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Morphogen gradients play a vital role in developmental biology by enabling embryonic cells to
infer their spatial location and determine their developmental fate accordingly. The standard mech-
anism for generating a morphogen gradient involves a morphogen being produced from a localized
source and subsequently degrading. While this mechanism is effective over the length and time
scales of tissue development, it fails over typical subcellular length scales due to the rapid dissipa-
tion of spatial asymmetries. In a recent theoretical work, we found an alternative mechanism for
generating concentration gradients of diffusing molecules, in which the molecules switch between
spatially constant diffusivities at switching rates that depend on the spatial location of a molecule.
Independently, an experimental and computational study later found that C. elegans zygotes rely
on this mechanism for cell polarization. In this paper, we extend our analysis of switching diffusiv-
ities to determine its role in protein concentration gradient formation. In particular, we determine
how switching diffusivities modifies the standard theory, and show how space-dependent switching
diffusivities can yield a gradient in the absence of a localized source. Our mathematical analysis
yields explicit formulas for the intracellular concentration gradient which closely match the results
of previous experiments and numerical simulations.

I. INTRODUCTION

It is well known that at the tissue level protein (mor-
phogen) concentration gradients play a crucial role in
the spatial regulation of patterning during development
[1, 2]. That is, a continuously varying morphogen con-
centration drives a corresponding spatially discrete vari-
ation in gene expression through some form of concen-
tration thresholding. The most common mechanism of
morphogen gradient formation is thought to involve a lo-
calized source of protein production within the embryo,
combined with diffusion away from the source and subse-
quent degradation [3, 4]. Historically speaking, the idea
that a reaction-diffusion system can spontaneously gener-
ate spatiotemporal patterns was first introduced by Tur-
ing in his seminal 1952 paper [5]. Turing considered the
general problem of how organisms develop their struc-
tures during the growth from embryos to adults. He
established the principle that two nonlinearly interact-
ing chemical species differing significantly in their rates
of diffusion can amplify spatially periodic fluctuations in
their concentrations, resulting in the formation of a stable
periodic pattern. The Turing mechanism for morphogen-
esis was subsequently refined by Gierer and Meinhardt
[6], who showed that one way to generate a Turing insta-
bility is to have an antagonistic pair of molecular species,
a slowly diffusing chemical activator and a quickly diffus-
ing chemical inhibitor, which they applied to a number
of specific biological systems. Over the years, the range
of models and applications of the Turing mechanism ex-
panded dramatically [7], in spite of the fact that most
experimental findings suggested that morphogenesis was
guided by morphogen concentration gradients. Indeed,
for many years the only direct experimental evidence for
Turing-like patterning of molecular concentrations came
from the inorganic Belousov-Zhabotinsky reaction [8].
This changed when Kondo and Asai demonstrated the

occurrence of the Turing mechanism in studies of coat
patterning in angel fish [9].

Advances in live cell imaging and gene knockout proto-
cols are now allowing for a closer connection between the-
ories of pattern formation and cell biology, based either
on the Turing mechanism or on the formation of protein
concentration gradients. Indeed, it has been found that
pattern formation can also occur at the intracellular level.
However, the standard mechanisms for generating robust
and persistent patterns over the length scales of tissue
development tend to fail over typical subcellular length
scales (0.1-10 µm) [10, 11]. This has generated consid-
erable interest in identifying subcellular mechanisms for
pattern formation. One recent example concerns intra-
cellular protein concentration gradient formation during
the asymmetric division of the Caenorhabditis elegans
(C. elegans) zygote, that is, the fertilized egg cell [12].
In the experimental study of Wu et al. [12], a pair of
RNA-binding proteins MEX- 5 and PIE-1 formed oppos-
ing subcellular concentration gradients in the absence of
a local source due to a spatially heterogeneous switch-
ing process. That is, both proteins switched between
fast-diffusing and slow-diffusing states on timescales that
were much shorter (seconds) than the timescale of gradi-
ent formation (minutes). Moreover, the switching rates
were strongly polarized along the anterior/posterior axis
of the zygote such that fast-diffusing MEX-5 and PIE-1
proteins were approximately symmetrically distributed,
whereas the corresponding slow-diffusing proteins were
highly enriched in the anterior and posterior cytoplasm,
respectively.

We previously proposed a theoretical model of space-
dependent switching diffusivities [13, 14], similar to the
mechanism observed experimentally by Wu et al. [12].
In particular, we considered a Brownian particle that
randomly switches between two distinct conformational
states with different diffusivities, see Fig. 1. In each state
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FIG. 1. Schematic illustration of heterogeneous diffusion due
to temporal disorder. A Brownian particle randomly switches
between two conformational states n = 0, 1 having differ-
ent diffusivities such that D0 < D1. The switching rates
α(x), β(x) are taken to be dependent on spatial position x,
0 ≤ x ≤ L. In this particular example, the relative rate of
switching β(x)/α(x) increases to the right as indicated by the
color gradient. Hence, the particle spends more time in the
slow diffusing state at the end x = 0 and more time in the
fast diffusing state at the end x = L.

the particle undergoes normal diffusion (additive noise)
so there is no ambiguity in the interpretation of the noise.
Nevertheless, if one takes the switching rates to depend
on spatial position, then in the fast switching limit one
obtains Brownian motion with a space-dependent diffu-
sivity of the Ito form. Advances in single-particle track-
ing (SPT) and statistical methods suggest that particles
within the plasma membrane, for example, can switch be-
tween different discrete conformational states with differ-
ent diffusivities [15–17]. Such switching could be due to
interactions between proteins and the actin cytoskeleton
[18, 19] or due to protein-lipid interactions [20]. How-
ever, until the recent study of Ref. [12], there has been
no experimental evidence that the switching rates can be
space-dependent.
In this paper, motivated by the experimental study

of Ref. [12], we extend our previous work on switching
diffusivities to analyze its role in the formation of pro-
tein concentration gradients. We begin by describing
the standard theory of morphogen gradient formation
in section II, and then explore how this is affected by
space-independent switching diffusivities in section III.
We then turn to the alternative mechanism for gradi-
ent formation at the subcellular level, which is based on
space-dependent switching diffusivities in the absence of
a localized source and protein degradation (section IV).

II. PROTEIN CONCENTRATION GRADIENTS
WITHOUT SWITCHING DIFFUSIVITIES

A common model of morphogen gradient formation, as
exemplified by the Bcd gradient of Drosophila, involves
a combination of local protein synthesis, diffusion, and
protein degradation [21]. The latter mainly arises via
binding to receptors in the cell membrane, internaliza-
tion and subsequent degradation within a cell. The basic

reaction-diffusion equation takes the form

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
− kC(x, t) +Q(x), (2.1)

where C(x, t) denotes the concentration of protein, t is
the time from the onset of morphogen synthesis, and x,
0 < x < L, is the distance from the anterior pole of the
embryo whose size is L. The total rate of degradation is
given by k, and Q(x) represents the spatial distribution
of protein synthesis, which is usually approximated by a
decaying exponential Q(x) = (Q0/λp)e

−x/λp . The initial
and boundary conditions are

D
∂C(0, t)

∂x
= 0 = D

∂C(L, t)

∂x
, C(0, x) = 0. (2.2)

Experimentally it is observed that the protein concentra-
tion decays to zero before reaching the posterior end, so
the solution is approximately independent of L. Suppose
that morphogen synthesis is strongly localized at the an-
terior end, Q(x) = Q0δ(x), which can be implemented
using the modified boundary condition

−D
∂C(0, t)

∂x
= Q0.

The steady-state solution then takes the form

C∗(x) = C∗(0)

(
ex/λ + e2L/λe−x/λ

e2L/λ − 1

)
, λ =

√
D

k
.

(2.3)
The constant C∗(0) can be determined from the bound-
ary condition at x = 0. In particular, when L ≫ λ, the
concentration decays exponentially with length constant
λ,

C∗(x) =
Q0λ

D
e−x/λ, λ =

√
D/k. (2.4)

In the case of Bcd, one finds that D ∼ 1µm2/s, k−1 ∼ 1
hour and λ ∼ 75µm. This length constant is too large
for subcellular processes [11]. For example, the length
of a general eukaryotic cell is typically around 10µm in
diameter and the C. elegans embryo is typically 30-40
µm.
An important quantity in characterizing the time-

dependent approach to steady-state of a diffusion process
is the accumulation time. In particular, this is used is to
estimate the time to form a protein concentration gra-
dient during morphogenesis, which has to be consistent
with developmental time scales. In order to construct the
accumulation time, consider the function

R(x, t) = 1− C(x, t)

C∗(x)
, (2.5)

which represents the fractional deviation of the concen-
tration from the steady-state. Assuming that there is no
overshooting, 1 − R(x, t) is the fraction of the steady-
state concentration that has accumulated at x by time t.
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It follows that −∂tR(x, t)dt is the fraction accumulated
in the interval [t, t+ dt]. The accumulation time is then
defined by analogy to MFPTs [22–24]

τ(x) =

∫ ∞

0

t

(
−∂R(x, t)

∂t

)
dt =

∫ ∞

0

R(x, t)dt. (2.6)

Note that a finite accumulation time implies that the
steady-state C∗(x) is a stable solution to (2.1).
As a simple illustration of calculating τ(x), consider

the classical model of morphogen gradient formation

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
− kC(x, t), (2.7)

where C(x, t) denotes the concentration of a protein, t is
the time from the onset of morphogen synthesis, and x,
0 < x < L, is the distance from the anterior pole of an
embryo whose size is L. The total rate of degradation is
given by k. The initial and boundary conditions are

−D
∂C(0, t)

∂x
= Q0, D

∂C(L, t)

∂x
= 0, C(x, 0) = 0.

(2.8)
The time-dependent solution of Eq. (2.7) for L → ∞ is
given by

C(x, t) = C∗(x)

[
1− 1

2
erfc

(√
Dt

λ
− x

2
√
Dt

)

−ex/λ

2
erfc

(√
Dt

λ
+

x

2
√
Dt

)]
,

where erfc(z) is the complementary error function and

λ =
√
D/k. It follows that

R(x, t) =
1

2
erfc

(√
Dt

λ
− x

2
√
Dt

)

−ex/λ

2
erfc

(√
Dt

λ
+

x

2
√
Dt

)
,

and [22]

τ(x) =
1

2k
(1 + x/λ). (2.9)

In the case of Bcd, one finds that if λ ∼ 75µm and the
most distal region of Bcd expression is at x = 150µm,
then xmax/λ ≈ 2 and τ(xmax) ≈ 1.5/k. This would
be consistent with the time-scale of gradient formation,
which is of the order of an hour.
Summarizing, the standard theory of morphogen gradi-

ent formation involving production at a localized source,
diffusion, and degradation can indeed account for the Bcd
gradient of Drosophila and other developmental systems
of sufficiently large spatial scales. In the next section, we
consider how switching diffusivities modifies this theory.

III. SPACE-INDEPENDENT SWITCHING
DIFFUSIVITIES

Now suppose that we have a population of diffusing
particles that independently switch between two confor-
mational states labeled n = 0, 1 according to a two-state

jump Markov process N(t) ∈ {0, 1}, with 0
β
⇋
α

1. The

diffusion coefficient is taken to depend on the conforma-
tional state, that is D = Dn when N(t) = n [25–27].
At the population level we have the densities Cn(x, t),
n = 0, 1, which evolve according to

∂C0

∂t
= D0

∂2C0

∂x2
− (β + k)C0 + αC1 (3.1a)

∂C1

∂t
= D1

∂2C1

∂x2
+ βC0 − (α+ k)C1, (3.1b)

with

−D0∂xC0(0, t) = Q0, ∂xC1(0, t) = 0, (3.1c)

∂xC0(L, t) = ∂xC1(L, t) = 0. (3.1d)

We assume that at x = 0 all proteins are produced in
the n = 0 state at a rate Q0. Finally, we take the initial
condition Cn(x, 0) = 0 for all x.
Note that the total amount of protein is independent

of α, β, D0, and D1. To see this, define

T (t) =

∫ L

0

∑

n

Cn(x, t)dx. (3.2)

Differentiating with respect to time and using
Eqs. (3.1a)–(3.1d) results in

dT

dt
=

∫ L

0

∑

n

Dn
∂2Cn

∂x2
dx− k

∫ L

0

∑

n

Cndx. (3.3)

Enforcing the Neumann boundary conditions for C0 and
C1 at x = 0, L, leads to the equation

dT

dt
= Q0 − kT, (3.4)

whose solution is T (t) = Q0(1 − e−kt)/k. This only de-
pends on the decay rate k, and the influx of protein at
the left boundary, given by Q0.

A. Steady-state gradient and accumulation time

We would like to determine how switching diffusivities
affect the accumulation time defined in section II. We
will proceed by Laplace transforming Eqs. (3.1a)–(3.1d)
with

Ĉn(x, s) =

∫ ∞

0

e−stCn(x, t)dt.
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FIG. 2. Comparison of the fast-switching limit to the steady-state solution for various values of ǫ. (a) η = 0.1 and (b) η = 10−3.
Other parameters are L = 100 µm, and Q0 = 5× 10−3 [C]µm/s.

This gives

sĈ0(x, s) = D0
∂2Ĉ0

∂x2
− (β + k)Ĉ0(x, s) + αĈ1(x, s)

(3.5a)

sĈ1(x, s) = D1
∂2Ĉ1

∂x2
+ βĈ0(x, s)− (α + k)Ĉ1(x, s),

(3.5b)

with Cn(x, 0) = 0, and

−D0∂xĈ0(0, s) = s−1Q0, ∂xĈ1(0, s) = 0, (3.5c)

∂xĈ0(L, s) = ∂xĈ1(L, s) = 0. (3.5d)

For the sake of illustration, suppose D0 = D1 = D and
set C(x, t) = C0(x, t) + C1(x, t). (The case D0 6= D1

is analyzed in the appendix.) Adding Eqs. (3.5a) and
(3.5b) gives

D
d2Ĉ

dx2
− (s+ k)Ĉ = 0,

−D∂xĈ(0, s) = s−1Q0, ∂xĈ(L, s) = 0.

This recovers the Laplace transformed equations of the
non-switching case. It follows that

Ĉ(x, s) =
Q0

sD

1√
(s+ k)/D

(3.6)

×e
√

(s+k)/D(L−x) + e−
√

(s+k)/D(L−x)

e
√

(s+k)/DL − e−
√

(s+k)/DL
.

We immediately obtain the steady-state solution

C∗(x) = lim
s→0

sĈ(x, s) =
Q0λ

D

cosh([L − x]/λ)

sinh(L/λ)
, (3.7)

which agrees with (2.3). Setting

F̂ (x, s) = sĈ(x, s),

and Laplace transforming Eq. (2.5) yields

sR̂(x, s) = 1− F̂ (x, s)

F̂ (x, 0)
,

and

τ(x) = lim
s→0

R̂(x, s) = lim
s→0

1

s

[
1− F̂ (x, s)

F̂ (x, 0)

]

= − 1

F̂ (x, 0)

d

ds
F̂ (x, s)

∣∣∣∣
s=0

. (3.8)

Using Eq. (3.6) we obtain the result

τ(x) =
1

2k

[
1− L− x

λ
tanh([L− x]/λ) +

L

λtanh(L/λ)

]
.

(3.9)
Hence, for this particular example the accumulation time
is independent of the switching rate. In particular, we
recover the result (2.9) in the limit L → ∞.

B. Dependence on switching rate

In order to understand the effects of switching diffu-
sivities on the protein concentration gradient, we need to
determine the corresponding system in the fast switching
limit α, β → ∞ with α/β fixed. The fast-switching limit
can be implemented by rescaling the transition rates ac-
cording to α, β → α/ǫ, β/ǫ, with α, β = O(1), and taking
ǫ → 0. This yields the following equation for C:

∂C

∂t
= D

∂2C

∂x2
− kC, (3.10)

where

D =
∑

n=0,1

Dnρn, ρ0 = 1− ρ1 =
α

α+ β
. (3.11)
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The corresponding boundary conditions are

−D∂xC(0, t) = Q0, ∂xC(L, t) = 0. (3.12)

Eq. (3.7) implies that the steady-state solution in the fast
switching limit is

C∗(x) =
Q0λ

D

cosh([L− x]/λ)

sinh(L/λ)
, λ =

√
D/k. (3.13)

Suppose that we take the baseline parameter values
D = 1µm2/s and k = 10−4 s−1 with a corresponding

length constant λ =
√
D/k = 100µm. For the sake of

illustration, we set α = β = k/ǫ, D1 = D and D0 = ηD
for 0 < η < 1. It follows that D = (1 + η)D/2. We
explore how the concentration gradient varies with ǫ and
η.
Firstly, since the switching rates are taken to be sym-

metric, in the limit η → 1, equations (3.1a) and (3.1b)
are identical, meaning that the equilibrium solution is al-
ways identical to the fast-switching limit given by (3.7).
If we take η = 0.1, however, the convergence to the fast-
switching limit is apparent (Fig. 2(a)). It is important
to note that the fast-switching limit gives a more uni-
form protein concentration gradient than for larger ǫ,
which might not be ideal for setting up spatial variation.
At η = 0.001, this difference is even more extreme, but
the gradient decays so rapidly that there is only a very
narrow region where the protein concentration is high
(Fig. 2(b)). Taking the diffusivities to be different orders
of magnitude is a way to increase the spatial variation,
even in the case of fast-switching. This is illustrated in
Fig. 3.
Hence, while the standard theory involving production,

diffusion, and degradation can yield morphogen gradients
(reviewed in Section II above), we have shown in this sec-
tion that switching diffusivities can steepen these gradi-
ents. In the next section, we show that space-dependent
switching diffusivities can yield morphogen gradients in
the absence of production and degradation.

IV. SPACE-DEPENDENT SWITCHING
DIFFUSIVITIES

So far we have assumed that the morphogen gradient
is represented by a protein concentration profile, which is
produced by a localized source, diffuses and is uniformly
degraded. We now turn to an alternative mechanism,
which is based on space-dependent switching diffusivi-
ties in the absence of a localized source or degradation.
We recently hypothesized that space-dependent switch-
ing diffusivities could provide a mechanism for multi-
plicative noise in the fast switching limit [13, 14], and
developed a mathematical analysis of this process. Inde-
pendently, an experimental and computational modeling
study of cell polarization in C. elegans showed how such
a mechanism could lead to the formation of a morphogen
gradient [12]. Here we apply our previous analysis to the
latter process. The new system of equations is

∂C0

∂t
= D0

∂2C0

∂x2
− β(x)C0 + α(x)C1 (4.1a)

∂C1

∂t
= D1

∂2C1

∂x2
+ β(x)C0 − α(x)C1, (4.1b)

with

∂xC0(0, t) = ∂xC1(0, t) = 0, ∂xC0(L, t) = ∂xC1(L, t) = 0.
(4.1c)

and the initial conditions Cn(x, 0) = C∗
n.

A. Fast switching regime

Following our previous work [13, 14], we begin by con-
sidering the fast switching limit α(x), β(x) → ∞. A
typical length of C. elegans is around L = 32 µm and
the switching rates are of the order 0.1 s−1 [12]. In-
troducing the fundamental time-scale τ = L2/D with
D = 1 µm2/s, we have τ ∼ 1000 s and thus the switch-
ing rates are at least two orders of magnitude faster than
τ−1. Hence, as in section III, we rescale the transition
rates according to α, β → α/ǫ, β/ǫ, with α, β = O(1). For
small but non-zero ǫ, one can use an adiabatic approxi-
mation to reduce the diffusion Eqs. (4.1a) and (4.1b) to a
corresponding scalar diffusion equation for the total den-
sity C(x, t) =

∑
n=0,1 Cn(x, t) [28, 29]. The basic steps

are as follows.
First, decompose the density Cn as

Cn(x, t) = C(x, t)ρn(x) + ǫwn(x, t), (4.2)

where
∑

n wn(x, t) = 0 and

ρ0(x) =
α(x)

α(x) + β(x)
, ρ1(x) = 1− ρ0(x).

Substituting this decomposition into Eqs. (4.1a) and
(4.1b), and then adding the pair of equations gives

∂C

∂t
=

∂2D(x)C

∂x2
+ ǫ

∑

n=0,1

Dn
∂2wn

∂x2
, (4.3)
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where

D(x) =
∑

n=0,1

Dnρn(x). (4.4)

Next we use Eq. (4.3) to eliminate ∂C/∂t in the expanded
version of Eqs. (4.1a) and (4.1b). Introducing the asymp-

totic expansion wn ∼ w
(0)
n + ǫw

(1)
n +O(ǫ2) and collecting

the O(1) terms then yields an equation for w
(0)
n , which

has the following unique solution on imposing the condi-

tion
∑

n w
(0)
n (x, t) = 0,

w(0)
n =

1

α(x) + β(x)

[
Dn

∂2ρn(x)C

∂x2

− ρn(x)
∂2D(x)C

∂x2

]
. (4.5)

Finally, setting wn = w
(0)
n +O(ǫ) in Eq. (4.3) shows that

to O(ǫ)

∂C

∂t
=

∂2

∂x2
(D(x)C) + ǫ(D0 −D1)

∂2w
(0)
0

∂x2
. (4.6a)

However, there is one subtle point that needs to be high-
lighted. The original system given by Eqs. (4.1a) and
(4.1b) involves two coupled diffusion equations so that
at each boundary there are two boundary conditions,
namely zero flux conditions for C0 and C1. On the
other hand, the reduced diffusion equation (4.6a) for the
scalar C = C0 + C1 has a single boundary condition at
each end. If we take this to be the linear combination
D0∂xC0+D1∂xC1 = 0 and substitute the decomposition
(4.2), then we obtain the non-flux conditions

∂x[D(x)C(x, t) + ǫ(D0 −D1)w
(0)
0 ]x=0 = 0 (4.6b)

∂x[D(x)C(x, t) + ǫ(D0 −D1)w
(0)
0 ]x=L = 0. (4.6c)

We thus have a singular perturbation problem, in which
the solution to Eqs. (4.6) represents an outer solution
that is valid in the bulk of the domain, but has to be
matched to an inner solution at each boundary. (An
analogous situation holds in mathematical models of bidi-
rectional motor transport [29, 30].) We will address this
issue further below, but first we focus on the bulk solu-
tion in the limit ǫ → 0.
In the fast switching limit ǫ → 0, we have a diffusion

equation with effective space-dependent diffusivity D(x):

∂C

∂t
=

∂2

∂x2
(D(x)C), (4.7)

with no-flux boundary conditions ∂xD(x)C(x, t) = 0 at
x = 0, L. It is now straightforward to establish that the
bulk solution can take the form of a protein concentration
gradient. The steady-state solution takes the form

C∗(x) =
A

D(x)
, (4.8)

with the constant A determined by the normalization
condition

∫ L

0

C∗(x)dx = L[C∗
0 + C∗

1 ]. (4.9)

Hence,

A = L[C∗
0 + C∗

1 ]

[∫ L

0

dx

D(x)

]−1

. (4.10)

It is clear that regions of slow diffusion will have higher
concentrations than regions of fast diffusion. Suppose for
the sake of illustration that D0 < D1. This means that
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D(x) will be a monotonically increasing function of x if
α(x) is a constant or a decreasing function of x and β(x)
is an increasing function of x; the resulting stationary
concentration will be a monotonically decreasing function
of x. This will be illustrated in section IV.C.

B. Examples of switching rates

Substituting the switching rates found in [12] for the
RNA-binding proteins MEX-5 and PIE-1 gives the fol-
lowing numerical and first order asymptotics results. The
switching rates are both between 0.1 s−1 and 0.8 s−1

at each point in the domain. The other parameters
are given by D0 = 0.1 µm2/s, D1 = 5 µm2/s, and
L = 32 µm, as in [12]. In both cases, we approximate
the switching rates using piecewise constant functions.
That is, the interval is divided into four subintervals
Ii = [xi, xi+1), i = 0, . . . , 3 with x0 = 0 x1 = 10, x2 = 16,
x3 = 22 and x4 = L such that

αM (x) = aMi + āMi (x− xi) for x ∈ Ii, i = 0, . . . , 3

βM (x) = bM + b̄Mx, x ∈ [0, L] (4.11)

for MEX-5 and

αP (x) = aPi + āPi (x− xi) for x ∈ Ii, i = 0, . . . , 3

βP (x) = bP , x ∈ [0, x1]

βP (x) = bP + b̄P (x− x1), x ∈ [x1, L] (4.12)

for PIE-1. The various coefficients are listed in the ta-
bles of Fig. 4. Note that the first order asymptotics well-
approximate the steady-state concentration since there is
already a fast time scale based on the biological param-
eters as outlined at the beginning of this section. This is
illustrated in Fig. 4. We emphasize that our numerical re-
sults in Fig. 4 are consistent with the numerical results of
Wu et al. [12], which closely matched their experimental
measurements of protein concentrations. Furthermore,
all the parameter values are taken from [12], which were
chosen to match their experimental results.

C. Boundary layer analysis

In order to solve the steady-state singular perturba-
tion problem, we introduce an O(

√
ǫ) boundary layer at

x = 0 and similarly at x = L, which can capture rapid
changes in spatial derivatives. We then construct an in-
ner solution within each boundary layer that can then be
matched to the outer solution of Eqs. (4.6). For the sake
of illustration, we focus on the boundary layer at x = 0;
the analysis for the other boundary layer is very similar.
Introduce the stretched coordinate

X =
x√
ǫ
. (4.13)

and series expansions

α(
√
ǫX) ∼ α0 + α1

√
ǫX +O(ǫ) (4.14a)

β(
√
ǫX) ∼ β0 + β1

√
ǫX +O(ǫ) (4.14b)

Denote the steady-state inner solution by C∗
in(X), which

is taken to have the series expansion

C∗
in(X) ∼ cn,0(X) +

√
ǫcn,1(X) +O(ǫ). (4.14c)

The steady-state version of Eqs. (4.6) yields, to leading
order, the following inner equations on the domain X ∈
[0,∞):

0 = D0
d2c0,0
dX2

− β0c0,0 + α0c1,0 (4.15a)

0 = D1
d2c1,0
dX2

+ β0c0,0 − α0c1,0, (4.15b)

with boundary conditions c′0,0(0) = c′1,0(0) = 0. Adding
Eqs. (4.15a) and (4.15b) and imposing the boundary con-
ditions shows that

∑
n=0,1 Dncn,0(X) = Γ0, where Γ0 is

a constant. Eq. (4.15a) can thus be rewritten as

0 =
d2c0,0
dX2

−
(
β0

D0
+

α0

D1

)
c0,0 +

α0Γ0

D0D1
. (4.16)

This has the bounded solution

c0,0(X) = A0e
−γX +

α0Γ0

D0D1γ
, (4.17)

with

γ =

√
β0

D0
+

α0

D1
=

√
D(0)

D0D1
(α0 + β0). (4.18)

The boundary condition c′0,0(0) implies that A0 = 0.
Carrying out a similar analysis for c1,0 we deduce that the
lowest order terms are constants, that is, cn,0(X) = cn
with:

cn =
ρn(0)Γ0

D(0)
.

Proceeding to the next order, we have

β1Xc0 − α1Xc1 = D0
d2c0,1
dX2

− β0c0,1 + α0c1,1

(4.19a)

−β1Xc0 + α1Xc1 = D1
d2c1,1
dX2

+ β0c0,1 − α0c1,1,

(4.19b)

with boundary conditions c′0,1(0) = c′1,1(0) = 0.
Again adding equations (4.19a) and (4.19b) shows that∑

n=0,1 Dncn,1(X) = Γ1 for some constant Γ1. Hence,

Eq. (4.19a) becomes

d2c0,1
dX2

−
(
β0

D0
+

α0

D1

)
c0,1 +

α0Γ1

D0D1

= (β1ρ0(0)− α1ρ1(0))
Γ0X

D0D(0)
. (4.20)
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The bounded solutions are

c0,1(X) = B0e
−γX − D1 (β1α0 − α1β0)

(α0 + β0)2
Γ0X

D(0)2

(4.21)

and, similarly,

c1,1(X) = B1e
−γX +

D0 (β1α0 − α1β0)

(α0 + β0)2
Γ0X

D(0)2
.

(4.22)

Without loss of generality we have set Γ1 = 0. The
coefficients B0 and B1 can be determined in terms of Γ0

by imposing the non-flux boundary conditions at X = 0.
Combining our various results and using the definition

of D(x) leads to the following inner solution

C∗
in(X) ∼ Be−γX + Γ0

(
1

D(0)
−
√
ǫ
XD

′
(0)

D(0)2

)
+O(ǫ)

∼ Be−γX +
Γ0

D(
√
ǫX)

. (4.23)

The boundary condition dC∗
in(X)/dX = 0 at X = 0

shows that

B = −Γ0D
′
(0)

γD(0)2
. (4.24)

The composite solution then has the form

C∗(x) =
A

D(x)
+
√
ǫBe−γx/

√
ǫ, (4.25)

with the matching condition Γ0 = A.

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0.6 0.8 1

C
* (
x
)

x/L
0  0.2 0.4

FIG. 5. Equilibrium density with switching rates given by
α(x) = 2, β(x) = (x+ 0.65)4. The diffusion coefficients were
set to D0 = 0.5, D1 = 5, with ǫ = 5 × 10−4. The red and
black dashed lines show the increased accuracy achieved by
the O(

√
ǫ) terms.

Performing the same boundary analysis for the bound-
ary layer at x = L, we find that the composite solution
for the entire domain has the form

C∗(x) =
A

D(x)
−
√
ǫ
AD

′
(0)

γD(0)2
e−γx/

√
ǫ

+
√
ǫ
AD

′
(L)

µD(L)2
e−µ(L−x)/

√
ǫ, (4.26)

where we have defined

µ =

√
β(L)

D0
+

α(L)

D1
=

√
D(L)

D0D1
(α(L) + β(L)). (4.27)

Note that the correction to the normalization constant
A given in (4.10) is of O(ǫ), and hence does not need
to be included here at O(

√
ǫ). For small ǫ, these terms

result in an increased accuracy near the boundary by
helping enforce the no-flux boundary conditions in the
asymptotic solution. Fig. 5 highlights an example of this
improvement.

D. Accumulation time for fast spatial switching

It is also possible to use the bulk equilibrium solu-
tion found from Eq. (4.7) in the limit of fast switching
to calculate an approximation for the accumulation time
τ(x). This can be done even with the presence of spatially
dependent switching rates with a slight modification to
the function R(x, t). Since the total protein amount is
conserved when no-flux boundary conditions are present,
and the initial protein concentration gradient

C∗
init := C∗

0 + C∗
1 (4.28)

is non-zero, it is inevitable that C∗
init > C∗(x) in some

region of the spatial domain. We therefore define

R(x, t) =
C∗(x) − C(x, t)

C∗(x)− C∗
init

= 1− C(x, t)− C∗
init

C∗(x) − C∗
init

. (4.29)

Again assuming there is no overshooting, this is the
fractional deviation of the concentration from the steady-
state. However, it is important to note that there is a
slight overshooting in the total concentrations of both
MEX-5 and PIE-1 near where C∗

init = C∗(x). Since D(x)
is monotonic for both PIE-1 and MEX-5, there is only a
single value of x where this occurs, which is at approxi-
mately x = 16 µm for MEX-5 and x = 20 µm for PIE-1.
Figs. (6). However, this issue is not present farther away
from these spatial points, so we will focus on deriving
the accumulation time for values of x away from where
C∗(x) = C∗

init.
The accumulation time can be calculated by utilizing

the Laplace transform like before, with the final equation
being given by

τ(x) =
−1

C∗(x)− C∗
init

d

ds
F̂ (x, s)

∣∣∣∣
s=0

, (4.30)
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FIG. 6. (a) MEX-5 concentration over space and time. (b)
MEX-5 concentration plotted versus time t at x = 16 µm
showing slight overshooting. Initial state concentrations are
C∗

0 = 0.75, C∗

1 = 0.25.

where F̂ (x, s) = sĈ(x, s) and thus F̂ (x, 0) = C∗(x).
Although there is no general formula for the time-
dependent solution to Eq. (4.7), we can use the latter
to derive a differential equation for

F̂ 0
s (x) :=

d

ds
F̂ (x, s)

∣∣∣∣
s=0

. (4.31)

First, Laplace transforming (4.7) and multiplying both
sides by s results in

∂2D(x)F̂

∂x2
= sF̂ − sC∗

init. (4.32)

Assuming derivatives commute, we can take the deriva-
tive with respect to s, yielding

∂2D(x)F̂s

∂x2
= F̂ + sF̂s − C∗

init. (4.33)

In the limit s → 0+, we have that F̂s exists and is finite,
therefore

lim
s→0+

sF̂s = 0. (4.34)

We now have an equation

∂2D(x)F̂ 0
s

∂x2
= C∗(x)− C∗

init (4.35a)

that describes F̂ 0
s in terms of the equilibrium protein con-

centration gradient and the initial distribution of protein.
Using a similar approach combined with the fact that to-
tal protein is conserved, we derive boundary conditions

∂x[D(x)F̂ 0
s (x)]x=0 = 0 (4.35b)

∂x[D(x)F̂ 0
s (x)]x=L = 0, (4.35c)

and a homogenization condition

∫ L

0

F̂ 0
s (x)dx = 0. (4.35d)

With Eqs. (4.35a)–(4.35c), we find

F̂ 0
s (x) =

1

D(x)

∫ x

0

∫ x′

0

(C∗(x′′)− C∗
init) dx

′′dx′ − F ∗

D(x)
(4.36)

with the constant F ∗ determined by Eq. (4.35d),

F ∗ =
A

LC∗
init

∫ L

0

D(x)
−1

(4.37)

×
[∫ x ∫ x′

(C∗(x′′)− C∗
init) dx

′′dx′

]
dx,

and A is defined in Eq. (4.10). Finally, from Eq. (4.30),
the accumulation time is given by

τ(x) =
F ∗

A− C∗
initD(x)

(4.38)

− 1

A− C∗
initD(x)

∫ x ∫ x′

(C∗(x′′)− C∗
init) dx

′′dx′.

The same formula holds true if the initial concentra-
tion C∗

init is taken to be spatially varying rather than
constant across the domain. Note that in either case, the
accumulation time is singular where A = C∗

initD(x), or
equivalently where C∗(x) = C∗

init. If C(x∗, t) = C∗
init for

all time t at some location x = x∗, then the accumulation
time τ(x∗) will be zero, however, if there is some slight
variation in the concentration over time at x = x∗, then
τ(x) will be undefined.
Using numerical integration to calculate (4.38), we find

that for MEX-5

τM (2) = 72 s, τM (10) = 39 s

τM (25) = 58 s, τM (30) = 42 s,

and for PIE-1

τP (2) = 57 s, τP (10) = 53 s

τP (25) = 55 s, τP (30) = 57 s.
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In both cases, we see that the bulk forms on a timescale
of about a minute, regardless of the spatial location.
This is consistent with intracellular concentration gra-
dients, which tend to form on a timescale of a few
minutes. Therefore, our results indicate that space-
dependent switching diffusivities can indeed yield mor-
phogen gradients at both the temporal and the spatial
scales relevant to subcellular processes.

V. DISCUSSION

In this paper we studied the role of switching diffu-
sivities in the formation of protein concentration gradi-
ents. We assumed that each protein switches between
two conformational states with distinct spatially constant
diffusivities, and took the switching rates to be space-
dependent and faster than the rate of gradient forma-
tion. In the fast switching limit this generated an effec-
tive space-dependent diffusivity of the Ito form. We then
derived explicit expressions for the steady-state intracel-
lular concentration gradient and the associated accumu-
lation time, and showed how these expressions agree with
recent experimental and computational results concern-
ing embryogenesis in C. elegans.
Although we focused on one specific application in de-

velopmental biology, the underlying mechanism raises
a number of more general issues concerning heteroge-
neous diffusion in cells and its role in gradient forma-
tion. First, it is important to note that the generation of
a protein concentration gradient in the absence of a lo-
calized source does not require space-dependent switch-
ing diffusivities; the essential ingredient is an effective
space-dependent diffusivity as expressed by Eq. (4.7).
Space-dependent switching is one mechanism for gener-
ating such a diffusivity, at least in the fast switching limit.
An alternative to this kinetic mechanism is a static mech-
anism whereby a protein exists in a single diffusive state
at a given spatial position, but the diffusion coefficient
spatially varies due to heterogeneities in the surround-
ing cellular medium [31–34]. Advances in single particle
tracking experiments and data analysis techniques such
as hidden Markov models [17] now provide a framework
for distinguishing between kinetic and static cases. Ir-
respective of the specific source of heterogeneity, there
are two additional properties of the diffusive transport
that have to be considered: (i) the appropriate interpre-
tation of the nonlinear Brownian motion (multiplicative
noise), and (ii) the underlying biophysical mechanism for
generating a spatial gradient in the diffusivity.
The interpretation of a stochastic differential equa-

tion with a space-dependent diffusion term is a long-
standing and recently revisited [35–37] issue in stochas-
tic calculus. The most common interpretations are
Itô, Stratonovich, and kinetic (also called isothermal or
Hänggi-Klimontovich), and each arises in different physi-
cal scenarios. For example, taking the white noise limit of
a particle driven by colored noise yields Stratonovich [38],

whereas consistency with equilibrium statistical physics
yields the kinetic interpretation. Further, the kinetic in-
terpretation is the natural framework of Fick’s law, and
recent experiments indicate its relevance for particles dif-
fusing near a wall [39–41]. In this paper and previous
work [13], we have shown that when a diffusing particle
switches between two or more spatially constant diffu-
sivities with fast, space-dependent switching rates, this
leads to an effective space-dependent diffusivity of the
Ito form, see Eq. (4.7). However, it is also possible to
generate other forms of multiplicative noise by consider-
ing a colored noise process with switching diffusivities,
and taking the white noise and fast switching limits with
different scalings [14]. The nature of the multiplicative
noise is critical to analyzing protein concentration gradi-
ent formation. For example, if the multiplicative noise
were of the kinetic form, the concentration C(x, t) would
satisfy a diffusion equation of the form,

∂C

∂t
=

∂

∂x

(
D(x)

∂

∂x
C
)
. (5.1)

The distinction between Eqs. (4.7) and (5.1) is crucial
because steady state solutions to (4.7) are proportional
to (D(x))−1, whereas steady state solutions to (5.1) are
constant in space. That is, there would be no concentra-
tion gradient if the multiplicative noise were kinetic.

Even if the spatially heterogeneous diffusion process
evolves according to the Ito interpretation, a protein
concentration gradient will only form if there is a cor-
responding gradient in the rate of diffusion. Therefore,
the more general applicability of the mechanism analyzed
in this paper will depend on identifying biophysical pro-
cesses that support a monotonic spatial variation in the
effective diffusivity. Here we briefly describe the partic-
ular processes thought to hold in the case of C. elegans
embryogeneisis [12]. Current evidence suggests MEX-5
diffusivity is controlled by differences in the distribution
of kinases and phosphotases along the anterior/posterior
axis of the zygote. That is, so-called PAR protein ki-
nases in the posterior membrane locally phosphorylate
MEX-5, which is then dephosphorylated throughout the
cytoplasm by the phosphotase PP2A. The spatial segre-
gation of opposing kinases and phosphatases thus gener-
ates a gradient in the phosphorylation state of MEX-5
[42], which is thought to produce local differences in the
kinetics of binding/dissociation of MEX-5 from a slow-
diffusing substrate, resulting in a corresponding gradient
in the effective rate of diffusion. A second phosphoryla-
tion cycle operating from the anterior end is likely to be
the source of differential diffusion in the case of Pie-1.
Since intracellular gradients in the phosphorylation state
of a protein are known to play a role in a wide range
of cellular processes, including cell division, polarity and
mitotic spindle dynamics [10, 11], one might expect there
to be other examples where such gradients target the dif-
fusion state of a downstream protein.
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APPENDIX A: STEADY-STATE GRADIENT
AND ACCUMULATION TIME (D0 6= D1)

Here we extend the calculation of Sect. IIIA to the
case D0 6= D1. It is convenient to rewrite Eqs. (3.5a)
and (3.5b) as a second order system

∂2

∂x2

(
Ĉ0

Ĉ1

)
=

(
(β + k + s)/D0 −α/D0

−β/D1 (α+ k + s)/D1

)(
Ĉ0

Ĉ1

)
.

(A.1)
Define the eigenvalues and eigenvectors of the coefficient
matrix by µ2

±(s) and ~v±(s) respectively, where

µ2
±(s) =

γ1(s) + γ2(s)

2
± 1

2

√
[γ1(s)− γ2(s)]2 − 4η

(A.2)

~v±(s) =

(
1

v±(s)

)
, (A.3)

where for convenience γ, µ, and v± are defined as

γ1(s) =
α+ k + s

D1
, γ2(s) =

β + k + s

D0
, η =

αβ

D0D1

v±(s) =
D0

α

(
γ2(s)− µ2

±(s)
)
.

We have written the eigenvalues as squares since the so-
lution of the second-order system will depend on µ±.

The general solution to the above system with boundary conditions (3.5c)–(3.5d) is then

(
Ĉ0(x, s)

Ĉ1(x, s)

)
=

αQ0

sD2
0(µ

2
+(s)− µ2

−(s))

[
v−(s)

µ+(s)

cosh(µ+(s)[L − x])

sinh(µ+(s)L)
~v+(s)−

v+(s)

µ−(s)

cosh(µ−(s)[L− x])

sinh(µ−(s)L)
~v−(s)

]
. (A.4)

Note that µ± is always a positive real number for α, β,D0, D1, k > 0. We can now calculate the steady-state
concentration

C∗(x) = lim
s→0

s(Ĉ0(x, s) + Ĉ1(x, s)) (A.5)

=
αQ0

D2
0(µ

2
+(0)− µ2

−(0))

[
(1 + v+(0))v−(0)

µ+(0)

cosh(µ+(0)[L− x])

sinh(µ+(0)L)
− (1 + v−(0))v+(0)

µ−(0)

cosh(µ−(0)[L− x])

sinh(µ−(0)L)

]
,

and the accumulation time τ(x) using Eq. (3.8). Note that if D0 = D1 = D then µ+(0) =
√
(α + β + k)/D,

µ−(0) =
√
k/D = λ−1, v+(s) = −1, v−(s) = β/α and we recover Eq. (3.7).
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