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Potts statistical models have become a popular and promising way to analyze mutational covari-
ation in protein Multiple Sequence Alignments (MSAs) in order to understand protein structure,
function and fitness. But the statistical limitations of these models, which can have millions of
parameters and are fit to MSAs of only thousands or hundreds of effective sequences using a pro-
cedure known as inverse Ising inference, are incompletely understood. In this work we predict how
model quality degrades as a function of the number of sequences N , sequence length L, amino-
acid alphabet size q, and the degree of conservation of the MSA, in different applications of the
Potts models: In “fitness” predictions of individual protein sequences, in predictions of the effects
of single-point mutations, in “double mutant cycle” predictions of epistasis, and in 3-d contact pre-
diction in protein structure. We show how as MSA depth N decreases an “overfitting” effect occurs
such that sequences in the training MSA have overestimated fitness, and we predict the magnitude
of this effect and discuss how regularization can help correct for it, use a regularization procedure
motivated by statistical analysis of the effects of finite sampling. We find that as N decreases the
quality of point-mutation effect predictions degrade least, fitness and epistasis predictions degrade
more rapidly, and contact predictions are most affected. However, overfitting becomes negligible
for MSA depths of more than a few thousand effective sequences, as often used in practice, and
regularization becomes less necessary. We discuss the implications of these results for users of Potts
covariation analysis.

I. INTRODUCTION

Potts models are statistical models with a rich his-
tory of study in condensed matter physics, and which
more recently have found important applications in pro-
tein physics. Potts models can be parameterized from a
Multiple Sequence Alignment (MSA) of a protein family
to model the sequence likelihoods and pairwise amino-
acid correlations observed in the MSA[1–4], with numer-
ous uses relating protein structure, function and fitness.
These models also have a rich interpretation in the lan-
guage of biological and statistical physics through their
relation to lattice models of protein folding [5, 6], and can
model other biophysical systems and datasets involving
large numbers of correlated and interconnected compo-
nents, such as networks of neurons[7].
Potts models parametrized on MSAs of a protein fam-

ily, using the procedure known as inverse Ising inference,
have been shown to predict experimental measurements
of proteins. Some predictions use the Potts “statisti-
cal energy” of individual sequences, computed by adding
up Potts “coupling” parameters for all position-pairs for
an individual sequence as outlined below, which reflects
the likelihood of the sequence appearing in the MSA.
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Statistical energies have been used to predict sequence-
dependent fitnesses [8], enzymatic rates [9], melting
temperature[6, 10], and mutation effects [11]. Potts mod-
els can also be used to predict contacts in protein struc-
ture, as the coupling parameters of the model can indi-
cate which position-pairs have the strongest “direct” sta-
tistical dependencies, which are found to be good predic-
tors of contacts [12]. This contact information has been
found to be enough to perform accurate ab-initio protein
structure prediction from sequence variation data alone
[13, 14].

Despite these advances, a more complete picture of the
nature of the statistical errors inherent in Potts mod-
els of sequence co-variation and observables derived from
them is lacking. The purpose of the present analysis
is to further explore how MSA depth (number of se-
quences), MSA sequence length, amino-acid alphabet
size, and other quantities determine model quality. In
particular, how many sequences are necessary to give ac-
curate contact predictions or fitness predictions? How
does the model behave if too few sequences are provided?
Furthermore, a Potts model for a typical protein family
with sequence length L = 200 and amino-acid alphabet
of q = 21 letters (20 amino-acids plus gap) has almost
107 parameters, yet is fit to a relatively small number of
sequences, often 100 to 10000 effective sequences, out of
a sequence space of 21200 possible sequences. These large
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differences in scale raise the question of overfitting.

The effect of the MSA depth on model inference has
been previously examined in some situations. One of the
most detailed treatments of Potts statistical error is [15],
where it is argued that sampling noise caused by small
MSA depth can lead a well-conditioned Ising problem
to become ill-conditioned, meaning that model parame-
ters become sensitive to small changes in the MSA. This
study also performed numerical tests, using the Adap-
tive Cluster Expansion inference algorithm, of the effect
of sampling noise on certain model properties, though
not on contact prediction or fitness prediction. These
authors suggest that l1 regularization helps correct for
sampling noise if the interaction network is sparse[15, 16].
In another study using mean-field inference methods, in-
ference was tested for varying MSA depths of 72, 296,
502, 1206, and 2717 effective sequences, finding, for ex-
ample, that the top 24 contacts were predicted at an 80%
true-positive rate for MSA depth of 296, which increases
to 70 contacts for a depth of 1206 for the RAS family [17].
As the sequence diversity and depth of the MSA are si-
multaneously decreased, the power of the Potts model
has been found to decrease, both for mutation-effect pre-
dictions using a pseudolikelihood inference method[11],
and contact prediction [18]. However, these results do
not give a clear view of the statistical errors due to fi-
nite sampling alone because of the presence of various
non-statistical forms of error or bias.

It is useful to recall these other potential biases of
covariation analysis in order to distinguish them from
finite-sampling error. These biases vary from study to
study. During MSA construction biases arise due to
choices in the diversity cutoff of collected sequences, how
to account for gap characters, and how to align the se-
quences [19]. It is then common to downweight similar
sequences in the MSA to account for phylogenetic struc-
ture, which can have a significant effect on the estimated
residue frequencies and lowers the “effective” number of
sequences of the MSA, dependent on the choice of sim-
ilarity threshold. During inference biases can arise due
to various approximations used to speed up the inference
algorithm at the cost of accuracy, and also due to the
choice of regularization strategy. Strong regularization
has been shown to be essential when using the more ap-
proximate mean-field inference algorithm [20], and regu-
larization has been found to affect the “flatness” of the
inferred fitness landscape of Potts-like models inferred
by linear regression[21]. There are also potentially bi-
ases due to model mis-specification due to the absence of
higher-order coupling terms in the model, however there
is evidence that Potts models accurately describe the
complex mutational statistics of real protein families[22].

Finite sampling error is a fundamental statistical limi-
tation of all inverse Ising inference implementations. The
goal of the present study is to clarify the limitations of
Potts model inference due uniquely to finite-sampling
effects. In support of this goal we use a model infer-
ence algorithm which avoids analytic approximations and

which has been shown to accurately reproduce the se-
quence mutational statistics when used to generate new
sequences [22–24], and focus on three types of model
predictions: Statistical energy predictions of individual
sequences, mutation-effect predictions including predic-
tions of “double mutant cycle” tests of epistasis [25, 26],
and contact prediction.
We derive the expected correlation coefficient ρ(E, Ê)

between the benchmark statistical energies of sequences
and their estimate based on a Potts model fit to a finite-
depth MSA as a function of the MSA parametersN , L, q,
and the degree of conservation, using a simplified model.
We also illustrate how overfitting occurs for small MSAs,
which lowers (makes more favorable) the predicted statis-
tical energy of the sequences in the training MSA relative
to sequences which were not in the training MSA. This
effect is relevant when comparing the statistical energy
of different sequences, particularly for small MSAs, and
we discuss whether this affects common calculations such
as predictions of the fitness effects of mutations. While
the quality of all types of Potts model predictions de-
grades as the MSA depth N decreases, the predictions
of point-mutation effects are the least affected and give
high correlations to the reference values even for very
small MSAS.
We verify these results for the Potts model using in-

silico numerical tests. We use two protein families in our
numerical tests, the protein kinase catalytic domain fam-
ily, and the SH3 family. These families are of particular
interest to us biologically, but here we use them as ex-
ample systems with which to test and demonstrate the
statistical properties of inverse Ising inference, particu-
larly because of the wealth of sequence and structural
information on them.

II. BACKGROUND AND METHODS

A. Potts Models

Explanations of how Potts models are used in pro-
tein sequence covariation analysis have been presented
in many previous studies [15, 27, 28], and we summarize
the relevant aspects here. A Potts model, in this context,
is the maximum-entropy model for the probability P (S)
of sequences in a protein family, constrained to predict
the pairwise (bivariate) amino-acid (residue) frequencies

f ij
αβ of an MSA of that family, for residues α, β at pairs
of positions i, j. These bivariate marginals are computed
from a given MSA by counting the number of times each
residue-pair is present, or

f ij
αβ =

1

N

∑

S∈MSA

δαSi
δβSj

. (1)

Given an MSA of sequence length L and alphabet of
q letters, there are

(

L
2

)

q2 bivariate frequencies used as



3

model constraints, although because the univariate fre-
quencies f i

α =
∑

β f
ij
αβ = 1

N

∑

S∈MSA δαSi
must be con-

sistent across all pairs and sum to 1 the constraints are
not independent, and can be reduced to

(

L
2

)

(q − 1)2 bi-
variate plus L(q− 1) univariate independent constraints.
Maximizing the entropy with these constraints leads to
an exponential model in which the likelihood of the
dataset MSA is L(MSA) =

∏

S∈MSA P (S), a prod-
uct of sequences probabilities with distribution P (S) =
e−E(S)/Z, with a “statistical energy”

E(S) = −
∑

i

hi
Si

−
∑

i<j

J ij
SiSj

(2)

which is a sum over position- (i, j) and residue- (α, β)

specific “coupling” parameters J ij
αβ and “field” parame-

ters hi
α to be determined from the data, with a “parti-

tion function” Z =
∑

S e−E(S). The couplings J ij
αβ can be

thought of as the statistical energy cost of having residues
α, β at positions i, j in a sequence. Given a parameterized
model one can generate new sequences from the distri-
bution P (S), for instance using Monte-Carlo methods.
In equation 2 we have simplified the notation by defin-

ing
(

L
2

)

q2 coupling parameters and Lq fields, however be-
cause of the non-independence of the bivariate marginal
constraints some of these are superfluous. One can apply
“gauge transformations” (hi

α, J
ij
αβ) → (hi

α+ai+diα, J
ij
αβ+

bi + cj − diα) for arbitrary constants ai, bi, cj , diα and this
does not change the probabilities P (S) and only results
in a constant energy shift of all sequences. By impos-
ing additional gauge constraints one finds the model can
be fully specified using the same number of parameters
θPotts =

(

L
2

)

(q − 1)2 + L(q − 1) as there are independent
marginal constraints. A common choice of gauge con-
straint is to fix J ij

qβ = −
∑

α6=q J
ij
αβ and hi

q = −
∑

α6=q h
i
α,

called the “zero-mean gauge” since the mean value of
the couplings and fields is 0, and this is the gauge which
minimizes the squared sum of the couplings, or Frobenius
Norm, FB(i, j) =

∑

αβ(J
ij
αβ)

2 whose use is described be-
low. It is also possible to transform to a “fieldless” gauge
in which all of the fields hi

α are set to 0, which is some-
times computationally convenient.
By fitting the bivariate frequencies this model captures

the statistical dependencies between positions, whose
strength is reflected in the correlations Cij

αβ = f ij
αβ−f i

αf
j
β.

Importantly the model allows us to distinguish between
“direct” and “indirect” statistical dependencies, which
is not possible based on the Cij

αβ directly. The directly

dependent pairs are defined by “strong” (nonzero) cou-

plings J ij
αβ in the Potts model, and networks of strong

couplings J ij
αβ can cause indirect and higher-order statis-

tical dependencies, even though the couplings are only
pairwise. This is useful because position-pairs with
strong direct couplings have been shown to best reflect
3D contacts in protein structure. For each position pair
one can measure the total strength of the direct statis-
tical dependence between a pair of positions by various

“direct interaction scores”, for example with the Frobe-
nius Norm in the zero-mean gauge. A common feature of
these scores is that if the couplings J ij

αβ = 0 in the zero-
mean gauge, then there is no direct dependency, even if
Cij

αβ is nonzero.

One can also compute the Potts statistical energyE(S)
for any sequence. The statistical energy reflects how
likely a sequence is to appear in the MSA, which is ex-
pected to relate to evolutionary “fitness”. While protein
fitness is a function of many molecular phenotypes, it is
sometimes hypothesized to be dominated by the require-
ment that the protein folds, in which case the Potts sta-
tistical energy of a sequence is expected to correlate well
with its thermostability. Experimental measurements of
the thermostability of some proteins have been found to
correlate well with E(S) [9, 10, 29–31]. A common ap-
plication of the statistical energy score is to predict the
fitness effect of a point-mutation to a sequence through
the change in statistical energy ∆E it causes. A point-
mutation causes a change in L of the coupling values for
that sequence, and the collective effect of the pairwise
coupling terms appears to be crucial for correctly pre-
dicting sequence fitnesses [22].

B. The Independent Model

We contrast the Potts model with the “indepen-
dent” model, the maximum-entropy model for P (S) con-
strained to reproduce only the MSA’s single-site residue
frequencies f i

α. It takes the form P (S) ∝ e−E(S) with a

“statistical energy” E(S) = −
∑L

i hi
si
. Unlike the Potts

model the independent model is separable and P (S) can

be written as a product over positions P (S) ∝
∏

i e
hi
si ,

and maximum likelihood parameters given an MSA are
hi
α = log f i

α. Even though the independent model does
not capture statistical dependencies between positions
like the Potts model it is in the same exponential fam-
ily and behaves similarly in many respects. There are
θIndep = L(q − 1) independent univariate marginal con-
straints and an equal number of free field parameters
after the gauge is constrained, analogously to the Potts
model.

C. Correlation Energy Terms

Here we introduce a new quantity which will be used
below, which we will call the “correlation energy” and is
given by

X ij = −
∑

αβ

J ij
αβC

ij
αβ (3)

for each position-pair i, j. We also define the “total cor-
relation energy” as X =

∑

ij X
ij .

These terms have the following useful interpretation.
If we compute the mean statistical energy of sequences in
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the input MSA, and then create a new “shuffled” MSA by
randomly shuffling each column of the MSA, thus break-
ing any correlations between columns, and compute the
mean statistical energy of these shuffled sequences, then
the total correlation energy is equal to the mean differ-
ence, or energy gap, between these two sets of sequences.
In this way the total correlation energy can be inter-
preted as the average statistical energy gained due to
mutational correlations. Another way to view it is as
the mean Potts statistical energy difference between se-
quences generated by the Potts model, and sequences
generated by the independent model, as mathematically
∑

ij X
ij = (−

∑

ijαβ J ij
αβf

ij
αβ) − (−

∑

ijαβ J ij
αβf

i
αf

j
β) =

〈E(S)〉Potts − 〈E(S)〉Indep, using a fieldless gauge. The
pairwise terms X ij can similarly be interpreted as the
statistical energy gained due to correlations between
columns i and j only.
These correlation energy terms have two important

properties. First, they are gauge-independent, or invari-
ant under the gauge transformations described above,
since the rows and columns of the correlation matrices
Cij

αβ , shaped as q× q for each pair i, j, sum to 0. Second,
they can be used as a measure of the strength of direct
interaction between columns i and j: For uncoupled pairs
where J ij

αβ = 0 in the zero-mean gauge, the correlation

energy X ij will be 0, as expected. This score can be
compared to other direct interaction scores, such as the
“Direct Information” [32] or Frobenius norm. The corre-
lation energy terms are attractive because they are both
gauge-independent and have a simple interpretation in
terms of the statistical energy of the sequences. We find
that they are less accurate when used for contact predic-
tion, but suggest they may better reflect the magnitude
of the effects of residue-pair interactions on the fitness of
mutants. We make use of the correlation energy terms
to track convergence of the inverse Ising procedure and
for regularization.

D. Inverse Ising Inference From an MSA

In this study we parametrize the Potts model us-
ing a Monte-Carlo GPU-based method [23]. Given a
dataset MSA we aim to maximize the scaled log likeli-

hood ℓ = 1
N
logL(MSA) =

∑

ij J
ij
αβ f̂

ij
αβ − log(Z) where

f̂ ij
αβ are the dataset bivariate frequencies. The gradient

of this log likelihood is ∂ℓ

∂J
ij
αβ

= f̂ ij
αβ − f ij

αβ ≡ ∆f , so the

likelihood is minimized when bivariate marginal discrep-
ancy ∆f is 0. We use a quasi-Newton numerical method
to find this minimum, and estimate the model bivariate
frequencies f ij

αβ given trial couplings by generating large
simulated MSAs by parallel Markov Chain Monte Carlo
(MCMC) over the landscape P (S), and then update the
couplings based on the discrepancy with the dataset MSA
bivariate frequencies. We have implemented this algo-
rithm for GPUs [23].
This method avoids analytic approximations, though it

is limited by the need for the MCMC procedure to equi-
librate and by sampling error in the simulated MSAs.
To minimize this “internal” sampling error we use sim-
ulated MSAS of 1048576 sequences. We measure equi-
libration of each round of MCMC sequence generation
by making use of this large number of parallel MCMC
replicas, where each replica evolves a single sequence in
time. Equilibration of the replicas is achieved once the
autocorrelation of the replica energies for half the num-

ber of steps, ρ( ~E(t), ~E(t/2)), is uncorrelated with p-value
of 0.02 or more. There is a second form of equilibration,
of the model parameter values themselves over the course
of multiple rounds of MCMC sequence generation, which
we measure through the stationarity or leveling off of the
total correlation energy X defined above. In some cases,
for instance for very small unregularized MSA datasets,
the inference procedure failed to equilibrate in a reason-
able time, as we discuss in results.
Because it makes no analytic approximations, this

method leads to a model which can be used to generate
simulated MSAs which accurately reproduce the dataset
bivariate marginals and correlations, and we have previ-
ously shown also reproduces the higher-order marginals
(corresponding to probabilities of subsequences of more
than two positions) [22]. This generative property of the
MCMC inference algorithm is key to our results below,
as we wish to generate MSAs of varied depths N whose
statistics match the original dataset statistics up to finite
sampling limitations. Our GPU implementation allows
us to efficiently generate large simulated MSAs given a
parameterized Potts model, which we use to perform sta-
tistical tests on the quality of Potts model inference using
sampled MSAs.

E. Overfitting

It is well known that statistical models may “over-
fit” due to finite sampling effects when the number of
samples in the dataset used to parametrize the model
is small. Overfitting of the Potts model parameters is
ultimately due to the statistical error caused by finite
sampling in the bivariate frequencies f ij

αβ used as input
to the inference procedure, which are computed from the

MSA of N sequences. Each bivariate marginal f̂ ij
αβ is

estimated from a sample of size N , and its statistical er-
ror is reflected by the multinomial mean-squared-error
σ2 = f ij

αβ(1 − f ij
αβ)/N . Since the bivariate marginals are

the input into the inverse Ising algorithm, this statistical
error in the inputs leads to error in the inferred param-
eters. We note that overfitting is not due to the fact
that inverse Ising inference is underconstrained: In fact
the maximum likelihood procedure is neither undercon-
strained nor overconstrained, as the number of model
parameters (fields and couplings) is exactly equal to the
number of input constraints (univariate and bivariate
marginals).
Overfitting is prevented by regularization, which refers
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to corrections to account for finite sampling effects. Reg-
ularization can be implemented in various ways such as
adding bias terms to the likelihood function, using early
stopping, applying priors to model parameters, or adding
noise to the inference procedure, and these strategies are
often equivalent. Other studies using inverse Ising In-
ference have added l1 or l2 regularization terms to the
log likelihood function ℓ which are functions of the cou-
pling parameters of the Potts model, commonly a gauge-
dependent l2 term R = γ

∑

ijαβ(J
ij
αβ)

2 evaluated in the
zero-mean gauge. Regularization comes at a cost of bias
in the model, generally to weaken correlations. Regu-
larization has been shown to improve contact prediction
using Potts models when using other inference algorithms
[15, 28, 33]. The use of regularization can introduce bi-
ases into the model predictions, which we investigate in
results.

F. Regularization

In this study we regularize by applying a particular
form of bias to the input bivariate marginals, chosen
based on two principles. First, we wish to bias the ob-
served bivariate marginals towards those of the indepen-
dent model in order to help eliminate spurious correla-
tions caused by finite sampling effects. Second, we would
like to tune the strength of the bias such that the discrep-
ancy between the observed marginal and biased marginal
is equal to that expected due to sampling error, if one
were to take a sample of sizeN from the biased marginals.
This should produce a regularized model which is still
statistically consistent with the observed MSA.
This leads us to the following strategy. We compute

the biased bivariate marginals as f̃ ij
αβ = (1 − γij)f̂ ij

αβ +

γij f̂ i
αf̂

j
β for a choice of regularization strength γij which

may differ for each position-pair, chosen as described fur-

ther below, where f̂ ij
αβ refers to the marginals sampled

from the MSA, f̃ ij
αβ to the biased marginals, and f ij

αβ to

the marginals of the Potts model. Varying γij from 0 to
1 interpolates between the MSA bivariate marginals and
the corresponding site-independent bivariate marginals.
This bias, which behaves effectively like a pseudocount
proportional to the univariate marginals, preserves the
univariate marginal constraints while weakening the (po-

tentially spurious) correlations since C̃ij
αβ becomes 0 when

γij = 1.
This regularization strategy is equivalent to adding

a regularization term to the likelihood function R =
−
∑

ij γ
ijX̂ ij which biases the correlation energy terms

defined above, and which is gauge-independent. Since
∂R

∂J
ij
αβ

= −γijĈij
αβ , using the fixed Ĉij

αβ values from the

dataset MSA, then the modified likelihood ℓ′ = ℓ + R is

minimized (its gradient is 0) when f ij
αβ = f̂ ij

αβ−γijĈij
αβ =

(1 − γij)f̂ ij
αβ + γij f̂ i

αf̂
j
α, which is the bias formula used

above. Thus, this form of regularization can be conve-

niently implemented as a simple preprocessing step to
bias the bivariate frequencies, without the need to ex-
plicitly account for the regularization term in the quasi-
Newton optimization procedure.
We choose the regularization strengths γij by finding

the value such that the discrepancy between the observed

marginals f̂ ij
αβ and the biased marginals f̃ ij

αβ is equal to
the expected discrepancy due to finite sampling. We
measure this discrepancy using the “Kullback-Leibler”

(KL) divergence KL(f̂αβ , f̃αβ) =
∑

αβ
f̂αβ log(f̂αβ/f̃αβ),

which is a measure of the log-likelihood that a multino-
mial sample from the distribution f̃αβ would give the ob-

served distribution f̂αβ . We choose the highest value γij

such that the expected discrepancy E[KL(Fαβ , f̃αβ)] ≥

KL(f̂αβ , f̃αβ), where Fαβ are sample marginals drawn

from a multinomial distribution around f̃αβ with sam-
ple size N . This inequality can be solved numerically for
γij by various means, and we show a fast and accurate
approximation in appendix B.
As an alternate regularization strategy, we also inferred

models using l2 regularization on the coupling parameters
in the zero-mean gauge. However, we did not find a good
heuristic for choosing the regularization strength. In [28],
using a pseudolikelihood inference method, a constant
strength of λ = 0.01 on the couplings was found to be
appropriate for all families with varied L and N , using
a regularization term R = λ

∑

ijαβ(J
ij
αβ)

2. In [11], also
using a pseudolikelihood implementation, a strength of
λ = 0.01q(L − 1)/2N was used, accounting for scaling
factors in the likelihood in that study, which corresponds
to λ = 6.96/N for our kinase dataset and λ = 0.8/N
for our SH3 dataset. However in our inferences these
values were too small and similar heuristics did not work
consistently across our datasets.

G. Kinase and SH3 Reference Models

For use in our in-silico tests we infer “reference” Potts
models from natural protein MSA data obtained from
Uniprot for the kinase and SH3 protein families. We pre-
process the MSAs as described in previous publications
[22]. First, given a set of sequences in a protein family
we correct for phylogenetic relatedness. The Potts model
assumes that each sequence in our dataset is drawn in-
dependently from the distribution P (S), however in re-
ality sequences from different organisms are phylogenet-
ically related. We account for this in a standard way by
downweighting sequences in proportion to the number of
similar sequences, as described in [22]. We are investi-
gating other approaches to account for phylogeny; this
will be reported elsewhere. We also reduce the alphabet
size q from 21 residue types to fewer in a way which pre-
serves the correlation structure of the MSA, as described
previously [22]. Finally, to avoid issues with unobserved
residue counts of 0, we apply a very small pseudocount to
the computed bivariate marginals for all models of 10−8.
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Our kinase reference model is inferred using 8149 ef-
fective sequences after phylogenetic weighting, starting
from 127,113 raw sequences, and has L = 175 and q = 8.
The SH3 reference model is inferred using 3412 effective
sequences starting from 18,520 raw sequences, and has
L = 41 and q = 4.

Although these models are affected by finite-sampling
error relative to any “true” or empirical fitness landscape,
this does not affect our in-silico sampling tests below in
which we treat these models as “reference” or benchmark
models and attempt to reproduce the reference model
from finite MSAs generated from the reference models.
The in-silico tests are also unaffected by any potential
biases caused by phylogenetic weighting or alphabet re-
duction since neither preprocessing step is used.

H. Interaction Score

To predict contacts using the Potts model we use a
simple interaction score, a “weighted” Frobenius Norm,
which we have found improves contact prediction as de-
scribed in a previous publication [22]. This is computed

as Iij =
√

∑

αβ(w
ij
αβJ

ij
αβ)

2 where wij
αβ > 0 are tunable

weights, and is evaluated in a “weighted” gauge with con-
straint

∑

α wij
αβJ

ij
αβ = 0. In the case the weights wij

αβ = 1
this reproduces the unweighted Frobenius norm calcula-

tion. We use weights wij
αβ =

√

f ij
αβ , in order to down-

weight the effect of rarely-seen mutants in the MSA.

III. RESULTS

A. Statistical Robustness of E(S) as a Function of

N , L, and q

Here we present a semi-quantitative discussion of the
error in the statistical energy E(S) of a sequence, the
main quantity used to score and compare sequences,
which is often interpreted as the sequence “fitness”, and
which has been shown to predict experimental measures
of fitness.

A measure of the statistical error in the Potts pre-
dicted energies for a set of sequences is the Pearson cor-
relation coefficient ρ(E, Ê) between the “true” Potts sta-
tistical energy E(S) according to a reference Potts model
(which is unknown in the case of natural protein sequence

datasets) to a reconstructed energy Ê(S) computed using
a Potts model fit to a finite, limited depth MSA obtained
by sampling from the reference model. The Pearson cor-
relation coefficient is related to another useful quantity,
the “Signal to Noise” ratio (SNR), which is the ratio of
the variance in statistical energies of sequences in the
dataset, χ2, the “signal”, to the mean-squared-error in
predicted statistical energies around their “true” values,
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FIG. 1. Illustration of the “signal to noise ratio” and the
effects of finite sampling for the independent model. The SNR
is the (squared) ratio of χ to σE. For this plot a “reference”
independent model was used to generate a “test” MSA and
a “training” MSA of 1000 sequences each, and then a new
independent model was parameterized using only the training
MSA.E(S) was then computed for the sequences of each MSA
with both models. Finite sampling effects cause both the
mean-squared-error σ2

E , and an overfitting effect visible as a
shift δE of the estimated energies of the training MSA relative
to those of the test MSA.

σ2
E , the “noise”, or

SNR =
χ2

σ2
E

. (4)

The components of the SNR are illustrated in figure 1.

If the reconstructed energies are modeled as the “true”
energies with added noise, i.e. Ê(S) = E(S)+η for noise

〈η2〉 = σ2
E , then ρ(E, Ê) =

√

SNR/(SNR + 1). If the
SNR or the Pearson correlation ρ are small, the Potts
model is unable to reliably distinguish high scoring se-
quences in the dataset from low scoring sequences. For
an SNR less than 1 the typical energy difference between
two sequences in the dataset will be smaller than the er-
ror, and their ranking according to the Potts model will
be unreliable. This is important when using the Potts
model to make fitness predictions.

Because of the mathematical challenges involved in an-
alyzing analytically the Potts model’s spin-glass behav-
iors, we illustrate the statistical effects of MSA depth
using the independent model, a simpler but mathemati-
cally tractable model. We compute the expected χ2 and
σ2
E and therefore the expected ρ. We then compare these

results numerically with those of the full Potts model.
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B. The Noise Term σ2
E

Consider an MSA of N sequences generated from an
independent model, from which we estimate univari-

ate frequencies f̂ i
α. The mean-squared-error in f̂ i

α is
σ2
fi
α
= f i

α(1−f i
α)/N following a multinomial distribution.

By propagation of error (Taylor expansion) the mean-

squared-error in the fields is σ2
hi
α
≈

1−fi
α

fi
αN

, and we obtain

the total mean-squared-error in the estimated energy of
a sequence S by summing these values for that sequence,
∑L

i σ2
hi
si

. Averaging over all sequences weighted by their

probability, this gives

σ2
E =

L
∑

i

q
∑

α

f i
ασ

2
hi
α
=

L(q − 1)

N
. (5)

This is the “noise” part of the SNR, and corresponds
to the vertical width illustrated in figure 1. It is equal
to the number of independent model parameters θIndep

divided by N . Intuitively, the statistical error in E(S)
increases with L becauseE(S) is a sum overL parameters
which each add a small amount of error, and it increases
with q because the average marginal, which is 〈f i

α〉 =
1/q by definition, decreases with q and because fields
corresponding to smaller marginals have greater error:
The average mean-squared-error in field value is 〈σ2

hi
α
〉 =

(q − 1)/N which increases with q.
Absent strong correlated effects, the nature of this

derivation suggests that the noise term for the Potts
model can be estimated by replacing the number of pa-
rameters in the numerator with θPotts, the number of
independent Potts parameters. In practice correlated ef-
fects may cause deviations from this estimate, which we
investigate numerically below.

We note that the approximation σ2
hi
α

≈
1−fi

α

fi
αN

used

above is only valid if the sampled frequency f̂ i
α is not

small or 0. The case where the sample count is exactly
0 is particularly problematic as it leads to an inferred
field hi

α = log(0) = −∞, meaning that the model pre-
dicts sequences with that residue can never be observed,
which seems unreasonable. How to correct for the small-
sample case depends on the user’s prior expectations for
the residue frequencies. For instance, one can add various
forms of pseudocount [34]. Because this is a somewhat
subjective modeling choice, and because it does not af-
fect our main results, we ignore small-sample corrections
here although they are generally needed in practice.

C. The Signal Magnitude χ2 and the SNR

Next we compute χ2, the “signal” part of the SNR. In
the limit of large L for the independent model one finds,
using a saddle-point approximation, that the dataset se-
quence energy distribution is well approximated by a

Gaussian distribution with variance χ2 =
∑L

i χ2
i , with
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FIG. 2. Example of E(S) estimation for an independent
model with 1600 parameters from an MSA with 30 sequences.
The model has L = 200, q = 8, N = 30 and 〈χ2

i 〉 = 1.0 for all
i, and the fields are uniform random values scaled to give the
desired 〈χ2

i 〉. The scores for the 30 sequences have a correla-

tion ρ(E, Ê) = 0.92.

χ2
i = 1

q

∑

α(h
i
α)

2 where the fields hi
α are evaluated in

the zero-mean gauge, as shown in appendix A. χ2
i can be

thought of as a measure of the degree of conservation at
position i ranging from 0 to ∞. Unconserved positions
with no sequence bias (all hi

α = log 1/q before gauge
transformations) have χ2

i = 0, and highly conserved po-
sitions will have χ2

i → ∞. We define the “average per-site
conservation” of the model 〈χ2

i 〉 = χ2/L, which should
be independent of L. Combining these results we find
the SNR of the independent model is given by

SNR =
χ2

σ2
E

∼
N〈χ2

i 〉

q − 1
. (6)

The SNR for the independent model increases with the
MSA sequence depth N and the average per-site conser-
vation 〈χ2

i 〉, decreases with alphabet size q, and is inde-
pendent of sequence length L.

This result shows that it is possible to accurately pre-
dict E(S) even when the number of model parameters
is much larger than the number of samples (the num-
ber of sequences). As an example, consider an indepen-
dent model fit to a protein family MSA which is well-
described by such a model, with L = 200, q = 8, and
〈χ2

i 〉 = 1.0, which appears to be typical of families in
the Pfam database. Using equation 6 one finds that
only 30 sequences are needed to obtain a correlation of
ρ(E, Ê) = 0.9, while the model has 1600 parameters.
This example is demonstrated numerically in figure 2.

In appendix A we also show that the Gaussian approx-
imation only holds if 〈χ2

i 〉 < 2 log q, which fails for highly
conserved sequence datasets. For the kinase MSA, we
find this inequality is 1.5 < 4.2, and for the SH3 MSA we
find 1.2 < 2.8, so both MSAs have sufficient variation.
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D. Overfitting of E(S) and δE

Here we show how, for the independent model, over-
fitting results in a favorable energy shift of sequences in
the training dataset (the MSA the model is parameter-
ized with) relative to other sequences.
When a single sequence is added to an MSA of size

N − 1 the estimated site-frequencies for the residues i, α

in that sequence are increased to +f̂ i
α = ((N−1)f̂ i

α+1)/N

the rest decrease to −f̂ i
α = ((N − 1)f̂ i

α)/N , where f̂ i
α is

the original sampled marginal. The prevalence of the
added sequence S in the new model is then P̂+(S) =
∏

i
+f̂ i

si
, while previously it was P̂ (S) =

∏

i f̂
i
si
. The ex-

pected value of the ratio of these prevalences averaged
over all MSAs of size N − 1 can be approximated as
E[P̂+(S)/P̂ (S)] ≈ P+(S)/P (S) using a Taylor expan-

sion, valid if f̂ i
α are not very small or 0. Further averaging

this ratio over all possibilities for the added sequence we

find
∑

S P (S)P
+(S)
P (S) = (N+q−1

N
)L ≈ e

L(q−1)
N = eσ

2
E in the

large L limit. This expected prevalence ratio corresponds
to a relative statistical energy change of

δE = σ2
E (7)

to a sequence when it is added to the training MSA. In
other words the predicted energies for sequences used to
train the model will be underestimated (i.e, their favora-
bility is overestimated) by an amount δE which decreases
with N . This is typical of the effect of overfitting in
other contexts. This overfitting effect is confirmed using
numerical tests in figure 3.
This suggests that when the Potts energy is used to

score sequences, care should be taken if the sequences
to be scored contain both sequences from the training
set as well as other sequences, as there may be an energy
shift between the two types. In our numerical tests below
we investigate whether this affects common applications
of the Potts model such as predicting statistical energy
changes ∆E caused by mutation in a sequence in the
training set.

E. In Silico Tests of Potts Model Robustness in

E(S) as a Function of N

Next we numerically test the behavior of the Potts
model inference for different MSA depths using an in-

silico procedure. We use Potts models parametrized for
the protein-kinase and SH3 domains using Uniprot se-
quence data as reference models, as described in meth-
ods. We then generate new MSAs from these reference
models, of depths of 256 to 16384 sequences, from which
we infer new models. For each generated MSA, we fit
both an unregularized and a regularized model.
The reference models used in these in-silico tests are

derived from real protein-family MSAs, and therefore
have mutational correlation patterns close to those of the

1
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1
0
0
0
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FIG. 3. Numerical tests of overfitting in the independent
model. Each row corresponds to an independent model fit to
a “training” MSA dataset with different MSA depthN , gener-
ated from a reference independent model. The training MSAs
have L = 1000, q = 16, and 〈χ2

i 〉 = 0.16. A pseudocount of
1/N is used to avoid issues with unsampled residues. The
green distribution shows estimated energies of “random” se-
quences with equal residue probabilities, the blue distribution
shows energies of the training MSA, and the red distribution
are energies of a “test” MSA independently generated from
the reference model. The black arrow on the x-axis marks
the expected energy of the training MSA based on the mean
energy of the test MSA minus the shift δE computed using
equations 5 and 7, showing good agreement. The models are
evaluated in the zero-mean gauge.

real SH3 and kinase protein families albeit with some er-
rors due to finite-sampling effects. Both families we study
have very deep MSAs and we expect small statistical er-
ror due to finite sampling of the MSA. We expect that
the strength of the correlations and the degree of spar-
sity of the interaction network of our reference models
are representative of protein family MSAs like those col-
lected in the Pfam database. It is important to keep in
mind that other types of data such as neuron spike-trains
may have different properties, e.g. they may behave more
or less “critically”[7], or have less sparse interaction net-
work, which may make the inference problem more or
less difficult. Our numerical tests of finite-sampling er-
ror specifically use protein-family-like data, although we
expect our results are more general.

For each in-silico model, after confirming convergence
of the inference procedure, we evaluate its predictive ac-
curacy by computing the Pearson correlation ρ(E, Ê) be-
tween the predicted Potts statistical energies and those
computed using the reference models, for the sequences
used to train the new models. We also compute the ex-
pected ρ using equations 4 and 5 modified for the Potts
model, giving

ρ(E, Ê)2 =
χ2

χ2 + θPotts

N

(8)
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FIG. 4. Accuracy in statistical energy predictions for (a) SH3
and (b) kinase domain, measured by the Pearson correlation

coefficient ρ(E, Ê) between the reference energies E and the

inferred energy Ê for the in-silico MSA, as a function of MSA
depthN , for both regularized an unregularized inference. The
theoretical curve is computed using equation 8

where θPotts is the number of Potts model parameters
described above and χ2 is estimated from the variance in
inferred sequence energies. Results are shown in figure 4.

We find that the unregularized models which are fit
to smaller MSAs are overfit, with two clear symptoms.
First, for the kinase MSAs, which have a greater num-
ber of parameters because of their larger L and q, the
unregularized MCMC inference procedure fails to con-
verge in reasonable time for small MSAs with N ≤ 2048.
The behavior is consistent with the Potts model becom-
ing “ill conditioned”, which is a predicted consequence
of finite sampling error [16]. For these small MSAs, as
the Potts parameters are successively updated we find
that the MCMC sampling step takes longer and longer
to equilibrate, eventually slowing to a standstill in which
MCMC replicas appear to be trapped in local wells in
a rugged landscape, and the auto-correlation time de-
scribed in methods diverges. Second, even for the unreg-
ularized models which we were able to converge, which
are the kinase models for N ≥ 4096 and the SH3 models,
we find that after a finite number of parameter update
steps the model error begins to increase (see appendix
C). This is behavior typical of overfitting. This effect de-
creases for larger N , and we find that for N = 16384 for
kinase, and forN = 2048 for SH3, these overfitting effects
are minimal. The effects of overfitting can be mitigated
through regularization, and we find that for our regular-
ized inference the autocorrelation time always decreases
rapidly and the model error does not increase much after
many iterations. The regularized model error neverthe-
less increases slightly from its minimum value after many
iterations, suggesting it is still slightly overfit.

For the models which converged we find, as expected,
that the model error decreases with N , as shown in figure

−50
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Ê
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FIG. 5. Comparison of statistical energy predictions relative
the reference values for the SH3 dataset for models fit to differ-
ent MSA sizes, for (a) unregularized inference scoring the test
MSA, (b) unregularized inference scoring the training MSA,
(c) regularized inference scoring the test MSA, and (d) reg-
ularized inference scoring the training MSA. All models are
evaluated in the zero-mean gauge.

4. For both kinase and SH3, the unregularized models
have more error than expected based on our theoretical
analysis. Regularization significantly reduces the error,
especially for small MSAs. For equal N we see that the
SH3 model has less error than the kinase model, as ex-
pected since the SH3 model has smaller L and q. For
both protein families we find that the theoretical result
is better than that of the unregularized model, perhaps
because of correlated effects, but that with regularization
the model outperforms our theoretical expectation based
on the error analysis of the independent model. For the
largest N of 16384 for kinase and 2048 for SH3, the un-
regularized models perform almost as well as the regular-
ized model, again suggesting that regularization is largely
unnecessary with this many sequences even though this
depth is much smaller than the number of parameters of
the models, of 747250 and 14883 respectively. This is a
further demonstration that the effect of overfitting is best
estimated from the signal to noise ratio, and not directly
from the number of parameters of the model. We note
that even for large MSAs some form of regularization of
may still be necessary to prevent some model parameters
from becoming infinite in the case of unobserved residue-
pairings, for instance by addition of a small pseudocount
as discussed above in the derivation of σ2

E .

We also examine the δE shift, or average change in the
dataset sequence probabilities, caused by overfitting. We
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FIG. 6. Accuracy of point-mutation effect predictions for (a)
SH3 and (b) kinase domain, as a function of MSA depth. This
is measured by the Pearson correlation in mutation effect ∆E
for all possible mutations to a set of 100 sequences generated
from the reference model. The dashed line is the Pearson
correlation for mutation effects predicted by an independent
model fit to the univariate marginals of each in-silico MSA,
with a pseudocount of 0.5 counts.

can estimate δE as the difference in mean energy of se-
quences in the MSA used to train the model (a “training
set”) and a separate set of sequences generated by the
reference model (the “test set”). For the converged un-
regularized models we find a negative δE shift consistent
with our expectation from the independent model, which
decreases withN , as seen in figures 5. For the regularized
models we also observe a δE shift, but it is positive and
invariant with N . The existence of these δE shifts has
implications for applications of the Potts model which
depend on the absolute probability of sequences in the
dataset. For instance, the energy average has been used
to estimate the size of the evolvable sequence space [35],
and the energy gap between “random” sequences and the
dataset sequences has been used to estimate the “design
temperature” of the Random Energy Model of protein
evolution[30]. The fact that the inferred δE depends on
the choice of regularization or on the MSA depth sug-
gests such computations should be calibrated by other
means, for instance by referring to experimental melting
temperature as in [30].

F. Mutation Effect Predictions

A common application of Potts statistical energies is in
predicting the effect of a mutation to a sequence, by com-
puting the change in statistical energy ∆E after a small
number of positions have been mutated. The Potts model
has been shown in many cases to predict mutation effects
quite accurately [11], and importantly the correlated na-
ture of the Potts model makes these predictions “back-
ground dependent”, meaning that same mutation in two

different sequences can have a different effect. Above we
predicted that due to overfitting the unregularized Potts
model can score sequences it was inferred with more fa-
vorably than other sequences, which could conceivably
affect mutation effect predictions involving a mutation
from a sequence in the training set to one not in the
training dataset.

To test the effects of MSA size and overfitting on mu-
tation effect predictions, we generated a set of 100 se-
quences from the kinase and SH3 reference models, and
computed the change ∆E caused by all point-mutations
to each sequence using the reference models and then
again using each of the in-silico models, and measured
the discrepancy using the Pearson correlation ρ(∆E,∆Ê)
(figure 6). We find that the accuracy of point-mutation
predictions decreases with N , but much less quickly than
that of the energy of entire sequences E(S) (figure 4), and
even for our smallest MSAs of 256 sequences we find a
correlation of 0.7 for the SH3 model and 0.6 for the ki-
nase model (figure 6). With 16384 effective sequences
for the kinase family we find a correlation of ∼ 0.9 with
the reference. Previously reported values of the correla-
tion between Potts mutation effect predictions and ex-
perimental measures of fitness are in the range 0.5 to 0.8
for MSAs with fewer than 10,000 effective sequences [11].

We also find that for the smallest MSAs an indepen-
dent model performs nearly as well or better than the
Potts model for point-mutation-prediction (dashed line
in figure 6). This suggests that for very small MSAs
the benefits of the correlated information in the Potts
model are diminished by its increased statistical error
and poorer signal-to-noise ratio. Indeed, in [11] it was
found that the independent model performed compara-
bly or better than the Potts model in ∆E predictions for
some datasets. In contrast, when predicting full statis-
tical energy E(S) as in figure 4 the independent model
performs very poorly compared to the Potts model even
with very small MSAs, giving a ρ(E, Ê) of 0.4 for SH3
and -0.1 for kinase when fit to the reference model’s uni-
variate marginals. These results suggest that correlated
effects are less important when predicting single-mutant
∆E values, and that for small MSAs the Potts model
behaves roughly like the independent model in this ap-
plication.

In addition to point-mutation predictions, we examine
double-mutant predictions of the form commonly used
to test for epistasis (non-additivity of fitness effects) in
experimental “double mutant cycles”[25, 26]. Here, de-
viations from an independent model are tested using the
quantity ∆∆Eij

αβ(S) = ∆Eij
αβ(S) − ∆Ei

α(S) − ∆Ej
β(S)

where the subscripts indicate which positions are mu-
tated. This is the difference in mutation-effect between
a double mutant and the sum of the two corresponding
single mutants. The independent model cannot predict
these values as it gives ∆∆Eij

αβ(S) = 0 by definition.
In contrast for the Potts model one obtains the gauge-
invariant result ∆∆Eij

αβ(S) = −J ij
αβ+J ij

αsj
+J ij

siβ
−J ij

sisj
.

We test the model’s ability to reconstruct these values by
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FIG. 7. Accuracy of “double mutant cycle” predictions of
epistasis for (a) SH3 and (b) kinase domain, as a function
of MSA depth. This is measured by the Pearson correlation
in mutation effect predictions ∆∆E for all possible double
mutants to a set of sequences generated from the reference
model.

generating sequences from the reference models and then
comparing the predicted and reference ∆∆E values for
all possible double-mutants to each sequence scored as
ρ(∆∆E,∆∆Ê), and the result is shown in figure 7. We
find that the quality of the ∆∆E prediction degrades
much more rapidly with N than single-mutant ∆E pre-
diction, showing that deep MSAs are very important to
capture the correlated effects that are probed by double
mutant cycles, which depend on accurate predictions of
∆∆E.

G. Contact Prediction

Using the same in-silico datasets we test the accu-
racy of contact prediction as a function of N . Because
there is no unique mapping from the Potts model pa-
rameters to contact predictions, many different mappings
have been suggested. The most straightforward methods
compute an “interaction score” for each position-pair i, j
which is a simple function of the coupling parameters and
marginals only involving those positions. These include
the “Direct Information”, the Frobenius norm, and the
weighted Frobenius norm. Typically some fraction of the
highest scoring pairs, for instance the top L, are chosen
as predicted contacts. Recently, more advanced machine
learning algorithms have been used, trained using exter-
nal structural data, to find more complex mappings from
the coupling parameters to contact predictions, which
have shown increased predictive accuracy[36–38].
Here we focus on the effects of finite sampling on the

(weighted) Frobenius norm. We begin by analyzing the
baseline contact predictions of the reference kinase Potts
model, which will serve as an upper limit to the perfor-
mance in our in-silico models. The existence of extensive

crystallographic data on the kinase family in the Protein
Data Bank (PDB) [39] makes it especially well suited
for testing contact prediction, as it has been shown that
Potts interactions can correspond to transient contacts
across multiple functional conformations [5, 23, 40, 41]
which we can detect using the large PDB dataset. To
define reference “true contacts” we average over 3000 ki-
nase structures in the PDB. We count a contact between
positions-pair (i, j) if the residues have a heavy atom pair
within 6 Angstroms in at least 20% of the PDB structures
determined in [23], giving us a set of 1180 total con-
tacts for the kinase family. Using the “weighted Frobe-
nius Norm” interaction score we find that 80% of the top
511 most strongly interacting position-pairs predicted by
the model are contacts in the PDB. Limiting our analy-
sis to position-pairs which are distant in sequence, with
|i− j| > 4 as is typical in tests of contact prediction, we
find that 80% of the 176 most strongly scored of these
pairs are PDB contacts, out of 637 relevant contacts (pre-
cision=0.8, recall=0.22), as illustrated by the black line
in figure 8.

Next we use the in-silico models for contact prediction.
We note that the in-silico models should not perform
better than the reference model since any discrepancy
between the crystal contacts and the contacts predicted
by the reference model will be inherited in the in-silico

models, and so the reference model result represents the
maximum possible result for the in-silico models except
for small statistical variations. The in-silico tests mea-
sure how finite-sampling error further degrades the result
from our reference model.

As MSA depth N decreases for the in-silico models we
find that contact prediction accuracy decreases, as illus-
trated in figure 8. We see a more minor decrease in con-
tact prediction accuracy from 16384 sequences to 4096
sequences, and then a more dramatic drop from 4096
to 256 sequences, but even the smallest models are able
to predict some contacts. These results suggest that for
the purpose of contact prediction, compared to statistical
energy predictions, it is more important to have deeper
MSAs. Our unregularized models, when converged, also
appear to have very similar performance as the regular-
ized models for contact prediction.

We note that discrepancy between contacts predicted
using the reference model and crystal contacts may not
be due to biases in the Potts model, but rather in the
definition of crystal contacts or in the interaction scor-
ing function which is used as a proxy for contacts. A
series of previous studies has examined contact predic-
tion by different crystal contact definitions and scor-
ing methods including scorings determined by machine-
learning[19, 36, 42]. These studies measure the overall
prediction accuracy using the precision (y-axis in figure
8) for the C top-ranked pairs according to the model
(corresponding to a value on the x-axis in figure 8, left),
where C has different values in different studies, typi-
cally C is L, 2L, 2.5L [42] or ncontacts/2 where ncontacts

is the number of contacts observed in the reference crys-
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FIG. 8. Contact prediction as a function of MSA depth N , for position pairs with |i−j| > 4. (a) Fraction of correctly predicted
contacts (precision, or TP/rank) versus position-pair rank, ordered by Potts interaction score, for the original Potts model and
for derived Potts models fit to smaller MSA depths. The solid line corresponds to the regularized models, and the dotted lines
correspond to unregularized models. (b) Precision-recall plot for the same models. “Precision” is computed as TP/(TP+FP),
and “recall” as TP/(TP + FN). TP (“true positive”) is the number of correctly predicted contacts, FP (“false positive”) the
number of contacts predicted but not present in crystal structure, and FN (“false negative”) the number of crystal contacts
not predicted by the model.

tal structure[36]. The definition of a structural con-
tact also differs. All studies exclude position-pairs where
|i−j| ≤ 4, but some studies use the distance between C-β
atoms while others use the closest heavy-atom distance,
and the distance cutoff varies from 10 Å to 6 Å. As dis-
cussed in [19], increasing the distance cutoff will always
increase the precision and will inflate the apparent perfor-
mance, and for this reason we also plot recall in figure 8.
For comparison with previous studies, using the weighted
Frobenius Norm and C = L = 175, we get precisions of
0.76 and 0.86 respectively for the 8Å C-β and 6Å heavy-
atom contact definitions. For C = ncontacts/2 = 318 this
gives precisions of 0.71 and 0.68 respectively. In previous
studies, an “Average Product Correction” has been ap-
plied to the Frobenius Norm scores, we find this decreases
the precision, for instance to 0.46 and 0.41 respectively
for C = ncontacts/2.

H. Literature Review of Model Sizes and

Estimated Statistical Errors

Our analysis of the independent model illustrates
how model quality depends on the SNR, which is the
(squared) ratio of the “noise” due to statistical error σE ,
which depends on N and the number of model parame-
ters, to the “signal” strength χ, which depends on L and
degree of conservation. Our numerical results for ρ(E, Ê)

as a function of MSA depth suggests that substituting the
Potts model’s number of parameters θPotts into equation
5 gives an estimate of σE for the Potts model (see figure
4). This gives us a way to estimate the statistical error
of models published in literature given the values of L,
q, N and χ.

We have collected model parameters from a number of
previous studies in literature. For each model we esti-
mate σE given the reported N , q and L. The value of χ,
which measures sequence conservation, is not typically
reported, but we estimate it from the range of reported
E(S) values for each model, as (Emax − Emin)/2. This
will be an overestimate of χ, as χ represents the stan-
dard deviation in energy values rather than the range,
but nevertheless should roughly correspond. These re-
sults are summarized in figure 9.

Many models, including most of those used in this
study, are in the estimated “higher SNR” region. Some
models are below the diagonal, suggesting that greater
MSA sequence depths could improve these models. Many
of these low-SNR models were used mainly for predict-
ing ∆E for point-mutations or small numbers of muta-
tions ([11, 31]), which we showed above numerically can
still be accurately predicted even with low SNR. How-
ever, in these cases the Potts model may not outperform
an independent model, and indeed in [11] a number of
these low-SNR models were compared to an independent
model and found to have similar predictive accuracy in
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FIG. 9. Analysis of Potts model parameters in published lit-
erature. The estimated “noise” in E(S), σE , is computed by
dividing the number of Potts parameters by the MSA depth,
as in formula 5, and is compared to the energy difference
between the highest and lowest sequence energies plotted in
the publication, reflecting the “signal”. Red: Kinase in-silico

regularized models in this study for N=16384 (darkest) to
256. Blue: SH3 in-silico regularized models in this study
for N=2048 (darkest) to 256. Without regularization and
according to the naive results suggested by the independent
model, Potts models below the diagonal line should have dif-
ficulty discriminating between the highest and lowest scoring
sequences in the dataset. The cited studies are: Mann [8],
Flynn [43], Barton [44], Ferguson [24], Figliuzzi [9], Hopf [11],
Lapedes [29] and Contini [31].

∆E. Additionally, we note that the estimates of χ in the
y-axis in figure 9 are only rough estimates, and also that
details of the inference procedure such as the regulariza-
tion strategy can also help improve the predictive ability
of the model past our expectations based on analysis of
the independent model. This means that some models
which appear below the diagonal may have greater sta-
tistical power than illustrated.

IV. CONCLUSIONS

Finite sampling error and overfitting play an important
role in all inference problems, and inverse Ising inference
is no exception. In this study we examined how finite
sampling, which corresponds to MSA depth, affects com-
mon uses of Potts models for protein sequence analysis,
which are: The prediction of individual sequence total
statistical energies Ê(S) (often interpreted as fitnesses
or in some cases as predictors of folding free energy), the
prediction of the fitness effects of mutations to a sequence
∆E, the prediction of double-mutant epistatis ∆δE, and
the prediction of directly statistically dependent pairs of
positions in the protein family, and their correspondence
to contacts in 3D protein structure.
Overfitting is ultimately due to finite-sampling statis-

tical error in the bivariate marginals which serve as input
variables to the model inference procedure, and which are
estimated from as MSA with a finite number of sequences
N . We discussed in a semi-quantitative way how this sta-
tistical error can affect Potts model predictions based on
analysis of how the error depends on the Signal to Noise
ratio (SNR) in a simplified model. The effects of finite
sampling are a function of the dataset MSA length L,
alphabet size q, MSA depth (number of sequences) N ,
and the degree of conservation of columns of the MSA
measured by 〈χ2

i 〉. From these quantities we can roughly

estimate the expected Pearson correlation ρ(E, Ê) be-
tween the “true” sequence statistical energies and those
predicted from a finite depth MSA. We arrived at these
results using an independent model framework, but in-
creasing the number of parameters from θIndep to θPotts,
and so the existence of strongly statistically dependent
correlated networks among the positions of the MSA may
cause deviations from these predictions. Nevertheless, for
the kinase and SH3 models we studied we found numer-
ically that it gives a reasonably good approximation.

We find that the different types of predictions based
on Potts models of protein covariation are differently af-
fected by finite sampling error and regularization. Pre-
dictions of the effect of point-mutations to a sequence ∆E
are the most robust, while predictions of total statistical
energies E(S) decrease more rapidly in accuracy as a
function of N . Contact prediction precision-recall curves
for the smallest MSA depths we tested depend strongly
on MSA depth and are poor, though we are able to pre-
dict tens of contacts with high confidence even with 256
sequences for the kinase model. Using our regulariza-
tion strategy and MCMC inference procedure, we found
that predictions of full sequences energies E(S) are most
improved by regularization, while mutation-effects pre-
dictions and contact predictions are slightly better with
unregularized models, for the large MSAs which are pos-
sible to fit without regularization besides a very small
pseudocount. Additionally, we find that in unregularized
models fit to large MSAs the effects of overfitting can be
negligible even in cases where the number of sequences
(samples) is many orders of magnitude smaller than the
number of Potts parameters, because overfitting effects
are best understood in terms of the SNR and not directly
from the number of Potts model parameters.

We also found that finite sampling and overfitting can
cause an energy shift δE in the predicted sequence en-
ergies E(S) for sequences in the MSA used to parame-
terize the model. This shift is affected by regularization.
This energy shift may be important to be aware of when
performing computation which depend on the absolute
value of the energy, or on the energy difference between
sequences used to train the model and other sequences.
Similarly, our observation of a divergent autocorrelation
time when generating simulated MSAs by MCMC for
unregularized models suggests that the ruggedness of the
inferred energy landscape depends on the inference pro-
cedure and choice of regularization. Such computations
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should be calibrated by external means.
In this study we have examined the contribution of fi-

nite sampling to the error in Potts model predictions, but
there are other potential sources of error. These include
biases in the input MSA, for instance due to errors in the
sequence search and alignment procedure, or because of
violations of the Potts modelling assumptions that the
sequences have evolved independently over the same fit-
ness landscape, for instance due to phylogeny, mutational
biases, or variation in selective pressures over time and
environment. In addition there are many assumptions
that must be made to connect the various kinds of ex-
perimental measurements of fitness with Potts model pre-
dictions, even assuming no errors in the Potts model of
the kind that are the focus of this work. We hope the re-
sults presented here clarify the baseline statistical power
and limitations of Potts models of protein covariation, on
which further understanding of the relationship between
Potts models and the evolution and structure of proteins
can be built.
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Appendix A: Saddle-Point Approximation for χ2

Here we derive the distribution of energies of the in-
dependent model building on [45]. The value of χ2 can
be estimated given a set of fields hi

α of the independent
model using a saddle-point approximation in the limit
of large L. To do this we first compute the “neutral”
or “background” distribution of sequence energies Ω(E),
showing to good approximation it is Gaussian with vari-
ance χ2. This distribution plays the role of the (nor-
malized) “density of states” in statistical mechanics, and
may be written as

Ω(E) =

qL
∑

S

P0(S)δ(E − E(S)) (A1)

where P0(S) is the “background” probability of the se-
quence S, which in this study we approximate is uni-
form P0(S) =

1
qL

. Using the method of steepest descent

(saddle-point approximation) we expand the delta func-
tion using its Fourier transform, giving

Ω(E) =
1

2π

∑

S

P0(S)

∫ ∞

−∞

eik(E−E(S))dk (A2)

=
1

2πi

∫ i∞

−i∞

eβE+ln[Z]dβ (A3)

with β = ik and a partition function Z(β) =
∑

S P0(S)e
−βE(S). Expanding the exponent in the in-

tegral around its maximum at β∗ along the path of in-
tegration going through a minimum along the real axis,
we identify β∗ by approximating the exponent using a
high-temperature expansion around β = 0,

βE + ln[Z(β)] ≈βE + β
∂ln[Z]

∂β
|β=0 +

β2

2

∂2ln[Z]

∂β2
|β=0

(A4)

≡β(E − 〈E〉) +
β2

2
χ2 (A5)

with

∂lnZ

∂β
|β=0 = −

L
∑

i

q
∑

α

1

q
hi
α = −

L
∑

i

〈h〉i ≡ −〈E〉 (A6)

∂2lnZ

∂β2
|β=0 =

L
∑

i

∑

α

1

q
(hi

α − 〈h〉i)2 ≡ χ2. (A7)

The maximum β∗ at which the first derivative of equa-
tion A5 is 0 is then

β∗ = −
E − 〈E〉

χ2
. (A8)

This approximation in the region near β = 0 is justified
as long as β∗ is close to 0, when 〈E〉 − E ≪ χ2.
To complete the saddle-point analysis, we expand the

exponent βE+ln[Z] again but around β∗, where the first
derivative should be zero, giving

Ω(E) =
1

2πi

∫ i∞

−i∞

e
β∗E+ln[Z(β∗)]+ 1

2 (β−β∗)2 ∂2lnZ
∂β2 |β∗

dβ

(A9)

∝ eβ
∗E+ln[Z(β∗)] 1

2χ2
(A10)

=
1

√

2πχ2
e
− (E−〈E〉)2

2χ2 (A11)

and so the density of states is a Gaussian distribu-
tion with mean 〈E〉 and variance χ2. For the inde-
pendent model, as discussed in the main text we can
always transform to the “zero-mean” gauge in which

〈E〉 = 0 and χ2 =
∑L

i
1
q

∑q
α(h

i
α)

2, using the transform

hi
α − 1

q

∑q
γ h

i
γ → hi

α.

The distribution of “evolved” sequence energies P (E),
i.e. of sequences generated by the independent model
with probability P (S), can then be written

P (E) ∝ Ω(E)e−E (A12)

using the probability P (S) ∝ e−E(S), and some algebra
shows that this is also a Gaussian distribution, with mean
〈E〉 − χ2 and variance χ2.
This approximation will break down when the

“evolved” sequences would have energies outside the
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range of validity of the Gaussian approximation, and we
can estimate when this occurs. The sequence space has
a size of qL sequences, so the density of states may be
estimated as qLΩ(E). The Gaussian approximation will
break down for energies E where the density of states
becomes close to 1 sequence, or when qLΩ(E) ∼ 1. Sub-
stituting the mean evolved sequence energy E = 〈E〉−χ2

and taking the log, this is approximately when χ2 ≈
2L log q, or 〈χ2

i 〉 ≈ 2 log q.

Appendix B: Solving for γij Numerically

As described in the main text we choose the regu-
larization strengths γij such that the biased bivariate
marginals f̃ ij

αβ
are likely to have generated the observed

bivariate marginals f̂ ij
αβ

by chance due to finite sampling.
For each position-pair i, j we solve for the maximum value

of γij which satisfies the inequality

E[KL(Fαβ , f̃αβ)] ≥ KL(f̂αβ , f̃αβ) (B1)

where Fαβ are sample marginals drawn from a multino-

mial distribution around f̃αβ with sample size N . This
equality can be solved by various numerical strategies,
but many of these are computationally costly. The main
difficulty is in evaluating the expectation value. Here we
describe a fast and accurate approximation.
Consider a pair i, j, dropping the ij indexes

here. We want to evaluate E[KL(F̃αβ
, f̃αβ

)] =
∑

αβ E[xαβ log xαβ ]−
∑

αβ f̃αβ log f̃αβ
, where the expec-

tation value averages over a multinomial distribution for
a sample of size N , and xαβ is the sampled marginal from

f̃ (with xαβ = n/N for integer sample n), and we have

used the multinomial expectation E[xαβ ] = f̃αβ. The
first term is the expectation of an entropy, which is sim-
plified as

E[xαβ log xαβ ] =
N
∑

n=0

N !

(N − n)!n!
f̃n
αβ(1 − f̃αβ)

N−n n

N
log

n

N
(B2)

= f̃αβ

N
∑

n=1

(N − 1)!

(N − n)!(n− 1)!
f̃n−1
αβ (1− f̃αβ)

N−n log
n

N
(B3)

= f̃αβ

N
∑

m=0

M !

(M −m)!m!
f̃m
αβ(1− f̃αβ)

M−m log
m+ 1

M + 1
(B4)

= f̃αβEM [log
m+ 1

M + 1
] (B5)

where M = N − 1, m = n − 1, and the last expecta-
tion value is over a binomial distribution with M sam-

ples. Next we use a Taylor approximation E[log(x)] ≈

log(E[x]) − V [x]
2E[x]2 , and find that

E[log
m+ 1

M + 1
] ≈ log(f̃αβ +

1− f̃αβ
N

)−
(N − 1)f̃αβ(1− f̃αβ)

2((N − 1)f̃αβ + 1)2
(B6)

E[KL(Fαβ
, f̃αβ)] ≈

∑

αβ

f̃αβ

(

log(f̃αβ +
1− f̃αβ

N
)−

N − 1

2N2

f̃αβ(1− f̃αβ)

(f̃αβ +
1−f̃αβ

N
)2

)

. (B7)

This gives us a way to quickly evaluate equation B1
for any choice of γ, and we can then minimize the left-
hand-side numerically by any standard method. We find
this approximation is very good in practice.

Appendix C: Convergence

In this appendix we show plots illustrating the con-
vergence of the inverse Ising inference for the kinase and
SH3 datasets, in figure 10.
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FIG. 10. Inverse Ising inference equilibration for different in-silico MSA depths N , for different model inferences: (a) unregu-
larized SH3, (b) regularized SH3, (c) unregularized kinase domain, (d) regularized kinase domain. In all plots the x-axis shows
number of coupling-updates during inference. For each of the models there are four subplots. Upper left subplots: Error in the
model’s correlation statistics relative to the reference model, measured as the sum of squared residuals (SSR) of the correlation
coefficients Cij

αβ. Dotted lines are the SSR of the training MSA relative to the reference, plus the independent model in black.
Upper right subplots: Total correlation energy X as a function of step. The independent model has X = 0 by definition.
Lower left supblots: ρ(E, Ê) for a test MSA of 4096 sequences drawn from the reference model. The black dotted line is the

correlation of the independent model. Lower right subplots: ρ(E, Ê) when scoring the training MSA sequences.
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