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The simplest model of DNA mechanics describes the double helix as a continuous rod with twist
and bend elasticity. Recent work has discussed the relevance of a little-studied coupling G between
twisting and bending, known to arise from the groove asymmetry of the DNA double helix. Here,
the effect of G on the statistical mechanics of long DNA molecules subject to applied forces and
torques is investigated. We present a perturbative calculation of the effective torsional stiffness
Ceff for small twist-bend coupling. We find that the “bare” G is “screened” by thermal fluctua-
tions, in the sense that the low-force, long-molecule effective free energy is that of a model with
G = 0, but with long-wavelength bending and twisting rigidities that are shifted by G-dependent
amounts. Using results for torsional and bending rigidities for freely-fluctuating DNA, we show
how our perturbative results can be extended to a non-perturbative regime. These results are in
excellent agreement with numerical calculations for Monte Carlo “triad” and molecular dynamics
“oxDNA” models, characterized by different degrees of coarse-graining, validating the perturba-
tive and non-perturbative analyses. While our theory is in generally-good quantitative agreement
with experiment, the predicted torsional stiffness does systematically deviate from experimental
data, suggesting that there are as-yet-uncharacterized aspects of DNA twisting-stretching mechan-
ics relevant to low-force, long-molecule mechanical response, which are not captured by widely-used
coarse-grained models.

I. INTRODUCTION

In vivo, double-stranded DNA is typically found in a
highly-deformed state, which is in part due to the inter-
action with the many proteins that bend and twist the
double helix, but in part due to thermally-driven defor-
mations. A substantial effort has been devoted to the
study of many aspects of DNA mechanics, such as its
response to applied twist and bending deformations [1].
These studies often rely on homogeneous elastic models,
which, despite their simplicity, describe many aspects of
single-molecule experiments [2–6], and are widely used
to describe mechanical and statistical-mechanical prop-
erties of DNA (see e.g. Refs. [7–11] ).

One of the simplest models describing DNA deforma-
tions is the twistable wormlike chain (TWLC), which de-
scribes the double helix as an inextensible rod, for which
twist and bend deformations are independent. Symmetry
arguments suggest that the TWLC is incomplete: The in-
herent asymmetry of the DNA molecular structure, with
its major and minor grooves, gives rise to a coupling
G between twisting and bending [12]. Only a limited
number of studies have considered the effect of twist-
bend coupling on DNA mechanics [13–16]. A system-
atic analysis of coarse-grained models with and without
groove asymmetry have highlighted several effects associ-
ated with twist-bend coupling at long [15] and short [16]
length scales. Here, we aim to clarify the role of G in the
statistical mechanics of long DNA molecules, as analyzed
in optical and magnetic tweezers.

We focus on analytical and numerical results for the
stretching and torsional response of DNA with twist-
bend coupling interaction G 6= 0. We first present a
perturbative expansion for the partition function of the
molecule, in which G is treated as the small parameter.
The lowest-order results show that twist-bend coupling
softens the torsional and bending stiffnesses of the dou-
ble helix, recovering prior results from entirely different
calculations [14]. Our new calculations reveal the exis-
tence of a previously-unidentified large force scale f0; for
forces below this scale, the bare elastic constants - in-
cluding G - are not directly accessible in stretching and
twisting experiments. Instead, for forces below f0, only
renormalized bending and twisting stiffnesses - which do
depend on G - are observed. Because f0 ≈ 600 pN, the
renormalized elastic model - which is the G = 0 TWLC
- will be observed in essentially all conceivable single-
molecule experiments. Thus, G is “screened”, effectively
renormalized to G = 0, in single-molecule DNA mechan-
ics experiments.

Prior work [14] suggests a strategy to generalize our
results beyond perturbation theory, to the regime where
DNA is stretched by forces less than f0. We validate
both the perturbative and non-perturbative results using
numerical calculations corresponding to commonly-used
coarse-grained DNA elasticity models; our results turn
out to closely describe results of those numerical models.
Given this validation, we turn to experimental data which
are reasonably well described by the low-force model, but
for which there remain discrepancies, suggesting effects
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beyond simple harmonic elastic models like the TWLC.

II. ELASTICITY MODELS OF DNA

To describe the conformation of a continuous, inex-
tensible, twistable elastic rod, one can associate a local
orthonormal frame of three unit vectors {êi} (i = 1, 2, 3)
with every point along the rod (Fig. 1). In a continu-
ous representation of DNA, the common convention is
to choose ê3 tangent to the curve and ê1 pointing to the
DNA groove. The frame is completed with a third vector,
defined as ê2 = ê3× ê1. An unstressed B-form DNA cor-
responds to a straight, twisted rod, with the tangent ê3

being constant, and with ê1 and ê2 rotating uniformly
about it, with a full helical turn every l ≈ 3.6 nm, or
equivalently every 10.5 base pairs.

Any deformation from this unstressed configuration
can be described by a continuous set of rotation vectors
Ω connecting adjacent local frames {êi} along the rod,
using the differential equation

dêi
ds

= (Ω + ω0ê3)× êi, (1)

where the internal parameter s denotes the arc-length
coordinate (Fig. 1), and ω0 = 2π/l ≈ 1.75 nm−1 is the
intrinsic twist of DNA. Upon setting Ω = 0, one obtains
the unstressed configuration mentioned above. Thus, a
nonzero rotation vector Ω(s) 6= 0 corresponds to a lo-
cal deformation at s around this ground state. Defining
Ωi ≡ êi ·Ω, it follows that Ω1(s) and Ω2(s) describe local
bending deformations, while Ω3(s) describes twist defor-
mations. In the remainder of the paper the s-dependence
of Ω will be implicit.

Symmetry analysis of the DNA molecule requires the
energy functional E to be invariant under the transfor-
mation Ω1 → −Ω1, with the consequence that [12]

βE =
1

2

∫ L

0

ds
(
A1Ω2

1 +A2Ω2
2 + CΩ2

3 + 2GΩ2Ω3

)
, (2)

where β ≡ 1/kBT is the inverse temperature, A1 and
A2 the bending stiffnesses, C the torsional stiffness and
G the twist-bend coupling constant. These coefficients
have dimensions of length, and can be interpreted as the
contour distance along the double helix over which signif-
icant bending and twisting distortions can occur by ther-
mal fluctuations. Our perturbative calculation will use
the isotropic-bending version of this model (A1 = A2 =
A), which is described by the following energy functional

βE =
1

2

∫ L

0

ds

[
A

(
dê3

ds

)2

+ CΩ2
3 + 2GΩ2Ω3

]
. (3)

Here, we have used Eq. (1) to express the sum Ω2
1 +Ω2

2 as
the derivative of the tangent vector. The TWLC is ob-
tained by setting G = 0 in Eqs. (2) and (3), correspond-
ing to the anisotropic and isotropic cases, respectively.

Major groove

Minor groove

FIG. 1. Bottom: The configuration of a twistable elastic rod
can be mathematically described with an orthonormal set of
vectors {ê1, ê2, ê3} assigned to every point s along the rod.
The vector ê3 is the tangent to the curve, and describes the
bending fluctuations along the rod. Top: Cross-section of the
rod, indicating how the remaining vectors ê1 and ê2, which
describe the torsional state, may be chosen in the particular
case of DNA.

III. EFFECTIVE TORSIONAL STIFFNESS

In a typical magnetic tweezers experiment, a single
DNA molecule of 103 − 104 bases is attached to a solid
substrate and to a paramagnetic bead at its two ends
(Fig. 2). The molecule can be stretched by a linear force
f and over- or undertwisted by an angle θ. The resulting
torque τ exerted by the bead, which can be experimen-
tally measured [17–20], is linear in θ for small θ

τ ≈ kBTCeff

L
θ. (4)

Here Ceff is the effective torsional stiffness (in contrast
to the intrinsic stiffness C), and represents the central
quantity of interest here. It expresses the resistance of
the DNA to a global torsional deformation, applied at its
two ends.

As discussed in more detail below, Ceff is in general
lower than its intrinsic equivalent C. More specifically, at
low stretching forces the bending fluctuations can absorb
a significant part of the applied torsional stress, lead-
ing to a globally-reduced torsional resistance Ceff < C.
On the other hand, when the applied force is sufficiently
large, bending fluctuations are mostly suppressed, and
hence the effective torsional stiffness tends to approach
the intrinsic one. As a consequence, Ceff is going to be a
monotonically-increasing function of the stretching force.

Moroz and Nelson derived an expression of Ceff for the
TWLC in the limit of high forces [4, 21]. In spite of the
good qualitative agreement between the theory and early
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(a) (b)

FIG. 2. Typical setup of a magnetic tweezers experiment. A
DNA molecule is covalently bound to a substrate at one end
and to a paramagnetic bead at the other end. An applied
force f stretches the molecule, while an applied rotation θ
twists it. The effective torsional stiffness Ceff is the propor-
tionality constant connecting the applied rotation with the
exerted torque [Eq. (4)]. Ceff increases with the force, hence
it is higher in (a) than in (b).

experiments, more recent studies reported systematic de-
viations [14, 17, 20, 22]. For completeness we will first
present in Sec. III A a short derivation of the TWLC-
based theory by Moroz and Nelson. The pertubative cal-
culation in small G is discussed in Sec. III B and gener-
alized beyond perturbative expansion in Sec. III D.

A. The TWLC limit (G = 0)

Moroz and Nelson [4, 21] mapped the twisted and
stretched TWLC onto a quantum mechanical problem
of a spinning top, and Ceff was obtained from the ground
state of the associated Schrödinger equation. Here we
present an alternative derivation, following the scheme
illustrated in Ref. [1, 23], which proves to be more con-
venient for the perturbative calculation in small G. The
starting point is the partition function of a TWLC un-
der applied force f and torque τ . The latter induces a
rotation by an angle θ on the end point of the molecule
(Fig. 2). The excess linking number, which we will use
throughout this work, is ∆Lk = θ/2π.

To calculate the partition function, we integrate over
all possible configurations of the twistable rod, which can
be parametrized by the tangent vector ê3(s) and the twist
density Ω3(s). The resulting path integral takes the form:

Z0 =

∫
D[ê3,Ω3] e−βE0 + βf ·R + 2πβτ∆Lk, (5)

where E0 is the energy of the TWLC, obtained from
Eq. (3) by setting G = 0, and R the end-to-end vector

R =

∫ L

0

ê3 ds. (6)

We assume that the force is oriented along the z-
direction, hence f = f ẑ, with ẑ a unit vector. Using
a result due to Fuller [24], originally derived for closed
curves, the linking number can be expressed as the sum
of twist and writhe, i.e. ∆Lk = Tw + Wr. The excess
twist is obtained by integrating over the twist density

Tw =
1

2π

∫ L

0

Ω3(s) ds, (7)

while the writhe is given by [1]

Wr =
1

2π

∫ L

0

ẑ · (ê3 × dê3/ds)

1 + ê3 · ẑ
ds. (8)

This representation of the writhe as a single integral (and
not as a double, nonlocal integral) is correct modulo 1,
with the integer portion equal to zero if the molecule is
sufficiently stretched so that it is unlikely to loop back
opposite to the direction of the applied force (the case of
interest here). Under these conditions, the denominator
1 + ê3 · ẑ does not vanish, and the integral in Eq. (8)
yields a finite value. The applicability of either Eq. (8) [or
the double-integral version of it, which does not require
the mod 1 of Eq. (8)] for a highly-stretched open chain
has been discussed and justified for extended polymers
in prior works [4, 5, 21, 25, 26].

Next, we insert Eqs. (6), (7) and (8) into Eq. (5), and
consider the limit of strong forces and weak torques. The
partition function [Eq. (5)] reduces to a Gaussian in this
limit, and can be easily estimated (details can be found
in Appendix A). To lowest order in τ and at large forces,
one obtains the following free energy

F0(f, τ) = −fL+

√
fkBT

A
L− βτ2L

2Ceff
+ . . . , (9)

where the dots denote constant or higher-order terms in
τ . The effective torsional stiffness Ceff is given by (see
Appendix A)

1

Ceff
=

1

C
+

1

4A

√
kBT

fA
+ . . . . (10)

This equation was originally derived by Moroz and Nel-
son [4, 21] in the fixed-torque ensemble. The same ex-
pression can also be obtained in the fixed-linking-number
ensemble [5, 27]. At high forces, Eq. (10) approaches the
twisted-rod limit and Ceff → C, but, in general, bending
fluctuations soften the DNA torsional stiffness, so that
Ceff < C. The latter originates from a global coupling
between torque and writhe (not to be confused with the
local twist-bend coupling considered below). Note that
the effect of bending fluctuations is governed by the di-
mensionless parameter

√
kBT/fA, which is small at low

temperatures or high forces.
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B. Perturbative (small-G) expansion

We now construct a perturbation expansion for the
partition function, using G as the small parameter (the
length scale determining whether G is “small” will be
made clear below). The full partition function is

Z =

∫
D[ê3,Ω3] e−βE + βf ·R + βτ2π∆Lk, (11)

where now βE is given by Eq. (3) and contains a twist-
bend coupling term. Assuming that G is small, we can
expand the Boltzmann factor in powers of G, which gives
to lowest order:

Z ≈ Z0

1 +
G2

2

〈(∫ L

0

Ω2Ω3 ds

)2〉
0

+ . . .

 , (12)

where 〈.〉0 denotes the average with respect to the unper-
turbed (TWLC) partition function [Eq. (5)]. Note that
in the perturbative expansion, the term linear in G van-
ishes by the Ω2 → −Ω2 symmetry of the TWLC. The
full calculation of the average in the right-hand side of
Eq. (12) is given in Appendix C. The final expression for
the free energy is of the form [Eq. (C38)]

F (f, τ) = −fL+

√
fkBT

A∗
L+ ΓτL− βτ2L

2Ceff
+ . . . , (13)

where terms of negligible contribution were omitted (see
Appendix C).

In the above, we have introduced the rescaled bending
stiffness

1

A∗
=

1

A

(
1 +

G2

2AC

)
, (14)

together with the parameter

Γ =
G2d2(f)

4A2C2ω0
. (15)

The dimensionless, force-dependent scale factor d(f) will
be discussed below; we note that it appears in the coeffi-
cient Γ [Eq. (15)], but not in A∗ [Eq. (14)]. Finally, the
form of the effective torsional stiffness Ceff is

1

Ceff
=

1

C

[
1 +

G2

AC
d(f)

]
+

1

4A

(
1 +

3

4

G2

AC

)√
kBT

fA
.

(16)
The scale factor d(f) is also present in Ceff.

Examination of these formulae indicate that the expan-
sion is in powers of the dimensionless parameter G2/AC,
which, given our current estimates for the stiffnesses
(A ≈ 50 nm, C ≈ 100 nm, G ≈ 30 nm), is less than 1,
although we note that G2/AC < 1 is a stability require-
ment for the microscopic energy [12]. Our computation
neglects terms beyond first order in G2/AC.

C. Effective torsional stiffness Ceff

Equation (16) is the central result of this paper, and ex-
tends the TWLC result by Moroz and Nelson [Eq. (10)],
which is recovered in the the limit G → 0. The per-
turbative corrections are governed by the dimensionless
parameter G2/AC, and give rise to a further torsional
softening of the molecule, i.e. Ceff(G 6= 0) < Ceff(G = 0),
as pointed out in Ref. [14]. Equation (16) contains also
a force-dependent, crossover function, which can be ap-
proximated as (see Appendix C)

d(f) ≈ 1

1 + f/f0
, (17)

where f0 = Aω2
0kBT is the characteristic force above

which d(f) starts to significantly drop below its low-
force limit of d(0) = 1. To understand this force scale,
which has no counterpart in the Moroz and Nelson for-
mula [Eq. (10)], we recall that the correlation length for

a stretched wormlike chain is ξ =
√
AkBT/f [1]. There-

fore, f0 is the force associated with a correlation length
of the order of the distance between neighboring bases,
i.e. ξ = 1/ω0.

For DNA (A ≈ 50 nm, ω0 = 1.75 nm−1, kBT =
4 pN·nm) we see f0 ≈ 600 pN, which is far above the
force where the double helix starts to be itself stretched
(≈ 20 pN), force-denatured (≈ 60 pN), and is in fact
comparable to where the covalently-bonded backbones
will break. Hence, for forces relevant to experiments we
are concerned with (f < 10 pN), one may simply set
d(f) ≈ 1. We will refer to this limit as the “low-force
limit”, but one should keep in mind that our perturba-
tive theory is computed for the “well-stretched” limit, i.e.
f > kBT/A ≈ 0.1 pN. Therefore our perturbative theory
is applicable in the force range of roughly 0.1 to 10 pN.

We emphasize that Eq. (16) can be written as

1

Ceff
=

1

C∗
+

1

4A∗

√
kBT

fA∗
, (18)

where A∗ is defined in (14), and

1

C∗
≡ 1

C

[
1 +

G2

AC
d(f)

]
+O(G2/AC). (19)

Equation (18) has exactly the same form as the Moroz
and Nelson formula [Eq. (10)], with rescaled bending and
torsional stiffnesses. The importance of this result is
paramount: since d(f) = 1 in the range of experimen-
tally relevant forces, the torsional stiffness (and in fact
the partition function itself) depends only on the “renor-
malized” stiffnesses A∗ and C∗, meaning that G by itself
cannot be determined from fitting of Ceff(f) (or any other
equilibrium quantity versus f); only the effective stiff-
nesses A∗ and C∗ can be determined from experiments
in the low-force regime.
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D. Non-perturbative result for Ceff valid for f < f0

Equation (16) has been derived on the basis of a sys-
tematic perturbation expansion in G (more formally, in
the small parameter G2/AC < 1). When cast in the form
of Eq. (18), it is apparent that there is a simple way to
extend the results to a more general, nonperturbative
case, where G may be large and the bending possibly
anisotropic, i.e. A1 6= A2 in Eq. (2). The key physi-
cal idea here is that for forces below the gigantic force
scale f0, thermal fluctuations at the helix scale where
G correlates bending and twisting fluctuations is unper-
turbed (d(f) = 1), and therefore we might as well just
consider DNA to have the effective twisting and bending
stiffnesses that is has at zero force.

In absence of applied torques and forces (f, τ = 0),
the partition function of Eq. (11) can be evaluated ex-
actly [14]. Due to twist-bend coupling, the bending and
torsional stiffnesses are renormalized as [14]:

κb = A
1− ε2

A2
− G2

AC

(
1 +

ε

A

)
1− G2

2AC

, (20)

κt = C
1− ε

A
− G2

AC

1− ε

A

, (21)

where we have introduced the parameters A = (A1 +
A2)/2 and ε = (A1 − A2)/2. Eqs. (20) and (21) quan-
tify the energetic cost of bending and twisting deforma-
tions, respectively, in the same way A and C do within
the TWLC. Note that, by setting G = 0 in these ex-
pressions, one recovers the TWLC limit, κt = C and
κb = 2A1A2/(A1 + A2) i.e. the renormalized bending
stiffness is the harmonic mean of A1 and A2, which is
a known result (see e.g. Refs. [28, 29]). If G 6= 0 one
has κb < 2A1A2/(A1 + A2) and κt < C, i.e. twist-bend
coupling “softens” the bending and twist deformations
of the DNA molecule, already if f = 0, τ = 0. Eq. (16)
then describes two different effects: one is the thermally-
induced torsional softening due to bending fluctuations
[already present in the TWLC expression (10)] and the
other is the G-induced softening, which is captured by
the two factors between parentheses in Eq. (16).

Setting ε = 0 and expanding Eqs. (20) and (21), one
finds κb = A∗+O(G4) and κt = C∗+O(G4), which sug-
gests the following, more general, nonperturbative result
for Ceff, valid as long as f � f0

1

Ceff
=

1

κt
+

1

4κb

√
kBT

fκb
. (22)

This relation, similar to Eq. (18), has the same form as
the Moroz and Nelson formula [Eq. (10)], with A and
C replaced by κb and κt [much as our result for Ceff of
Eq. (19) has the Moroz-Nelson form with A → A∗ and
C → C∗]. As we will show in the next Section, this

new, nonperturbative result for the continuum model is
in excellent agreement with numerical Monte Carlo (MC)
and molecular dynamics (MD) calculations.

E. Twist-bend-coupling-induced DNA unwinding

An intriguing feature of the perturbative calculation is
the appearance of a term linear in τ in the free energy
[Eq. (13)], which induces an unwinding of the helix at
zero torque. In particular, from Eqs. (11), (13) and (15)
it follows that

〈∆Lk〉|τ=0 = − 1

2π

∂F

∂τ

∣∣∣∣
τ=0

= −d
2(f)

8πω0

G2L

A2C2
. (23)

The scale for this thermal unwinding is very small: us-
ing typical values of DNA parameters (A ≈ 50 nm,
C ≈ 100 nm, G = 30 nm, ω0 = 1.75 nm−1) we find
an unwinding angle per contour length of 2π 〈∆Lk〉 /L =
−G2/4ω0A

2C2 ≈ −5 × 10−6 rad/nm (about −1 × 10−5

degrees per base pair). This G-generated shift in helix
twisting is inconsequentially small, but it is worth noting
that this term is present in the perturbation theory.

It has been long known that there is a gradual unwind-
ing of the double helix as the temperature is increased
[30, 31], and this effect has been recently observed at the
single-DNA level [32]. Although one might imagine an
overall T 2 dependence of this term (from the factors of
β in the Boltzmann factor), this dependence can only
generate a tiny fraction of the observed temperature-
dependent unwinding of ≈ −1 × 10−2 degrees/K·bp.
The experimentally observed unwinding is likely due to
temperature-dependence DNA conformational changes
[32], and is beyond the scope of being captured by the
simple elastic models discussed here; in particular the ob-
served unwinding of DNA with increasing temperature is
not attributable to the twist-bend coupling G.

F. “Janus strip” limit ( ω0 → 0 )

Equation (22) is not generally valid for any arbitrary
polymer with twist-bend coupling, but its validity is
linked to the physical parameters characterizing DNA
elasticity. These conspire to set forces encountered in
typical experiments (below 10 pN) to be far below the
characteristic force f0 = kBTAω

2
0 ≈ 600 pN at which one

starts to see effects at the helix repeat scale, i.e. force-
driven unwinding of the double helix due to quenching of
thermal fluctuations and the influence of G. In this sense,
ω0 can be regarded as a “large” parameter: combinations
of it and the elastic constants give dimensionless con-
stants large compared to unity, e.g. Aω0, Cω0 ≈ 102 � 1
and

√
AkBT/fω0 � 1 for f < 10 pN).

For this reason, several ω0-dependent terms, which in
principle would contribute to Ceff at order G2, can in
practice be neglected in the application of the theory to
DNA [see e.g. Eqs. (C30) and (C31) in Appendix]. The
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neglect of these terms leads to Ceff taking the simple
form given by Eq. (18), in which A∗ and C∗ are the
renormalized stiffnesses.

While not relevant to DNA, we might imagine other
polymer structures for which ω0 is not so large, i.e.
where ω0 is closer in size to 1/A or 1/C. In this case
one cannot ignore these additional terms, and d(f) ≈
1/(1+f/f0) might drop significantly over experimentally-
relevant force ranges. Chiral proteins, lipid filaments, or
even nanofabricated objects might comprise realizations
of such situations.

As an example we consider the extreme limit ω0 → 0,
corresponding to a “Janus strip”, an elastic strip with
inequivalent faces (i.e. inequivalent major and minor
“grooves”), and, thus, nonzero G. In this case, using
the more complete and complicated results for the per-
turbative expansion given in the Appendix, we obtain to
lowest order in G

1

Ceff
=

1

C
+

1

4A

[
1 +

(
3

4
+

2A2

C2

)
G2

AC

]√
kBT

fA
. (24)

In this limit, compared to the large-ω0 case relevant to
DNA, there is a more gradual shift of Ceff up to its high-
force limit, and an inequivalence of the form of Ceff to the
Moroz-Nelson form. Physically, this is because the intrin-
sic chirality of the filament is now gone, eliminating the
“screening” of effects of G at low forces, and the sim-
ple dependence of the low-force themodynamics on only
the coarse-grained stiffnesses κt and κb. Experiments on
such Janus strips, or on “soft-helix” objects where Aω0,
Cω0 < 1 could provide realizations of this limit of the
theory. Ref. [14] showed that Eq. (24) fits experimen-
tal data for DNA surprisingly well, despite not taking
account of double helix chirality.

IV. NUMERICAL CALCULATIONS

To check the validity of the analytical results presented
above, we performed numerical simulations of two differ-
ent models. The first model, referred to as the triad
model, is obtained from the discretization of the contin-
uum elastic energy (2) and treated using MC compu-
tations. The second model is oxDNA, a coarse-grained
model of nucleic acids [33], treated using MD calcula-
tions.

A. Triad model

The triad model is comprised of a series of N orthonor-
mal vectors {êi(k)} with i = 1, 2, 3 and k = 0, 1, 2 . . . N ,
each representing a single base pair, interacting with its
neighbors according to Eq. (2). The total length of the
molecule is L = Na, with a = 0.34 nm the base pair
distance. The ground state of this model is a twisted,
straight rod, with ê3 being aligned with the direction

of the stretching force, and the vectors ê1, ê2 rotat-
ing about ê3 with an angular frequency ω0. A clus-
ter move consisted of a rotation of the whole subsys-
tem beyond a randomly-selected triad by a random an-
gle. The new rotation vector Ω was calculated based
on Rodrigues’ rotation formula (see e.g. Supplementary
Material of Ref. [15]), then the energy was updated from
a discretized version of Eq. (2), with the addition of a
force term [see Eq. (5)]. The move was accepted or re-
jected according to the Metropolis algorithm. The stiff-
ness constants A1, A2, C and G are input parameters
for the model, and may, therefore, be arbitrarily chosen,
provided the stability condition G2 < A2C is met [for
which the quadratic form in Eq. (2) is positive definite]

The effective torsional stiffness was calculated at zero
torque from linking number fluctuations:

Ceff =
L

4π2〈(∆Lk− 〈∆Lk〉)2〉
, (25)

The variance of linking number in the denominator was
evaluated from the topological relation ∆Lk = ∆Tw +
Wr, with twist and writhe obtained from the discretiza-
tion of Eqs. (7) and (8), respectively. To check the
validity of our results, the writhe was also evaluated
from the double-integral formula, following the method
of Ref. [34], and no significant differences were found for
forces > 0.25 pN. In all simulations, the size of the sys-
tem was 600 triads (base pairs), above which the results
remained identical within that force range.

1. Isotropic bending

Figure 3 shows the results of Monte Carlo calculations
for the isotropic model of Eq. (3), with A = 50 nm,
C = 100 nm and G = 0, 20, 40 nm (top to bottom).
The data are plotted as a function of the dimensionless
parameter

√
kBT/fA. The numerical errors are smaller

than the symbol sizes, and hence not shown.
In absence of twist-bend coupling (G = 0, upper

panel), the Monte Carlo data are in excellent agreement
with the Moroz-Nelson theory. We compare them both
to Eq. (10) (dashed line) and the following expression
(solid line)

Ceff = C

(
1− C

4A

√
kBT

fA

)
. (26)

The latter is obtained from the lowest-order expansion of
Eq. (10) in

√
kBT/fA, and is a straight line when plotted

as a function of the rescaled variable of Fig. 3. Eqs. (10)
and (26) coincide to leading order in 1/

√
f , and any dif-

ferences in the two expressions only occur at low force
scales, where higher-order corrections become relevant.
Eq. (26) fits the Monte Carlo data over the whole range
of forces analyzed (f ≥ 0.25 pN), while Eq. (10) deviates
at low forces [35]
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(a)

(b)

(c)

FIG. 3. Comparison of Monte Carlo simulations of the triad
model (points) with various analytical expressions of Ceff

(lines) for A = 50 nm, C = 100 nm and (a) G = 0, (b)
G = 20 nm and (c) G = 40 nm. The data are plotted as a

function of
√
kBT/fA and correspond to f ≥ 0.25 pN. The

numerical results are in excellent agreement with the analyti-
cal expressions, both in the perturbative and nonperturbative
regimes (see text). Error bars of Monte Carlo data are smaller
than symbol sizes.

The middle panel of Fig. 3 shows Monte Carlo results
for G = 20 nm (points), which we compare both to the
results for the perturbative expansion for 1/Ceff , Eq. (18)
(dashed line) and the following similar expansion result
for Ceff (solid line)

Ceff =
C

1 +
G2

AC
d(f)

1− C

4A

1 +
3G2

4AC

1 +
G2

AC
d(f)

√
kBT

fA

 ,

(27)
obtained by expanding Eq. (16) to lowest order in 1/f .
The latter is in excellent agreement with Monte Carlo
data in the whole range of forces considered, indicating
that G = 20 nm falls within the range of validity of the
perturbative calculation (G2/AC = 0.08 in this case).
We note that the two perturbative expansion results con-
verge together at high forces ([kBT/(Af)]1/2 → 0 and
also show the upturn at the very highest forces associ-
ated with the force-dependence of d(f).

Finally, the lower panel of Fig. 3 shows the results of
Monte Carlo simulations for G = 40 nm. The numerical

(a)

(b)

FIG. 4. Effect of bending anisotropy (A1 6= A2) on the effec-
tive torsional stiffness at a fixed force f = 1 pN with (a) G = 0
and (b) G = 30 nm. Numerical data from Monte Carlo simu-
lations of the triad model (points) are in good agreement with
the analytical, nonperturbative predictions of Eq. (28) (solid
lines). The vertical dashed lines indicate the isotropic case
(ε = 0). A nonvanishing twist-bend coupling (lower panel)
induces a ε → −ε symmetry breaking. Error bars of Monte
Carlo data are smaller than symbol sizes.

data deviate substantially from Eq. (16) (dotted line),
indicating that G is leaving the range of validity of the
perturbative calculation (G2/AC = 0.32). The remain-
ing curves show the nonperturbative result for 1/Ceff

Eq. (22) (dashed line), together with the following non-
perturbative expression for Ceff (solid line)

Ceff = κt

(
1− κt

4κb

√
kBT

fκb

)
, (28)

the latter being in excellent agreement with Monte Carlo
data for f < f0, validating the nonperturbative result
(note that [kBT/(f0A)]1/2 ≈ 0.01). For f > f0, the up-
turn of Ceff towards the bare value of C is apparent; this
effect, while not given by the nonperturbative results, is
present in the perturbation expansion results. We con-
clude that our non-perturbative result indeed provides a
quantitative account of Ceff for f < f0, where we expect
it to be valid.

2. Anisotropic bending

While the perturbative calculation [Eq. (16)] was re-
stricted to the isotropic case (A1 = A2), the nonpertur-
bative result [Eq. (28)] has a broader range of applicabil-
ity, and is able to describe the anisotropic case as well.
Figure 4 shows the results of Monte Carlo calculations
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A1 A2 C G κb κt

oxDNA1 84(14) 29(2) 118(1) <0.3 43 118

oxDNA2 85(10) 35(2) 109(1) 25(1) 44 92

TABLE I. Values of the stiffness coefficients for oxDNA1
and oxDNA2 (expressed in nm), derived from MD data of
Ref. [15]. oxDNA1, which has symmetric grooves, is char-
acterized by a negligible twist-bend coupling constant, while
G = 25 nm for oxDNA2, which has asymmetric grooves. The
values of κb and κt are obtained from Eqs. (20) and (21),
respectively, and were found to agree with direct computa-
tions of those quantities [15]. Note that the oxDNA2 stiffness
coefficients have been transformed to coordinates compatible
with this paper, see Appendix D).

of Ceff for various values of the anisotropy parameter
ε = (A1−A2)/2 and a fixed value of the force f = 1 pN.
The Monte Carlo data are in very good agreement with
Eq. (28), plotted with solid lines. The differences are
within 5%, and are probably due to higher order correc-
tions in 1/f (recall that all analytical results are based on
a large-force expansion). In absence of twist-bend cou-
pling (G = 0), Eq. (28) is symmetric in ε, as in this case
Eqs. (20) and (21) give κb = (A2 − ε2)/A and κt = C,
respectively. A nonzero G induces nonvanishing terms,
which are linear in ε both in κb and κt [Eqs. (20) and
(21)], leading to a breaking of the ε→ −ε symmetry.

B. oxDNA

oxDNA is a coarse-grained model describing DNA as
two intertwined strings of rigid nucleotides [33]. It has
been used for the study of a variety of DNA properties,
ranging from single molecules to large-scale complexes
[15, 16, 33, 36–38]. To date, two versions of oxDNA ex-
ist: one with symmetric grooves (oxDNA1) [33] and one
with asymmetric grooves (oxDNA2) [37]. Comparing the
torsional response of the two versions will allow us to in-
fer the effect of the groove asymmetry on Ceff. Differ-
ently from the triad model, in which the stiffness con-
stants A1, A2, C and G are input parameters, in oxDNA
they are determined by the molecular force fields used.
These force fields were accurately tuned so that the ex-
perimental DNA structural, mechanical and thermody-
namic properties (as persistence length, melting temper-
atures and torque-induced supercoiling) are well repro-
duced [33]. As for real DNA, for oxDNA the elastic con-
stants are emergent via coarse-graining of fluctuations of
smaller-scale, molecular motion degrees of freedom.

The stiffness parameters of oxDNA were recently esti-
mated from the analysis of the equilibrium fluctuations of
an unconstrained molecule [15], and are shown in Table I
(the values of the elastic constants for oxDNA2 shown
are the result of transformation of the values obtained in
Ref. [15] for the helical coordinate system used in that
paper, to the non-helical coordinate system of this paper;

0 1 2 3 4 5 6
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(κb, κt) = (43, 118) nm

(κb, κt) = (44, 92) nm

FIG. 5. Comparison of oxDNA simulations to Eq. (28). Solid
and dashed lines show the nonperturbative result for Ceff for
oxDNA1 and oxDNA2 values of Table I, respectively. Error
bars for the oxDNA data are smaller than symbol sizes.

see Appendix D). In line with the symmetry arguments
of Ref. [12], twist-bend coupling is absent in oxDNA1
(symmetric grooves), while its magnitude is comparable
to that of the elastic constants A1, A2 and C in oxDNA2
(asymmetric grooves). Table I also reports the values
of κb and κt, which can be obtained in two different, yet
consistent, ways [15]: either indirectly from Eqs. (20) and
(21), by plugging in A1, A2, C and G of Table I, or di-
rectly from the analysis of the corresponding correlation
functions in simulations (κb and 2κt are, respecively, the
bending and twist stiffnesses [14]).

Figure 5 shows a plot of the effective torsional stiff-
ness as a function of the applied force, both for oxDNA1
(circles) and oxDNA2 (triangles). Ceff was evaluated us-
ing twist fluctuations via Eq. (25). At large forces, and
in agreement with the experimental evidence, oxDNA
undergoes a structural transition, hence the simulations
were restricted to f ≤ 10 pN. The solid and dotted lines
of Fig. 5 are plots of Eq. (28) using κb and κt from
Table I. For oxDNA1 there is an excellent agreement
between the nonperturbative theory and simulations.
In this case the nonperturbative theory reduces to the
Moroz-Nelson result, with κt = C and κb = A(1−ε2/A2);
the good account of oxDNA1 Ceff by this formula was
noted previously (see Ref. [39], Fig. S7). We note that
in the light of our present results, this good agreement
validates the use of the values of the stiffness parameters
obtained in Ref. [15].

V. DISCUSSION

We have investigated the effect of the twist-bend
coupling G on the statistical-mechanical properties of
the twistable-worm-like-chain model of a stretched DNA
molecule, using analytical and numerical methods. Our
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major analytical results are based on a perturbative cal-
culation of the effective torsional stiffness Ceff, the tor-
sional resistance of a long DNA molecule stretched by an
applied force f . The calculation is valid for small values
of G, and generalizes the expression derived by Moroz
and Nelson, which was derived for G = 0 [4].

A. Screening effect for f < f0

A striking feature of our theory is the appearance of a
large force scale, f0 = kBTAω

2
0 ≈ 600 pN. For forces well

below this gargantuan force level (essentially all single-
DNA mechanical experiments concern forces far below
this value) the effect of G becomes solely renormaliza-
tion of the bending and twisting stiffnesses κb and κt; di-
rect effects of twist-bend coupling are “screened” at lower
force scales. Only at forces f � f0 do the bare elastic
constants start to reveal themselves: in this regime Ceff

finally approaches its intrinsic value C. Note that the
large force regime f � f0 is experimentally inaccessi-
ble, as it corresponds to forces beyond those where DNA
rapidly breaks.

This “screening” feature of the perturbative theory
suggested to us that we could consider DNA for f < f0 to
be described by a TWLC with persistence lengths set to
the zero-force long-molecule stiffnesses κb and κt. Com-
bining formulae for the stiffnesses for freely fluctuating
DNA [14] with the Ceff formula of Moroz and Nelson [4]
gave us a nonperturbative formula for Ceff in terms of the
elastic constants A1, A2, C and G. MC calculations for
the triad model which discretizes the continuum elasticity
theory (3) were found to be in excellent agreement both
with the perturbative (i.e., small G) and nonperturbative
(for larger G) expressions of Ceff. We note that, despite
being inaccessible experimentally, in MC simulations we
observed the very high force behavior of the perturba-
tive theory - namely the increase of Ceff from its low-force
Moroz-Nelson behavior, towards its “naked” value of C
in the triad MC calculations.

The screening discussed here applies to single-molecule
measurements sampling the torsional response of a
kilobase-long molecule. Locally, at the distance of few
base-pairs, twist-bend coupling has directly-observable
effects, as discussed recently [16, 40]. For instance, in
DNA minicircles, the twist oscillates as a response to
pure bending deformations, as seen in X-ray structures
of nucleosomal DNA [16].

B. oxDNA under moderate forces is described by
the TWLC plus twist-bend coupling

To test whether our analytical results describe the
coarse-grained behavior of a more realistic molecular
model of DNA, we carried out MD simulations of oxDNA,
a coarse-grained model describing DNA as two inter-
twined strings of rigid nucleotides [33]. Ceff for oxDNA1,

0.0 0.5 1.0 1.5 2.0 2.5

f (pN)
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C
e
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)
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MTT 2017

(κb, κt) = (43, 118) nm

(κb, κt) = (44, 92) nm

FIG. 6. Comparison of the theory from Eq. (28) (lines) with
Magnetic Tweezer experiments (symbols) for Ceff vs. force.
The lines have the same parametrization of the solid and
dashed lines of Fig. 5, which fit oxDNA and oxDNA2 data,
respectively. Two sets of experiments are shown: the freely-
orbiting magnetic tweezers [22] (circles) and magnetic torque
tweezers [14] (triangles).

a DNA model with symmetric grooves, was determined
in previous work [39] and found to be in agreement with
the (G = 0) Moroz-Nelson theory.

For the more realistic oxDNA2, which has the asym-
metric grooves of real DNA and hence twist-bend cou-
pling (G 6= 0) [15], we found that Ceff is in excellent agree-
ment with the nonperturbative theory Eq. (28) without
any adjustable parameters, as the elastic constants were
determined in previous work [15]. oxDNA2 appears to
be precisely described by our nonperturbative theory for
forces f � f0 (recall that oxDNA undergoes internal
structural transitions for forces of a few tens of pN, pro-
viding a more stringent contraint on force than the giant
force scale f0). Put another way, the “TWLC plus G” is
the “correct” low-force, long-fluctuation wavelength de-
scription of oxDNA2.

C. Experimental data

We finally compare the analytical results with exper-
imental magnetic tweezers data of Refs. [14, 22]. Fig-
ure 6 shows experimental data (symbols) together with
plots of Eq. (28) for two sets of parameters κb and κt

(lines). The latter are identical to the solid and dashed
lines of Fig. 5, which are numerically precise descriptions
of oxDNA1 and oxDNA2, respectively. Since the force
fields in oxDNA were carefully tuned to reproduce sev-
eral mechanical and thermodynamic properties of DNA
[33], it is sensible to directly compare our nonperturba-
tive theory to experimental data (Fig. 6).

As reported in previous papers [14, 17] the experimen-
tal Ceff data are systematically lower than the predic-
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tion of the Moroz and Nelson theory, which precisely
matches the oxDNA1 results (solid line in Fig. 6). The
oxDNA2/nonperturbative theory (dashed curve) is closer
to the experimental data, especially in the low force
regime f < 1 pN. However, some systematic deviations
are noticeable at higher forces, where theory appears to
underestimate the experimental Ceff . In addition, mea-
surements at f = 15 pN (albeit for a slightly different
assay) yield Ceff = 110 nm [41], well above the oxDNA2
value of Ceff = 92 nm.

We conclude by noting that oxDNA2 - which has the
realistic features of groove asymmetry and G 6= 0 - pro-
duces data in reasonable agreement with experiments.
We have also shown that in the force range where we ex-
pect that coarse-graining of oxDNA2 should agree with
our analytical results, it does. In that same force range
(f < 10 pN), oxDNA2 and our analytical results show
some systematic deviations from experiments that sug-
gest that physics beyond simple harmonic elasticity may
be in play at intermediate forces (1 to 10 pN), generat-
ing torsional stiffening of DNA. A possible mechanism
of cooperative structural transition in a two-state model
with different base-pair rise (separation) was recently dis-
cussed in Ref. [42]. The next generation of coarse-grained
DNA models likely will have to consider this kind of addi-
tional, internal degree of freedom to properly describe se-
vere distortion of DNA by proteins, or similar situations
where strong forces are applied at short length scales.

D. The value of the intrinsic torsional stiffness C

Experiments probing torsional properties of DNA, per-
formed since the 80’s, have provided estimates of C rang-
ing from 40 nm to 120 nm, depending on the technique
used [6, 43–47]. All these experiments were analyzed
within the framework of the standard TWLC, with no
twist-bend coupling (G = 0). In the model discussed
in this paper with G 6= 0, the bare torsional stiffness C,
being screened by a large force scale, should not be acces-
sible to magnetic tweezers experiments. A main point of
this paper is that all the experiments ought to measure
κt instead. We point out that Eq. (22) holds for mea-
surements at zero force where torsional deformations are
governed by the renormalized stiffness κt (21) and not by
the bare C [14, 40]. If DNA were to follow the model (2),
torsional measurements at a given force should provide a
single estimate of the torsional constant κt, regardless of
whether the DNA is under tension or not (provided that
f � f0, which is always the case in experiments).

Deviations of experiments from Eq. (22), observed for
f > 1 pN, indicate that DNA is torsionally stiffer for
forces in the 1-10 pN range than expected from model
(2). One possibility is that there is an additional intrinsic
torsional stiffness C ′ in this regime of forces, as postu-
lated by Schurr [42]. This explains the large spread in the
values of the torsional stiffness in earlier experiments: at
very weak f < 1 pN or zero forces the torsional behavior

is governed by κt and larger forces by a novel torsional
constant C ′. Measurements of torsional stiffness from
DNA under tension provide systematically higher values
compared to the zero-tension data (see Table I of Supple-
mental of Ref. [14]), suggesting that there are different
torsional constants in different force ranges. A similar ef-
fect was discussed in Ref. [14], where it was argued that
earlier torsional DNA experiments identified two differ-
ent stiffnesses: κt at low/zero tension and C, the intrin-
sic stiffness, at high tension. The present paper argues
against this conclusion of Ref. [14], since the intrinsic tor-
sional stiffness is screened at all experimentally-accessible
forces (f < f0).

E. Effects beyond the TWLC model

The TWLC with G 6= 0 is still a highly-simplified
model of DNA molecular mechanics. One might argue
that there are degrees of freedom or other features of
DNA relevant to Ceff measurements, which are just not
captured by the TWLC. The basic TWLC (with G 6= 0)
Hamiltonian has been obtained at the single-base-pair
level by coarse-graining detailed molecular MD simula-
tions [28, 48], indicating that the basic symmetry fea-
tures of the TWLC with G 6= 0 are present in real
DNA, or at least in chemical models of real DNA. In
addition to the symmetry properties of base-pair-level
deformations, the TWLC model also assumes a straight
“zero-temperature” (non-fluctuating) ground state, while
real DNA has a sequence-dependent non-straight intrin-
sic shape; evidence for this comes from crystallography
of DNA crystals and detailed chemical-structural calcula-
tions. Recent work of the latter sort suggests that DNA
has an appreciable contribution to its effective persis-
tence length by sequence-dependent bends [49].

This leads to the question of whether DNA intrinsic
shape might contribute appreciably to experimental dis-
crepancies between Ceff and the predictions of TWLC-
type models. Prior work argues against this, showing
that small-scale random intrinsic bends generate only a
simple renormalization of the bending modulus (captured
in the TWLC model by shifting the value of A) [50] and
no renormalization of the twisting modulus [51].

These theoretical results for small-scale shape disor-
der nonwithstanding, large-scale nonrandom chiral shape
of the molecule (say a coiled shape at a length scale
`0) could give chiral responses at zero temperature as-
sociated with removal of those coils. At finite tempera-
ture, effects of such coiling would be relevant for forces
< kBTA/`

2
0, where the correlation length for bending

fluctuations is large enough to allow fluctuations to be
affected by `0. Taking `0 ≈ 10 nm (30 bp) sets this force
scale to <∼ 2 pN, not far from the force range where ex-
periment and TWLC disagree, suggesting that this per-
manent chiral shape might contribute to the discrepancy
between TWLC and experimental Ceff values. Future
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oxDNA-like models, which incorporate sequence-shape
detail, might be able to observe effects of nonrandom chi-
ral structure. From the experimental side, high-precision
measurements using DNA molecules of different sequence
composition (perhaps tuned to have nonrandom chiral in-
trinsic shape) might be able to determine how likely it is
that sequence is responsible for the discrepancies in Ceff

between experiments and the TWLC theory.
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Appendix A: TWLC at strong stretching

We will first consider the simple case of the TWLC
(G = 0), following closely the approach of Ref. [1]. At
high forces, the molecule is strongly oriented along the
force direction, which is chosen to be parallel to ẑ. It
proves convenient to decompose the tangent vector as

ê3 = tz ẑ + u, (A1)

where the vector u is orthogonal to ẑ, i.e. u = uxx̂+uyŷ.

Using the identity |ê3| = 1 =
√
t2z + u2 and expanding

to lowest order in u we get

ê3 =

[
1− u2

2
+O(u4)

]
ẑ + u, (A2)

while its derivative is found to be

dê3

ds
=

du

ds
+O(u2)ẑ. (A3)

Combining this with Eq. (1), we find

Ω2
1 + Ω2

2 =

(
dê3

ds

)2

=

(
du

ds

)2

+O(u3). (A4)

Introducing the Fourier transform uq =
∫ L

0
ds e−iqs u(s),

and neglecting higher-order terms, we write the bending
and stretching contribution to the energy as follows

A

2

∫ L

0

ds

(
dê3

ds

)2

−βf ·R =
1

2L

∑
q

(
Aq2 + βf

)
|uq|2−βfL,

(A5)
where we expressed the force as f = f ẑ, while the end-

to-end vector R =
∫ L

0
ds ê3 was approximated based on

Eq. (A2).

The torque in Eq. (5) is coupled to the linking number,
which is the sum of twist and writhe [Eqs. (7) and (8),
respectively]. In the high-force limit, Eq. (8) becomes

2πWr =
1

2

∫ L

0

(
u× du

ds

)
· ẑ ds+O(u4)

=
1

2L

∑
q

uT
q

(
0 −iq
iq 0

)
u ∗q +O(u4), (A6)

where we have rewritten the cross product as a matrix
multiplication. Thus, the writhe couples the x and y
components of the two-dimensional vector uq.

Adding up all terms, and with the help of simple alge-
braic manipulations, we obtain the following energy for
the TWLC to lowest order in u

βE0 − βf ·R− βτ2π∆Lk

=
1

2L

∑
q

uT
q Mqu

∗
q +

C

2

∫ L

0

ds ω2
3 −

β2τ2L

2C
− βfL,

(A7)

where we introduced the matrix

Mq =

(
Aq2 + βf −iqβτ
iqβτ Aq2 + βf

)
. (A8)

We have also introduced the shifted twist density

ω3(s) ≡ Ω3(s)− βτ

C
, (A9)

which allowed us to eliminate linear terms in Ω3. Thus,
in the high-force limit, the TWLC under applied torque
reduces, to lowest order, to a Gaussian model, where
bending (uq) and twist (ω3) are independent variables.
The torque τ couples to the bending degrees of freedom
through the off-diagonal terms of the matrix Mq. The
eigenvalues of Mq are easily found to be

λ±q = Aq2 + βf ± qβτ, (A10)

and the corresponding eigenvectors are (x̂ ± iŷ)/
√

2.
Writing Eq. (A7) on this basis allows us to calculate the
partition function, from which the free energy is found
to be

F0 = −fL− βτ2L

2C
+
kBT

2

∑
q

log
(
λ+
q λ
−
q

)
, (A11)

where we have neglected additive constants. Expanding
to quadratic order in τ

log
(
λ+
q λ
−
q

)
≈ log

(
Aq2 + βf

)2 −( qβτ

Aq2 + βf

)2

, (A12)

and replacing the sum over momenta with an integral∑
q → (L/2π)

∫
dq, we obtain

F0(f, τ) = F0(f, 0)− βτ2L

2C
− βτ2L

8A

√
kBT

fA

= F0(f, 0)− βτ2L

2Ceff
. (A13)
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Combining the two last terms in the right-hand side,
one obtains the Moroz and Nelson relation [Eq. (10)].
F0(f, τ = 0) is the zero-torque free energy, and is ob-
tained by integrating the first term at the right-hand side
of Eq. (A12). Although the integral is divergent, it can be
regularized by introducing a momentum cutoff Λ ≈ 2π/a,
where a = 0.34 nm is the separation between neighboring
base pairs. As it turns out, however, this cutoff does not
affect any force-dependent terms, and one has

F0(f, 0) = F0(0, 0)− fL+

√
fkBT

A
L, (A14)

where F0(0, 0) is cutoff-dependent. Interestingly, from
Eq. (5) one finds to lowest order in τ

2π∆Lk = −∂F0(f, τ)

∂τ
=
βτL

Ceff
, (A15)

which quantifies the induced over- or undertwisting upon
the application of a torque. Using this expression, one
obtains the force-extension relation at fixed linking num-
ber [4, 21]

z

L
= − 1

L

∂F0

∂f
= 1−

√
kBT

4fA
−C

2

2

(
kBT

4Af

)3/2(
2π∆Lk

L

)2

,

(A16)
which shows a characteristic parabolic profile for the ex-
tension of an over- or undertwisted, stretched molecule.

Appendix B: Ω2 at strong stretching

The thermal average in Eq. (12) contains Ω2, which
needs to be expressed in terms of uq and ω3, the degrees
of freedom of the system [Eq. (A7)]. For this purpose,
we use the relation

Ω2 = ê1 ·
dê3

ds
, (B1)

which can be easily obtained from Eq. (1). In the high-
force limit, where the tangent ê3 points predominantly
along the force direction, ẑ, one has

ê1 =
[
cosψ +O(u2)

]
x̂ +

[
sinψ +O(u2)

]
ŷ +O(u) ẑ.

(B2)
Here we have introduced the twist angle

ψ(s) =

∫ s

0

Ω3(t) dt+ ω0s =

∫ s

0

ω3(t) dt+

(
ω0 +

βτ

C

)
s,

(B3)
and used Eq. (A9) to express it in terms of the vari-
able ω3. Equation (B2) can be obtained by considering
an arbitrary rotation that maps a fixed lab frame triad,
e.g. {x̂, ŷ, ẑ}, onto the material frame triad {ê1, ê2, ê3}
at position s, requiring that ê3 remains predominantly
oriented along the force direction, as in Eq. (A1). Com-
bining Eqs. (B1) and (B2), it follows that

Ω2 = Ψ̂(s) · du

ds
+O(u3), (B4)

where we have defined the unit vector

Ψ̂(s) ≡ cosψ(s) x̂ + sinψ(s) ŷ. (B5)

Therefore, in the high-force limit, Ω2 can be written as

a scalar product between a unit vector Ψ̂(s), depend-
ing exclusively on twist variables, and a vector du/ds,
involving only the bending degrees of freedom. Finally,
from Eq. (B4) it follows that

Ω̃2,q =
1

L

∑
q′

(−iq′)Ψq−q′ · uq′ . (B6)

The remainder of the calculation, presented below, will
be based upon Eqs. (B4) and (B6).

Appendix C: Details of the perturbative calculation

To calculate the average appearing in Eq. (12), it first
needs to be rewritten as a function of the integration
variable ω3 [see Eq. (A9)]. This can be performed as
follows〈(∫ L

0

dsΩ2Ω3

)2〉
0

=

=
β2τ2

C2

〈(∫ L

0

dsΩ2

)2〉
+

〈(∫ L

0

dsΩ2ω3

)2〉

=
β2τ2

C2

〈
Ω̃2

2,0

〉
+

1

L2

∑
q,k

〈
Ω̃2,qΩ̃2,kω̃3,−qω̃3,−k

〉
, (C1)

where Ω̃2,q and ω̃3,q denote the Fourier components of Ω2

and ω3, respectively. Note that we have neglected a linear
term in ω3, which vanishes due to the symmetry ω3 ↔
−ω3. Moreover, in order to simplify the notation, we
have dropped the subscript from all averages 〈.〉0, which
will be always calculated within the TWLC model, i.e.
for G = 0.

Before proceeding to the calculation of Eq. (C1), it will
prove useful to first present some properties. In partic-
ular, we are going to use the following expressions, ob-
tained from the correlation functions in the TWLC model
[Eq. (A7)]

〈uq · uk〉 =
2L
(
Aq2 + βf

)
(Aq2 + βf)

2 − (qβτ)
2 δq,−k (C2)

and

〈uq ⊗ uk〉 =
2iLqβτ

(Aq2 + βf)
2 − (qβτ)

2 δq,−k. (C3)

For convenience, we have introduced the shorthand no-
tation

a⊗ b ≡ ẑ · (a× b) = axby − aybx, (C4)
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which is antisymmetric with respect to the interchange
of a and b. From Eq. (C3) it follows that 〈uq ⊗uk〉 = 0,
when τ = 0 (in this case the matrix Mq is diagonal, hence
the cross-correlations 〈uxqu

y
−q〉 = 0). Moreover, for τ = 0

and q = −k, Eq. (C2) reduces to:

〈|uq|2〉τ=0 =
2L

Aq2 + βf
, (C5)

which can be easily obtained from equipartition [12]. We
are also going to use the following symmetries

〈uxquxk〉 = 〈uyqu
y
k〉, (C6)

〈uxqu
y
k〉 = −〈uyquxk〉, (C7)

which allow us to rearrange scalar products as follows

〈Ψ−q · uqΨ−k · uk〉 = 〈uxquxk〉
[
〈Ψx
−qΨ

x
−k〉+

〈Ψy
−qΨ

y
−k〉
]

+ 〈uxqu
y
k〉
[
〈Ψx
−qΨ

y
−k〉 − 〈Ψ

y
−qΨ

x
−k〉
]

=
1

2
[〈uq · uk〉〈Ψ−q ·Ψ−k〉+ 〈uq ⊗ uk〉〈Ψ−q ⊗Ψ−k〉] ,

(C8)

where we have used the fact that the bending (u) and
twisting (Ψ) degrees of freedom are independent, within
the TWLC. We are now ready to proceed to the calcu-
lation of Eq. (C1). We will need to evaluate two distinct
terms, which will be treated separately.

1. First term in Eq. (C1)

The first term in Eq. (C1) already contains a factor of
order O(τ2), which means that up to quadratic order in
τ it is sufficient to evaluate the corresponding average for
τ = 0〈

Ω̃ 2
2,0

〉
τ=0

=
1

L2

∑
qk

(−qk)〈Ψ−q · uqΨ−k · uk〉τ=0

=
1

2L2

∑
q

q2〈|uq|2〉τ=0〈|Ψq|2〉τ=0, (C9)

where we have used Eqs. (B6) and (C8), together with
the property 〈uq ⊗ uk〉τ=0 = 0 [see Eq. (C3)]. Next, we
need to calculate the following quantity

〈|Ψq|2〉τ=0 =

∫ L

0

dsds′eiq(s−s
′)〈Ψ̂(s) ·Ψ̂(s′)〉τ=0. (C10)

From Eqs. (B3) and (B5) one finds

〈Ψ̂(s) · Ψ̂(s′)〉τ=0 = 〈cos[ψ(s)− ψ(s′)]〉

=
eiω0(s′−s)

2

〈
exp

(
i

∫ s′

s

ω3(t) dt

)〉
+ c.c., (C11)

where c.c. denotes the complex conjugate. To proceed,
we perform a Fourier transform of the exponent∫ s′

s

ω3(t) dt =
1

L

∑
q

hq ω̃3,q, (C12)

where we have introduced the complex variable

hq =
e−iqs

′ − e−iqs

−iq
. (C13)

Performing Gaussian integration in ω̃3,q, one finds〈
exp

(
± i

L

∑
q

hq ω̃3,q

)〉
= exp

(
− 1

LC

∑
q>0

hqh−q

)

= exp

(
−|s

′ − s|
2C

)
. (C14)

As expected, the decay of the twist correlation function
is governed by 2C, i.e. the twist persistence length in
the TWLC. Combining Eqs. (C11), (C12) and (C14), we
obtain

〈Ψ̂(s) · Ψ̂(s′)〉τ=0 = cos[ω0(s′ − s)] e−|s
′−s|/2C . (C15)

Inserting this in Eq. (C10) yields

〈|Ψq|2〉τ=0 =
L

2

(
1

i(q − ω0) + 1
2C

+
1

i(q + ω0) + 1
2C

+
1

i(−q + ω0) + 1
2C

+
1

i(−q − ω0) + 1
2C

)
=

L

2C

[
1

(q + ω0)2 + 1
4C2

+
1

(q − ω0)2 + 1
4C2

]
. (C16)

Finally, combining Eqs. (C9), (C5) and (C16) we find〈
Ω̃ 2

2,0

〉
τ=0

=
1

2π

∫ +∞

−∞

dq q2

Aq2 + βf

〈
|Ψq|2

〉

=
L

A

1−
√
βf

A

√
βf
A + 1

2C(√
βf
A + 1

2C

)2

+ ω2
0


≡ L

A
d(f), (C17)

where we introduced a force-dependent scale factor d(f).
Note that 0 ≤ d(f) ≤ 1, with d(f) → 1 at small forces
and d(f) → 0 at high forces. Commonly accepted es-
timates of the DNA elastic constants put them in the
viccinity of C = 100 nm and A = 50 nm, while the
applied forces in typical experiments are in the range
0.1 pN <∼ f <∼ 10 pN. Recalling that room temperature
corresponds to kBT ≈ 4 pN·nm, it follows that βf/A is
at least one order of magnitude larger than 1/4C2. This
allows for the following simplification

d(f) ≈ 1

1 + f/f0
, (C18)

neglecting higher-order terms in C−1
√
A/βf . We have

also introduced a characteristic force

f0 = AkBTω
2
0 ≈ 600 pN, (C19)
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whose value greatly exceeds those at which the double
helix breaks. Thus, for the force range of interest, we
may set d(f) = 1 in Eq. (C17). Summarizing, this first
term of Eq. (C1) provides the following contribution to
the free energy

∆F (1) = −G
2

2

βτ2

C2

〈
Ω̃ 2

2,0

〉
= −βτ

2L

2C

G2

AC
d(f). (C20)

As a final remark, we note that we could have obtained
Eq. (C18) using the approximation

〈|Ψq|2〉 ≈ πL[δ(q + ω0) + δ(q − ω0)]. (C21)

Formally, this corresponds to taking the limit C → ∞
in Eq. (C16), i.e. approximating the Lorentzian distribu-
tions 1/[2C(q±ω0)2 +1/2C] with delta functions. This is
a valid approximation as long as ω0 � 1/2C, making the
Lorentzians sharply-peaked at large momenta q = ±ω0,
where the integrand in Eq. (C17) varies slowly.

2. Second term in Eq. (C1)

Using the same decomposition as in Eq. (C8), the sec-
ond term in Eq. (C1) can be written as

∑
q,k

〈
Ω̃2,q ω̃3,−q Ω̃2,k ω̃3,−k

〉
=

1

L2

∑
q,k,q′,k′

(−q′k′)〈Ψq−q′ · uq′Ψk−k′ · uk′ ω̃3,−qω̃3,−k〉

=
1

2L2

∑
q,k,q′,k′

(−q′k′)[〈uq′ · uk′〉〈Ψq−q′ ·Ψk−k′ ω̃3,−qω̃3,−k〉+ 〈uq′ ⊗ uk′〉〈Ψq−q′ ⊗Ψk−k′ ω̃3,−qω̃3,−k〉]

=
1

2L2

∑
q′

q′2[〈|uq′ |2〉Is(q′, τ) + 〈uq′ ⊗ u−q′〉Ia(q′, τ)], (C22)

where we used the fact that the u correlators are diagonal
in momentum space, hence k′ = −q′ [see Eqs. (C2) and
(C3)]. We have also introduced the symmetric

Is(q
′, τ) =

∑
q,k

〈Ψq−q′ ·Ψk+q′ ω̃3,−q ω̃3,−k〉, (C23)

and antisymmetric products

Ia(q′, τ) =
∑
q,k

〈Ψq−q′ ⊗Ψk+q′ ω̃3,−q ω̃3,−k〉. (C24)

In what follows, we are going to compute the contribution
of Is and Ia to the free energy separately.

a. Symmetric products

For the evaluation of Eq. (C23), we will first focus on
the average inside the summation, which may be written
in the following way

〈Ψq−q′ ·Ψk+q′ ω̃3,−qω̃3,−k〉 =∫ L

0

dsds′ ei(q−q
′)s+i(k+q′)s′〈Ψ̂(s) · Ψ̂(s′) ω̃3,−qω̃3,−k〉.

(C25)

We may now use Eqs. (C11)-(C14) so as to obtain

〈Ψ̂(s) · Ψ̂(s′) ω̃3,−qω̃3,−k〉

= −L
2

2

[
eiω0(s′−s) ∂2

∂h−q∂h−k

〈
exp

(
i

L

∑
p

hp ω̃3,p

)〉

+e−iω0(s′−s) ∂2

∂h−q∂h−k

〈
exp

(
− i

L

∑
p

hp ω̃3,p

)〉]

= −L2 cos [ω0(s′ − s)] ∂
2e

−
1

LC

∑
p>0

hph−p

∂h−q∂h−k

=
L

C
cos [ω0(s′ − s)]

(
δq,−k −

1

LC
hqhk

)
e−|s

′−s|/2C ,

(C26)

where we have introduced the shifted intrinsic twist

ω0 ≡ ω0 +
βτ

C
. (C27)

Differently from the calculation of 〈Ω2
2,0〉 in Eq. (C9),

we can no longer ignore the torque dependence of ψ [see
Eq. (B3)]. Plugging Eq. (C26) back in Eq. (C25), inte-
grating in s and s′ and summing over q and k, we obtain

Is(q
′, τ) =

L3

C
− L3

4C2

∫ +∞

−∞
dr cos(q′r) cos(ω0r) e

−|r|/2C

=
L3

C
− L3

4C3

[
1

(q′ + ω0)2 + 1
4C2

+
1

(q′ − ω0)2 + 1
4C2

]
≈ L3

C
− πL3

2C2
[δ (q + ω0) + δ (q − ω0)] . (C28)
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Throughout the calculation we introduced the variable
r ≡ s′−s in the double integral. Similar to Eq. (C21), we
also approximated the two Lorentzians with delta func-
tions. Note that Is depends on the torque τ through
ω0, as indicated by Eq. (C27). Combining Eqs. (C2)
and (C28), one finds

1

2L2

∑
q

q2 〈uq · u−q〉 Is(q, τ)

=
1

L

∑
q

Aq2 + βf

(Aq2 + βf)
2 − (qβτ)

2 q
2Is(q, τ)

=
1

L

∑
q

q2Is(q, τ)

Aq2 + βf
+
β2τ2

L

∑
q

q4Is(q, 0)

(Aq2 + βf)3
+O(τ4).

(C29)

We are interested in terms proportional to τ2. There are
two such contributions, the first one being

1

L

∑
q

q2Is(q, τ)

Aq2 + βf
=
−L3

AC

(√
βf

4A
+

1

2C

ω2
0

Aω2
0 + βf

+ . . .

)

= − L3

AC

√
βf

4A
− L3d(f)

2AC2
×

×
{

1 +
βτ

Cω0
d̃(f) +

β2τ2

C2ω2
0

d̃(f)[4d(f)− 1]

}
+ . . .

= − L3

AC

√
βf

4A
+ . . . , (C30)

where we defined d̃(f) ≡ 1 − d(f), with d(f) the scale
factor given in Eq. (C18), and where the dots indicate
omitted terms, which do not significantly contribute to
the result. These terms are either independent of the
torque and force, or are of higher order than τ2. We

note that d̃(f) � 1, i.e. it is negligibly small for the
experimentally-accessible forces f � f0 ≈ 600 pN. The
only surviving term in Eq. (C30) is independent of τ
and proportional to

√
f , hence contributing to the force-

extension response. The remaining term to evaluate in
Eq. (C29) is

β2τ2

L

∑
q

q4Is(q, 0)

(Aq2 + βf)3
=
β2τ2

4π

∂2

∂A2

∫
dq

Aq2 + βf
Is(q, 0)

=
β2τ2L3

C

[
3

16A2

√
kBT

fA
− 2d3(f)

CA3ω2
0

]

≈ 3β2τ2L3

16A2C

√
kBT

fA
. (C31)

Note that terms containing ω−2
0 are always multiplied

by A−2 or C−2, hence forming dimensionless constants.
Typical values for the case of DNA are (Aω0)−2 ≈ 10−4

and (Cω0)−2 ≈ 3 × 10−5, which provide negligible con-
tributions to the free energy, compared to other terms of
the same order in τ . Therefore, the term proportional
to d3 in Eq. (C31) can be safely neglected. Combining

Eqs. (C29)-(C31), we find that the relevant contribution
of the symmetric term in Eq. (C22) to the free energy is

∆F (2) =
G2L

4AC

√
fkBT

A
− βτ2L

2C

3G2

16A2

√
kBT

fA
. (C32)

b. Antisymmetric products

The final part of the derivation is devoted to the cal-
culation of the antisymmetric product in Eq. (C22). We
start by expanding Eq. (C3) as follows

〈uq ⊗ u−q〉 =
−2iLqβτ

(Aq2 + βf)
2 +O(τ3). (C33)

The calculation of the twist correlator is performed in a
similar fashion as above, which yields

〈Ψ̂(s)⊗ Ψ̂(s′) ω̃3,−qω̃3,−k〉 =

L

C
sin [ω0(s′ − s)]

(
δq,−k −

1

LC
hqhk

)
e−|s

′−s|/2C .

(C34)

We may take the Fourier transform of this expression,
and plug it back into Eq. (C24), so as to obtain

Ia(q′, τ) = − iL
3

4C3

[
1

(q′ + ω0)2 + 1
4C2

− 1

(q′ − ω0)2 + 1
4C2

]
≈ − iπL

3

2C2
[δ (q + ω0)− δ (q − ω0)] . (C35)

Finally, plugging Eqs. (C33) and (C35) into the second
term of Eq. (C22), transforming the sum into an integral
and performing the remaining integration, we find

1

2L2

∑
q

q2 〈uq ⊗ u−q〉 Ia(q, τ)

≈ − i

L

∑
q

qβτ

(Aq2 + βf)
2 q

2Ia(q, τ)

=
iβτ

2π

∂

∂A

∫
dqqIa(q, τ)

Aq2 + βf
=
βτL3

2C2

∂

∂A

ω0

Aω2
0 + βf

= −βτL
3

2C2

ω3
0(

Aω2
0 + βf

)2 ≈ −βτd2(f)L3

2A2C2ω0
, (C36)

where we have omitted terms, which are either higher
order in τ , or negligibly small compared to other terms
of the same order [recall (Cω0)−2 ≈ 3 × 10−5]. Summa-
rizing, the contribution of the antisymmetric product to
the free energy is

∆F (3) =
G2d2(f)τL

4A2C2ω0
. (C37)
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3. Collecting the results

Throughout the derivation we found three distinct con-
tributions to the free energy, coming from Eqs. (C20),
(C32) and (C37). Adding these to Eq. (A13), i.e. the
free energy of the TWLC, we find

1

L
F (f, τ) ≈ −f +

√
fkBT

Aeff
+ Γτ − βτ2

2Ceff
, (C38)

where we have omitted both terms independent of f and
τ and higher-order corrections in τ and G. We have also
introduced the effective bending stiffness

1

Aeff
=

1

A

√
1 +

G2

4AC
≈ 1

A

(
1 +

G2

2AC

)
, (C39)

together with the proportionality constant

Γ =
G2d2(f)

4A2C2ω0
. (C40)

Finally, we reach the following expression for the effective
torsional stiffness

1

Ceff
=

1

C

[
1 +

G2

AC
d(f)

]
+

1

4A

(
1 +

3G2

4AC

)√
kBT

fA
,

(C41)
corresponding to Eq. (16) of the main text, and the cen-
tral result of this work.

Appendix D: Intrinsic bending

The analysis above is based on description of the
ground-state configuration of DNA relative to a straight
molecular axis [Ω = 0 in Eq. (1)], i.e., for a molecu-
lar axis which is straight in the ground state. However,
one can also choose coordinates where the ground state
of the double helix is a helix while still respecting the
symmetry of the elastic model. In fact, this is a rather
natural outcome for most choices of DNA deformation
which are based on molecular modeling, where coordi-
nates are usually chosen relative to the orientations of
the base pairs (e.g., using the vector connecting the junc-
tions of the bases to the sugar-phosphate backbone as a
reference), due to the groove asymmetry of DNA. Most
relevant here, our previous determination of the elastic
constants of oxDNA2 [15] analyzed deformations relative
to a helical coordinate system. We now show how to
transform the elastic constants in such a helical coordi-
nate system to the straight-line coordinates relevant to
our calculations.

Intrinsic bending consistent with groove asymmetry,
usually reported in the DNA literature as a nonzero value
of the average roll [52], can be described using the fol-
lowing modification of Eq. (1)

dêi
ds

= (Ω + l2ê2 + l3ê3)× êi, (D1)

where l2 and l3 correspond to the intrinsic bending and
twisting densities, respectively, with l2 � l3. A nonzero
l1 is incompatible with the symmetry of the double helix.

Solving Eq. (D1) for Ω = 0, one finds that the ground-
state configuration is a helix, with a linking number equal
to Lk0 = ω0L/2π, where

ω0 =
√
l22 + l23. (D2)

Furthermore, from the solution of Eq. (D1), it follows
that the rotation matrix transforming the helical ground
state of Eq. (D1) to the straight one of Eq. (1) is

R =

1 0 0

0 l3/ω0 l2/ω0

0 −l2/ω0 l3/ω0

 , (D3)

expressed on the body frame {ê1, ê2, ê3} of the former.

The total elastic free energy should not depend on the
coordinate system used to describe it, so the energy in the
helical coordinates (l2, l3 6= 0) should equal that found in
non-helical coordinates (l2 = 0 and l3 = ω0) The defor-
mations in the “straight” model are given by Ω′ = RTΩ,
where Ω are the deformation parameters of the helical
model. From the condition that the integrand of Eq. (2)
has to remain invariant under this transformation, one
obtains the following relations mapping the elastic con-
stants from the helical coordinates to the straight ones:

A1,s = A1, (D4)

A2,s = A2 −
2xG− x2(C −A2)

1 + x2
, (D5)

Cs = C +
2xG− x2(C −A2)

1 + x2
, (D6)

Gs = G− x(C −A2) + 2x2G

1 + x2
, (D7)

where x ≡ l2/l3 � 1, and where the subscript s indicates
the “straight” frame result. The transformation (D3)
mixes A2, G and C, changing their values, but conserves
the symmetry of the elastic constant matrix. These for-
mulae allow one to measure elastic constants using arbi-
trarily chosen helical reference coordinates, and then con-
vert them to elastic constants suitable for using strains
defined relative to a straight-line ground state.

For unconstrained (zero force and torque) oxDNA2
simulations, we measured reference helix parameters l2 =
0.1349 nm−1 and l3 = 1.774 nm−1, giving ω0 = 1.779
nm−1 and x = 0.076. Elastic constants reported in Ref.
[15] (A1 = 85 nm, A2 = 39 nm, C = 105 nm, and G = 30
nm) were measured in reference to helical coordinates;
for use in our analytical theory we transform them to
the straight coordinates using (D4)-(D7) to obtain the
oxDNA2 values in Table 1.
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