk NLC and is given in terms of the tensor order
parameter and its spatial derivatives as,

FLdG =

∫
Ω

dV
(
a0∆T

2
QijQji −

B

3
QijQjkQki

+
C

4
(QijQji)

2
+
L1

2
∂kQij∂kQij

)
,

(10)

where
∫

Ω
dV is the integral over the volume occupied by

the nematic liquid crystal in the cell [35]. The first three
terms describe the isotropic-nematic phase transition.
The coefficients a0, B, and C are positive and material-
dependent parameters, and ∆T = T − T ∗, where T ∗ is
the nematic supercooling temperature. The bulk scalar
order parameter in the uniform nematic phase is given by
Sb = (B/6C)(1 +

√
1− 24a0∆T C/B2). The last term

is the contribution of elastic distortions in one-constant
approximation. L1 is its coefficient. With L1 and Sb, the
Frank elastic moduli are calculated as Ksplay = Ktwist =
Kbend = 9L1S

2
b/2. We use the parameters of nematic liq-

uid crystal 5CB (a0 = 0.087×106J/m3K, T ∗ = 307.15K,
T = 305.17K, B = 2.12× 106J/m3, C = 1.73× 106J/m3,
L1 = 4 × 10−11J/m) [21, 36]. The anchoring strength is
assumed to be sufficiently large as W = 10−2 J/m2.
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FIG. 3: Director orientations and defect structures around a spherical colloid in a uniform nematic media. The structures in
(a)-(e) are obtained with the modified Nobili-Durand surface anchoring for various values of the equilibrium conic angle, (a)
ψe = 0◦, (b) ψe = 20◦, (c) ψe = 45◦, (d) ψe = 70◦, and (e) ψe = 90◦. The pattern in (f) is related to the Fournier-Galatola
surface anchoring calculation. Those in (g)-(k) are determined by the Sluckin-Poniewierski surface anchoring for various values
of the equilibrium conic angle, (g) ψe = 0◦, (h) ψe = 20◦, (i) ψe = 45◦, (j) ψe = 70◦, and (k) ψe = 90◦. The anchoring constant
is the same amount in all configurations (W = 10−2J/m2). The regions, in which the scalar order parameter is lower than
0.5Sb, are indicated by the red surfaces. They represent the defects of the director field. (l) A 3D map plot of the x-component
of director, n̂x, on virtual spherical surface with radius r = 1.2R. The mND surface anchoring with ψe = 45◦ is employed. The
maximum of n̂x is 0.2.

We study identical spherical colloids (R = 0.5µm) in
a cubic cell filled by the NLC (Lx = Ly = Lz = 20R).
The director orientations on the cell walls are set along
the z-axis, n̂0 = (0, 0, 1). The center of particles are
spatially placed in the middle of cell and are restricted
to the plane y = Ly/2. Numerically a finite element
method (FEM) [17] is employed to minimize the total
free energy (F = FLdG +FS). Using an automatic mesh
generator Gmsh [37], the calculation domain decomposes
into tetrahedral elements. The tensor order parameter
elements are linearly interpolated within each mesh el-
ement. The validity of the linear interpolation depends
on the order parameter deviations within each element,
which is controlled by the mesh size. The Delaunay tri-
angulation/tetrahedralization algorithm supplies the el-
ement size on the particle surfaces with Le = 0.01R, and
those on the cell boundaries with Le = R. A conjugate
gradient method [38] is used to minimize the free energy
and the iteration steps are stopped when the free en-
ergy difference between two sequential steps drops below
10−10.

IV. NUMERICAL RESULTS

A. Director field around a single particle

Figure 3 shows the director orientations and defect
structures around a spherical colloid with the degener-
ate conical anchoring on the surface for various values
of the equilibrium conic angle, ψe, in a uniform nematic
media. The director orientations in Figs. 3(a)-(e) are
obtained with the mND surface energy (Eq. (5)). The

red tubes represent the topological defects of the director
field. They are defined by the regions, in which the scalar
order parameter is lower than 0.5Sb. Fig. 3(a) refers to
the normal anchoring (ψe = 0◦) which induces a Sat-
urn ring defect with the topological strength s = −1/2.
An increase in ψe(≤ 45◦) shrinks the Saturn ring defect
loop. Finally the Saturn-ring disappears from the bulk
and a surface defect loop is formed. A further increase in
ψe(≥ 45◦) leads to two surface point defects (boojums),
which appear gradually at the poles in the nematic di-
rection. Fig. 3(e) represents the two boojums with the
topological strength s = +1 for the perfect planar an-
choring (ψe = 90◦). The director structure in Fig. 3(f)
is obtained with the FG surface anchoring (Eq. (8)). We
confirmed that the mND surface energy gives the same
result as that with the FG when ψe = 90◦ (see Figs. 3(e)
and (f)). For ψe = 45◦, both boojums and Saturn ring
defects are observed. This director and defect structure
are consistent with those in the previous study with the
experimental realizations [9]. It was claimed that this
structure has a hexadecapole symmetry.

Figures 3(g)-(k) show the director patterns with the
SP surface energy (Eq. (3)). Here the effective anchoring
strength depends on ψe, contrary to the mND surface an-
choring. Although the SP surface anchoring shows nearly
similar results with those with the mND surface energy,
some qualitative differences between them are found. In
ψe = 0◦, the Saturn ring calculated with the SP surface
energy is closer to the surface than that with the mND
surface energy. In ψe = 70◦, the director deviations from
the preferred orientation on the surface are not bound to
the equator. In ψe = 90◦, the director cannot lie very
well on the surface. We show the n̂ profile in x direc-
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FIG. 4: Anchoring error patterns, eA, on the colloid surface. The patterns in (a)-(e) are obtained with the mND surface energy
for various values of the equilibrium conic angle, (a) ψe = 0◦, (b) ψe = 20◦, (c) ψe = 45◦, (d) ψe = 70◦, and (e) ψe = 90◦. The
pattern in (f) is related to the FG surface energy calculation. The patterns in (g)-(k) are determined by the SP surface energy
for (g) ψe = 0◦, (h) ψe = 20◦, (i) ψe = 45◦, (j) ψe = 70◦, and (k) ψe = 90◦. The anchoring constants are the same in (a)-(k)
configurations (W = 10−2J/m2). The pattern in (l) is obtained by the SP surface energy with W = 1J/m2 and ψe = 45◦. The
maximum values of eA are indicated above the snapshots.

tion around the particle with the mND anchoring with
ψe = 45◦ at the radius r = 1.2R in Fig. 3(l). The director
distortions at ψe = 45◦ indicate a hexadecapolar symme-
try (16-pole moment) similar with the filled g-orbital of
the outermost occupied electron shells of chemical ele-
ments [9, 10].

In order to evaluate the local director alignment on
the surface with respect to the equilibrium conical orien-
tation, we introduce Anchoring error quantity as eA =
|(n̂ · ν̂)2 − cos2 ψe|. It gives the efficiency of the surface
energies in different equilibrium conic angles. Figure 4
shows eA patterns on the particle surface for the mND
((a)-(e)), FG (f) and SP ((g)-(k)) surface energies. Gen-
erally, the anchoring errors of the mND surface energy
in Figs. 4(a)-(e) are smaller than those of the SP surface
energy in Figs. 4(g)-(k). For ψe = 90◦, the mND surface
anchoring gives almost the same configuration as that of
the FG surface anchoring (see Figs. 4(e) and 4(f)). The
anchoring error of the SP energy becomes largest when
ψe = 45◦. With a large anchoring strength, W = 1 J/m2

and ψe = 45◦ (see Fig. 4(l)), the error can be dimin-
ished, but it is still larger than that of the mND energy
in Fig. 4(c).

B. Inter-particle interactions for ψe = 45◦

Next we investigate interactions between the two
spherical colloids in the uniform nematic host. The col-
loids have the conically degenerate anchoring on their
surfaces with the equilibrium conic angle ψe = 45◦. This
setup aims at explaining recent experimental observa-

tions with similar conditions [9]. Here we employ only
the mND surface energy to describe the conically degen-
erate anchoring. We should note that although the mND
surface energy provides stronger anchoring on the sur-
faces, the mND and SP surface energies approximately
exhibit almost the same behaviors when ψe = 45◦. The
study on colloidal interactions with the SP energy will
remain open.

In Figure 5, we plot the interaction between the two
particles as functions of the inter-particle distance, D,
and the angle between the line joining the center of par-
ticles and the far-field director, θ. To clarify the nature
of the short-range interactions, the director orientation
and defect textures are studied at close contacts. We
investigate the long-range interaction by interpolating it
with a power law function.

Figure 5(a) shows that the particles undergo strong
torques at the close contact separations. The effective
potential energy explains that the colloidal particles can
physically join together at θ ' 20◦ or θ ' 70◦, and form
two independent colloidal arrangements with respect to
the far director orientation. The effective potential height
is so larger than the thermal energy kBT that the equilib-
rium arrangements are spatially stable. They can form
regular rhombic lattice of colloids when the particles con-
fined to a two-dimensional page parallel to the director.
In agreement with the experiment [9], we can decompose
the whole particle surface into four attractive regions
with different latitudes (θ ≈ 20◦, 70◦, 110◦ and 160◦). We
also show the director and the defect patterns around the
particles in close contact inter-particle arrangements as
shown in Figs. 5(b)-(e).
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FIG. 5: Colloidal interactions in a uniform nematic media with the conical anchoring, ψe = 45◦. (a) The angular dependence
of the effective potential ∆F for various fixed short and large distances, where ∆F ≡ F − F0 and F0 = F(D = 4R) =
1.323 × 105kBT . The inset plot displays a schematic of spatial arrangement of spherical particles with respect to the far-field
director orientation, n̂0. (b)-(e) The equilibrium profiles of the director field and scalar order parameter in close contacts for
(b) θ = 0◦ and D/R = 2.02, (c) θ = 20◦ and D/R = 2.10, (d) θ = 70◦ and D/R = 2.10 and (e) θ = 90◦ and D/R = 2.02. The
regions, in which the scalar order parameter is lower than 0.5Sb, are indicated by the red surfaces as defects. (f) The colloidal
potential energy in term of the center-center separation D in several fixed spatial arrangements, θ = 0◦, 20◦, 45◦, 70◦ and 90◦.
(g) The log-log plots of the potential energies in (f). They are compared with the potential of hexadecapolar elastic distortion,
(D/R)−9. By fitting a power-law function c(D/R)−α to the effective potentials, we get α = 9.31±0.28, 8.97±0.41, 9.06±0.59,
8.76± 0.60 and 8.23± 0.49 for θ = 0◦, 20◦, 45◦, 70◦ and 90◦, respectively.

In Figure 5(f), the effective potential obviously shows
that the colloidal particles attract each other at θ = 20◦

and 70◦, and repel each other at θ = 0◦, θ = 45◦ and
90◦. In case of θ = 0◦, the repulsive particle-particle in-
teraction in the long distances turns to attractive in the
short distances (D/R ≤ 2.2). This behavior is due to the
symmetry breaking of the director field. At the contact
faces, the boojum defects are rearranged (see Fig. 5(b)).
Similar non-monotonic interactions were observed in the
colloids with the pure planar anchoring [6, 17]. Around
the particles with the normal anchoring, in the same way,
we expected that the induced Saturn ring defects rear-

range at θ = 90◦ and the close contact regimes, and this
rearrangement of the defects gives rise to the bonding of
the particles [7, 14]. However, Fig. 5(e) shows that the
closed surface disclination loops around the particles do
not display such rearrangements in comparison with the
Saturn ring defects when the particles touch each other.
Thus the short-range interactions between particles with
the conical anchoring is more complex than those with
the planar and normal anchorings.

To study the distance dependency of the colloidal in-
teractions with conically anchoring at large separations,
we compare the calculated effective colloidal potentials
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with those of two hexadecapolar moments at different
spacial arrangements in Fig. 5(g) (see Appendix A). It
has been experimentally shown that the particle and the
accompanying defects result in the anisotropic long-range
interactions with the hexadecapole symmetry [9]. We fit-
ted the effective potentials by the power function in all
arrangements. Our results almost agree with the hexade-
capolar elastic distortion as ∆F ∝ (D/R)−9, although
there remain some deviations between them.

V. SUMMARY

By modifying Nobili-Durand surface energy, we devel-
oped a surface energy in a form of the tensorial order
parameter for describing the conically degenerate an-
choring. It is compared with another surface energy,
which was proposed by Sluckin and Poniewierski. We
investigated the defect textures and the director orien-
tations around a spherical colloid in the uniform ne-
matic media by minimizing the Landau-de Gennes free
energy with these surface energies at different equilib-
rium conic angles. Our calculations indicate that the
local director orientation on the surface in the modified
Nobili-Durand energy shows more adaptations with the
expected equilibrium conic angle, in comparison to the
Sluckin-Poniewierski surface energy.

Using the modified Nobili-Durand surface energy, we
considered the interaction between two colloids with the
equilibrium conic angle, ψe = 45◦. In agreement with
experiments, the results show that there are two stable
angular assemblies around θ ≈ 20◦ and 70◦ with respect
to the far-field director orientation.

Appendix A: Interaction between Point
Hexadecapoles

We consider the interaction between the two colloids
with the conically degenerated anchoring at large dis-
tances. At the large distance, the spherical colloid par-
ticle can be regarded as a point with the hexadecapole-

moment density,

Hijkl(~r) = Hijkl
0

[
δ(~r) + δ(~r − ~D)

]
(A1)

where Hijkl
0 is the magnitude of the moment density ten-

sor.
The contribution of this moment to the free energy of

the nematic liquid crystal host containing the particle is
given by [20, 39, 40]

FH = 4πK

∫
dV
[
(∇ · n̂) (n̂ · ∇)

3 (
Hijkln̂in̂j n̂kn̂l

)]
.(A2)

Assuming n̂ = (n̂x, n̂y, 1) where n̂x, n̂y � 1, one obtain
the total elastic free energy as,

Fel = K

∫
dV 1

2
(∇n̂µ)

2
+ FH . (A3)

Its Euler-Lagrange equation is,

∇2n̂µ = −4π∂µ∂
3
zH

zzzz· (A4)

From Eqs (A1), (A3) and (A4), we obtain the mutual
interaction energy between the colloids as,

U( ~D) = 4πK
8!h2

z

| ~D|9
P8(cos θ) (A5)

where hz = Hzzzz
0 and P8(x) is the eighth-order Legendre

polynomial function of x.
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