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Experiments and simulations have established that dynamics in a class of living and abiotic sys-
tems that are far from equilibrium exhibit super diffusive behavior at long times, which in some
cases (for example evolving tumor) is preceded by slow glass-like dynamics. By using the evolution
of a collection of tumor cells, driven by mechanical forces and subject to cell birth and apoptosis,
as a case study we show theoretically that on short time scales the mean square displacement is
sub-diffusive due to jamming, whereas at long times it is super diffusive. The results obtained using
stochastic quantization method, which is needed because of the absence of fluctuation-dissipation
theorem (FDT), show that the super-diffusive behavior is universal and impervious to the nature
of cell-cell interactions. Surprisingly, the theory also quantitatively accounts for the non-trivial dy-
namics observed in simulations of a model soap foam characterized by creation and destruction of
spherical bubbles, which suggests that the two non-equilibrium systems belong to the same univer-
sality class. The theoretical prediction for the super diffusion exponent is in excellent agreement
with simulations for collective motion of tumor cells and dynamics associated with soap bubbles.

PACS numbers:

I. INTRODUCTION

Collective movement of cells is a pervasive phe-
nomenon in many processes in biology ranging from tis-
sue remodeling that underlies embryonic morphogene-
sis to wound repair and cancer invasion [1–6]. Con-
sequently, there is considerable interest in understand-
ing the dynamics associated with such processes. Dur-
ing migration, cells move as sheets, strands, clusters or
ducts rather than individually, and use similar actin- and
myosin-mediated protrusions and guidance by extrinsic
chemotactic and mechanical cues just as in the motility
of single cells [3, 7–11]. Collective invasion during cancer
progression, accompanied by the destruction of tissues
and remodeling of the extra cellular matrix, is also im-
portant in metastasis [7, 8, 12, 13]. The dynamics of these
processes are complicated because of an interplay of inter
cell adhesive interactions and the biology governing cell
birth and apoptosis. The dynamical events involving cell
birth and apoptosis implicitly generate active forces [14–
16], thus driving the systems far from equilibrium. How
the interplay of death-birth processes and cell-cell inter-
actions in a growing tumor spheroid, poise the cells for
effective invasion into the surrounding matrix, is poorly
understood.

Complex dynamics in the systems mentioned above
manifests itself as caging of a cell by surrounding cells
and dynamic heterogeneity-features that are reminiscent
of supercooled liquids [17]. There are also some surpris-
ing departures from glass-like behavior, which is revealed
by the super-diffusive behavior on long time scales. For
example, experiments on tumor cells invading a colla-
gen matrix [18] have shown that at long times (times
exceeding the cell division time) the mean square dis-
placement of tumor cells, < ∆r2(t) >∼ tα, exhibits su-
per diffusive behavior with α ≈ 1.4 ± 0.04. Interest-
ingly, rheology in completely unrelated synthetic mate-

rials (foams and mayonnaise) modeled as compressible
spherical bubbles, which can be created or destroyed, also
exhibit similar behavior. Simulations of such soft glassy
materials [19] show that < ∆r2(t) >∼ tα at long times
with α ≈ 1.37 ± 0.03. Both tumor growth and ripening
of bubbles are intrinsically non-equilibrium systems be-
cause cells (or bubbles) are born as a result of mitosis and
also undergo apoptosis. Is there a common mechanism
for the origin of super-diffusive behavior in these seem-
ingly unrelated non-equilibrium systems and if so can the
long-time universal behavior be explained theoretically?

Here, we answer the questions posed above in the af-
firmative by developing a theory to describe the non-
equilibrium dynamics of collective cell migration. A brief
sketch of the theory used to rationalize the results of sim-
ulations was given elsewhere [20]. Further developments,
including the details, and plausible generality of the re-
sults are provided in this study. For concreteness, we
develop the formalism in the context of tumor growth.
Cells are modeled as deformable objects interacting with
potentials that account for repulsive elastic forces and in-
tercell adhesive attractions due to interactions between

FIG. 1: Schematic of the dynamics associated with cell birth
and death. Cell in green color divides into two cells with rate
ka and cells in red color undergo death with rate kb. The
invasion distance, δr = r − rcm, is a measure of the extent of
penetration of the tumor into the surrounding matrix.
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cadherins expressed on the cell surface. In addition, the
cells could divide at a rate ka, giving rise to daughter
cells, and undergo apoptosis, at a rate kb. Due to the
death-birth processes (Fig. 1), cell number conservation
is violated, thus making it difficult to use standard meth-
ods to solve the stochastic equations describing the evo-
lution of cell density. A similar scenario arises in the de-
scription of dynamics of chemotactic cells, in which cell
division and death play an important role [10]. Because
Gelimson and Golestanian were primarily interested in
the long time collective dynamics, they resorted to dy-
namical renormalization group techniques to investigate
the interplay of chemical signaling and cell growth. We
follow a different route to study the relevant continuum
description of collective behavior of a colony of cells in
both the finite as well as in the long time limit, using
stochastic quantization method, which was introduced
by Parisi and Wu [21], in the context of quantum field
theory.

The major results of this study are: (i) The inter-
play between non-linear terms that determine the in-
tercellular interactions (adhesion and excluded volume
repulsion, collectively referred to as mechanical interac-
tions from now on) and death-birth processes are mani-
fested in the dynamics that changes dramatically as the
system evolves. At finite times, mechanical interactions
with strong attraction between cells, dominate over the
effects cell birth and death, leading to glassy dynam-
ics. The jammed cells exhibit sub-diffusive motion at
the intermediate time scales, where the mean-square dis-
placement, < ∆r2(t) > increases sub-linearly, as tα with
α = 0.8. (ii) In the long time limit (times exceeding the
cell division time), the consequences of the birth-death
processes dominate over the mechanical interactions, re-
sulting in the fluidization of cells. Asymptotically, the
cells exhibit super-diffusive motion, with< ∆r2(t) >∼ tα
with the value of the universal exponent α = 1.33, in
three dimensions. The theoretical prediction is in excel-
lent agreement with the simulation results [20] and a re-
cent in vitro experiment of the three-dimensional growth
of multicellular tumor spheroids [18]. (iii) Although the
theory is set in the context of tumor growth, the present
work also quantitatively describes the complex motion of
bubbles in a foam in which bubble formation (birth) and
collapse (death) occur.

The rest of the paper is organized as follows. In sec-
tion II we present the model and the theory used to un-

derstand the dynamics. This is followed in section III,
which describes the stochastic quantization method as
the required theoretical technique to obtain the time-
dependence of a number of observables that characterize
the collective dynamics at intermediate and long times.
The main results detailing the origin of sub-diffusive
motion at intermediate times and the universal super-
diffusive dynamics at long times are contained in section
IV. This section also provides arguments for the gener-
ality of our results for similar universal behavior in abi-
otic non-equilibrium systems. Section V summarizes our
findings. The technical details of the calculations are rel-
egated to the three appendices.

II. THEORY

We consider the dynamics of a colony of cells in a dis-
sipative environment where inertial effects are negligible.
Each cell experiences systematic forces arising from me-
chanical interactions, and a Gaussian random force with
white noise spectrum. The equation of motion for a sin-

gle cell i is ∂ri
∂t = −

∑N
j=1∇U(ri(t)−rj(t))+ηi(t), where

U contains both repulsive interactions with range λ,
and favorable attractive interactions between cells with
range σ, with strengths v and κ respectively. We use
Gaussian potentials (see Appendix A for details) in or-
der to obtain analytical solutions. Needless to say that
the conclusions would be valid for any short-ranged U .
The Gaussian white noise, satisfies < ηi(t)ηj(t

′) >=
2Dδijδ(t− t′). Let us consider the evolution of the den-
sity function for a single cell φi(r, t) = δ[r − ri(t)]. A
closed form of the Langevin equation for the density,
φ(r, t) =

∑
i δ[r − ri(t)] may be obtained using the ap-

proach developed by Dean [22]. The time evolution of

φ(r, t) is given by, ∂φ(r,t)
∂t = ∇ ·

(
η(r, t)φ1/2(r, t)

)
+ ∇ ·(

φ(r, t)
∫
dr′φ(r′, t)∇U(r− r′)

)
+D∇2φ(r, t). We extend

the model phenomenologically by adding the source term
that describes both cell birth and death as well as a noise
term that breaks the cell number conservation. The line
of argument follows from the Doi-Peliti formalism [23–
25], introduced in the study of reaction-diffusion pro-
cesses.

The Langevin equation, for the time-dependent
changes in the density, φ(r, t) is

∂φ(r, t)

∂t
= ∇ ·

(
φ(r, t)

∫
dr′φ(r′, t)∇U(r− r′)

)
+D∇2φ(r, t) + k̄bφ(r, t)(

ka
k̄b
− φ(r, t)) (1)

+∇ ·
(
η(r, t)φ1/2(r, t)

)
+
√
kaφ+ kbφ2fφ ,

with fφ satisfying < fφ(r, t)fφ(r′, t′) >= δ(r−r′)δ(t−t′). The source term, gφ(φ0 − φ) (third term on the right
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hand side of Eq. (1)), arises due to the cell death-birth
processes (Fig. 1), with an effective growth rate g =
k̄b, and carrying capacity φ0 = ka

k̄b
(see the Appendix

B) [10, 26]. The coefficient
√
kaφ+ k̄bφ2 is the strength

of the noise due to number fluctuations, and is a function
of density (φ).

The absence of a fluctuation-dissipation theorem
(FDT), due to the generation of active forces, makes
this a far from equilibrium problem. Although dynamic
renormalization group methods could be used to solve
Eq. (1) in the hydrodynamic limit [10], it would not cap-
ture the dynamics in the intermediate time regime. Our
focus is to study the collective dynamics in a colony of

tumor cells in both the intermediate and long time lim-
its. Therefore, we solve Eq. (1) by treating the non-linear
terms as a perturbation, by adopting the stochastic quan-
tization scheme [21, 27, 28], which allows us to calculate
the form of the MSD in the intermediate as well as the
long time limit.

We assume that the density fluctuates around a con-
stant value, which simplifies the multiplicative noise term
(last term in Eq. (1)). We write the density as φ(r, t) =
φ0+φ1(r, t), and perform a linear stability analysis in the
Fourier space for the equation describing density fluctua-
tions. The equation for the density fluctuation becomes,

∂φ1(r, t)

∂t
= D∇2φ1(r, t) + (ka − 2k̄bφ0)φ1(r′, t) +∇ ·

(
φ0

∫
dr′φ1(r′, t)∇U(r− r′)

)
(2)

+∇ ·
(
φ1(r′, t)

∫
dr′φ0∇U(r− r′)

)
+∇ ·

(
φ1(r, t)

∫
dr′φ1(r′, t)∇U(r− r′)

)
+∇ ·

(
η(r, t)φ

1/2
0

)
− k̄bφ2

1 +
√
kaφ0 + k̄bφ2

0fφ1 .

In Fourier space, the above equation reads,

∂φ1(k, t)

∂t
= −(Dk2 + φ0k

2U(k)− (ka − 2k̄bφ0))φ1(k)(3)

+

∫
dq(−q · k)U(q)φ1(q)φ1(k− q)

−k̄b
∫
dqφ1(q)φ1(k− q) + η′(k, t),

with < η′(k, t)η′(−k, t′) >= (kaφ0 + k̄bφ
2
0 +2Dφ0k

2)δ(t−
t′).
From the linear stability analysis, we find that the
uniform density phase is stable if (φ0k

2U(k) − (ka −
2k̄bφ0)) > 0 (Eq.(3)). In this regime, mechanical in-
teractions dominate over the cell birth-death and is the
primary determinant of the dynamics of cells. In the
opposite limit, when the active forces due to cell birth-
death dominate, the cell colony grows rapidly. There is
an instability at (φ0k

2U(k)−(ka−2k̄bφ0)) = 0, signaling
a transition from sub-diffusive to super-diffusive motion
in the cell dynamics (see below). The Greens function G
is given by,

[G]−1 = −iω+Dk2 +φ0k
2U(k)−(ka−2k̄bφ0)+Σφ(k, ω),

(4)

where, Σφ(k, ω) ∼
∫

ddk′

(2π)d
dω′

2π V V GC ∼
∫

dk′

(2π)d
k′d−5,

showing infrared divergence at the critical dimension
dc = 4. For d > dc, scaling exponents are determined
by linear theory and for d < dc, non-trivial exponents
are governed by the non-linear terms in Eq.(3).

To anticipate the consequences of non-linearity, we in-
troduce a change of scale r → sr, φ → sχφ and t → szt

where χ is the exponent corresponding to the cell den-
sity fluctuations, and z is the dynamical exponent. The
nonlinear term (−q · k)U(q)φ1(q)φ1(k − q) represent-
ing the cell-cell mechanical interactions scales as s2χ−2.
The term bφ1(q)φ1(k − q), due to stochastic cell birth-
death processes, scales as s2χ. In the long time limit
(times exceeding the cell division time), nonlinearity due
to cell birth-death dominates over mechanical interac-
tion. Therefore, in the long time limit, scaling behavior
is determined by the death-birth process, which implies
that one expects universality in the scaling of the MSD
in the long time limit. These conclusions are supported
by recent simulation results [20]. However, in the in-
termediate time regime all the terms contribute to the
time dependence of the MSD, < ∆r2(t) >. By choosing
the strength of the interactions, in such a way that the
mechanical interactions dominate over death-birth term
(first term in Eq. (1)), we can calculate < ∆r2(t) > as a
function of t.

III. STOCHASTIC QUANTIZATION
APPROACH

We now provide a theory in support of the arguments
given above. As stated earlier a major difficulty in study-
ing the problem of collective behavior of cells far from
equilibrium is the breakdown of the FDT. Therefore,
independent diagrammatic expansions for the response
function< φ̃1φ1 > and the correlation function< φ1φ1 >
are necessary. The equilibrium distribution is unknown,
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and may not exist. Therefore, the averages can be com-
puted only for the statistical noise. The usual analytic
route employed in calculating the scaling exponents, is to
introduce a response field φ̃1, and compute the response
function as < φ̃1φ1 > and the correlation function as
< φ1φ1 >. One can obtain the scaling solutions of the rel-
evant problem by using dynamic renormalization group
(RG) scheme, as illustrated recently [10]. The novelty
of our theory is that it successfully captures the growing
phase of the tumor, which is not easily accessible in the
perturbative calculation using the RG scheme [10]. Here,
we develop a general theoretical formalism, in which scal-
ing solutions can be obtained by power counting analysis.

We now exploit the Parisi-Wu stochastic quantization
scheme [21], and introduce a fictitious time ‘τf ’ and con-
sider all variables to be functions of τf in addition to k
and w. The Langevin equation in the τf variable is,

∂φ1(k, w, τf )

∂τf
= − δS

δφ1(−k,−w, τf )
+ fφ1

(k, w, τf ) , (5)

where fφ1
satisfies, < fφ1

fφ1
>= 2δ(k + k′)δ(w +

w′)δ(τf−τ ′f ). This ensures that as τf →∞, the distribu-

tion function will be given by S(k, w), because FDT holds
in the τf variable. The correlation functions calculated
using Eq. (5) lead to the physical correlation functions
of the original theory (Eq. (1)) in the τf →∞ limit [28].
The action S(k, w) can be obtained by writing down the
probability distribution corresponding to the noise term
is given by,

P (fφ1
) ∝ exp

[
−
∫
k,w

1

2
fφ1

(k, w)fφ1
(−k,−w)

]
(6)

= exp[− 1

2(kaφ0 + k̄bφ2
0)

∫
k,w

S(k, w)].

The action functional S(k, w) may be written in terms
of φ1(k, w) instead of fφ1

(k, w), with the help of Eq. (2).
The expression for the action S obtained using Eq.(2) is,

S =
∫

ddk
(2π)d

dw
2π

1
2{(−iw + Dk2 + φ0k

2U(k))φ1(k) − (ka − 2k̄bφ0)φ1(k) −
∫
dq(−q · k)U(q)φ1(q)φ1(k − q) +

k̄b
∫
dqφ1(q)φ1(k− q)}{(iw+Dk2 + φ0k

2U(−k))φ1(−k)− (ka − 2k̄bφ0)φ1(−k)−
∫
dq(q · k)U(q)φ1(q)φ1(−k− q) +

k̄b
∫
dqφ1(q)φ1(−k− q)}.

With the action given above, we obtain the Langevin equation using Eq. (5) for φ1(k, ω, τf ),

∂φ1(k, ω, τf )

∂τf
= − 1

(kaφ0 + k̄bφ2
0 +Dk2)

[ω2 + {Dk2 + φ0k
2U(k)− (ka − 2k̄bφ0)}2]φ1(k, ω, τf ) (7)

− 1

(kaφ0 + k̄bφ2
0 +Dk2)

∫
k′,ω′

[
{iω +Dk2 + φ0k

2U(k)− (ka − 2k̄bφ0)}{(−k′ · k)U(k′)− k̄b}

+{iω′ +Dk′2 + φ0k
′2U(k′)− (ka − 2k̄bφ0)}{(−k′ · k)U(−k)− k̄b}

+{iω′ +Dk′2 + φ0k
′2U(k′)− (ka − 2k̄bφ0)}{(−k′ · (k− k′))U(k− k′)− k̄b}

]
φ1(k′, ω′)φ1(k− k′, ω − ω′) + fφ(k, ω, τf ) + higher order terms .

In order to obtain the scaling laws for the MSD, it suffices
to work at arbitrary τf . It follows from Eq. (7) that in
the absence of the non-linear terms, the Greens function
G(0) is given by, [G(0)]−1 = −iωτf + 1

2(kaφ0+k̄bφ2
0)

[ω2 +

{Dk2 + φ0k
2U(k) − (ka − 2k̄bφ0)}2] , where ωτf is the

frequency corresponding to the fictitious time τf . The
effect of non-linear terms can be included perturbatively

leading to the Dyson’s equation,

[G]−1 = [G(0)]−1 + Σ(k, ω, ωτf ), (8)

where the self-energy Σ(k, ω, ωτf ) contains the non-linear
contributions to the bare Greens function (see Fig.(2)).
The expression for Σ(k, ω, ωτf ) is given by,
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Σ(k, ω, ωτf ) =
2

(kaφ0 + k̄bφ2
0 +Dk2)2

∫
k′,ω′,ω′τf

[
{iω +Dk2 + φ0k

2U(k)− (ka − 2k̄bφ0)} (9)

{(−k′ · k)U(k′)− k̄b}+ {iω′ +Dk′2 + φ0k
′2U(k′)− (ka − 2k̄bφ0)}{(−k′ · k)U(−k)− k̄b}

+{iω′ +Dk′2 + φ0k
′2U(k′)− (ka − 2k̄bφ0)}{(−k′ · (k− k′))U(k− k′)− k̄b}

][
{iω +Dk2 + φ0k

2U(k)− (ka − 2k̄bφ0)} {(−(k− k′) · k)U(k− k′)− k̄b}+
{i(ω − ω′) +D(k− k′)2 + φ0(k− k′)2U(k− k′)− (ka − 2k̄bφ0)}{(−(k− k′) · k)U(−k)− k̄b}
+{i(ω − ω′) +D(k− k′)2 + φ0(k− k′)2U(k− k′)− (ka − 2k̄bφ0)}{(−(k− k′) · (k′))U(k′)− k̄b}

]
G(k′, ω′, ω′τ )C(k− k′, ω − ω′, ωτf − ω′τ ).

We are mainly interested in the behavior of Σ(k, ω, ωτf )
when expanded to second order in non-linearity. The
contributions arise from two sources (1) a one-loop con-
tribution from the second order term (containing three
φ1 fields) in Eq. (7) (second term in Fig. (2)) and (2)
a two-loop contribution from the first order term ( con-
taining two φ1 fields) in Eq. (7) (first term in Fig. (2)).
The contribution arising from the term containing three
φ1 fields, in Eq. (7) can be readily obtained by contract-
ing two of the φ1 fields. The second order contribution
due to the one loop contribution in Eq. (8) does not have
any new momentum dependence. Hence, it is the second-
order contribution (first term in Fig.(2)) arising from the
two-loop contribution in Eq. (8) which is relevant. The
correlation function is given by the FDT as C = 1

ωτf
ImG.

With these observations, Eq. (8) can be written as,

[G]−1(k, ω, ωτf ) = −iωτf +
1

2(D0)
[ω2] +

1

2(D̄)
[ν2
effk

4] ,

(10)
where D0 = kaφ0 + kbφ

2
0 and D̄ is defined as,

1

2(D̄)
[ν2
effk

4] =
1

2(D0)
(νk2)2 + Σ(k, ω, ωτf ) (11)

with ν = D + φ0U(k). In the intermediate time, the
strength of the interactions is such that φ0k

2U(k) domi-
nates over (ka−2kbφ0). We obtain Eq.(11) by neglecting
the term (ka − 2k̄bφ0) in the Green’s function equation
(Eq.(10)) in the finite time regime. Expanding νeff , D̄
about ν and D0, respectively, and noting that the renor-
malization of ν dominates, we write,

νeffk
2 ' νk2 +

1

2νk2
Σ(k, ω, ωτf ), (12)

or ∆νk2 =
1

2νk2
Σ(k, ω, ωτf ).

The two loop contribution from the first order term (con-
taining two φ1 fields) in Eq. (7) will contribute to the
scaling laws in the intermediate as well as in the long
time limit (see below).

IV. RESULTS

A. Sub-diffusive motion

In the spirit of self consistent mode coupling theory, we
replace ν by ∆ν in the self energy term Σ(k, ω, ωτf ). We
use G from Eq. (8), and an expression for C follows from
the FDT. According to scale transformation, we know
ω ∼ kz, ωτ ∼ k2z, G ∼ k−2z, C ∼ k−4z and the vertex
factor V ∼ kz+2. The self energy term (Fig. (2)), can be

written as Σ(k, ω, ωτf ) ∼
∫

ddk′

(2π)d
dω′

2π
dω′τ
2π V V GC. By car-

rying out the momentum count of Σ(k, ω, ωτf ), and keep-

ing in mind that ∆νk2 ∼ kz, we find that Σ(k, ω, ωτf ) ∼
kd−z+4. Using Eq. (12), we have kz ∼ kd−z+2, which
leads to z = 1 + d

2 .
The single cell mean-square displacement behaves as,

< [r(t)− r(0)]2 >∼ t2/z = tα. (13)

In 3D, α = 4
5 = 0.8, implying that a labelled cell under-

goes sub-diffusive motion, which is one characteristic fea-
ture of glassy systems. If cell-cell interaction is modeled
as U1 = U0/ cosh2(r/a) instead of a Gaussian, we obtain
α = 4

6 = 0.57, implying sub-diffusive behavior. Although
sub-diffusive behavior is preserved at intermediate times,
the scaling exponents depend on the form of interaction
potential, which shows that the intermediate behavior of

FIG. 2: Dashed line indicates the correlation function (G0G
∗
0)

and solid line indicates the response function (G0). The self-
energy term (Σ) is obtained by contracting the two φ1 fields.
First term is the two loop contribution from the first order
term (contains two φ1 fields) in the fictitious time equation in
Eq.(7). The second one gives the one loop contribution from
second order term (contains three φ1 fields).
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< ∆r2(t) > is non-universal. The sub-diffusive behavior
is a consequence of jamming of cells.

We also investigated how the jamming regime depends
on the cell-cell adhesion strength, κ. The form of the
interaction potential is shown in Eq. (A1) of Appendix A.
We define the time dependent order parameter in terms
of the function, < Q(t) >≡

∫
dr1dr2 < φ(r1, 0)φ(r2, t) >

δ(r1 − r2), measuring the number of ’overlapping’ cells
in two configurations separated by a time interval t. In
Fourier space,

< Q(t) > =

∫
k,w

< φ1(k, w)φ1(−k,−w) > eiwt(14)

=

∫
k

1
Σ(k)
κk2

exp[−tΣ(k)

κk2
] =

∫
k

S̃(k, t)

where the second line is obtained using mode-coupling
approximation. The dynamic structure factor S̃(k, t)
decays exponentially (Eq. (14)) from which it follows
that the relaxation time depends linearly on the adhesion
strength κ. For small value of κ, S̃(k, t) decays rapidly
and for large κ, the relaxation time increases substan-
tially leading to stronger caging effect, which results in
the extremely slow relaxation of the dynamic structure
factor [17, 29].

B. Long time super-diffusion

In the long time limit, the effects of non-linearity due to
death-birth dominate over mechanical interactions. Fol-
lowing the same procedure outlined above, we obtain
the self-consistent mode coupling equation of the form,
∆µ = 1

2µΣ(k, ω, ωτf ), in the hydrodynamic limit, with

µ = (ka − 2k̄bφ0). We now replace µ by ∆µ in the self
energy term Σ(k, ω, ωτf ) (Fig. (2)), use G in Eq. (8), and
C is calculated using the FDT. The scale transformation
for all the variables is the same as before except that the
vertex factor V ∼ kz. By noting that ∆µ ∼ kz, we find

Σ(k, ω, ωτf ) ∼
∫

ddk′

(2π)d
dω′

2π
dω′τ
2π V V GC ∼ kd−z. The self-

consistent equation ∆µ = 1
2µΣ(k, ω, ωτf ) produces the

dynamic exponent z = d/2. Therefore, asymptotically
α = 1.33, implying that the MSD exponent is greater
than unity, which implies that collective motion leads to
super-diffusive behavior. The calculated value of α is in
excellent agreement with both the value obtained from
simulations [20] and experimental results [18].

C. Invasion distance

Recently, the movement of the fibrosarcoma cells at
the boundary of a growing spheroid pushing against col-
lagen matrix was measured using imaging techniques [18].
The dynamics was quantified using the invasion distance
(Fig. (1)), which is defined as the average distance from

the center of mass of the tumor to the cells at the pe-
riphery, δr(t) =< rb − rCM >, where rb is the position
of the cell at the boundary, and rCM = (1/N)

∑
i ri,

with N being the number of cells. It was found that
< δr(t) >∼ t1/z = tξ with ξ = 0.8 [18]. Using our theory
we find that < δr(t) >∼ t2/3. The calculated and mea-
sured values of ξ are in fair agreement. If the dynamics
were purely diffusive, as would be the case for a homo-
geneously distributed sample of individual cells, then ξ
would be 0.5. The departure from this value is another
indication of super-diffusion in this non-equilibrium sys-
tem. The time dependent structure factor S̃(k, t) in this

case decays exponentially as exp[−tΣ(k)
µ ], implying that

the relaxation time depends linearly on the birth rate
[20].

D. Dynamics of soft material and growing tumor
are similar

Interestingly, dynamics of certain soft glassy materials
and collective migration of cells have a common feature
is that the underlying dynamics of these systems are gov-
erned by the birth and death processes. For the soft foam,
Hwang and co-workers [19] used a model for Ostwald
ripening for the bubbles, which can be recast as the reac-
tion X +X → X, that is identical to the apoptosis pro-
cess used in tumor evolution. This process produces the
non-linearity (kbφ

2) in both the problems. The present
theory shows that this non-linear term determines the
scaling behavior in the long time limit. From the theory
presented above we conclude that both < ∆r2(t) > must
have the same scaling behavior. Our theory predicts the
general feature that birth-death driven dynamics should
lead the super-diffusive behavior with a universal dynam-
ical exponent in the long time limit. Thus, asymptoti-
cally MSD scaling is impervious to the interaction details
between the constituent objects in the non-equilibrium
systems. Based on the calculation of < ∆r2(t) > for
cells in tumor we surmise that the mean square displace-
ment for bubbles should increase as tα at long times with
the same exponent, α ≈ 1.33. Remarkably, this value is
in accord with the simulation results reported elsewhere
[19].

V. CONCLUSION

In summary, using a new theoretical framework, we
have provided insights into the dynamics of a colony of
tumor cells driven by an interplay of mechanical inter-
actions and stochastic death-birth processes. The break-
down of number conservation, resulting from stochastic
death-birth process, makes the dynamics far from equi-
librium, characterized by the absence of FDT. The in-
troduction of a fictitious time in which FDT is valid,
allows us to calculate the response functions from which
the correlation functions can be obtained using the FDT.
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This new approach greatly simplifies the calculation of
the scaling exponents. Non-linear terms in the density
evolution equation, arising from mechanical interactions
determine the scaling behavior in the intermediate time.
Strong cell-cell adhesion interactions lead to the glass-like
caging behavior characterized by sub-diffusive motion in
the intermediate time. Stochastic death-birth processes
determine the scaling in the long time limit, which is
independent of the mechanical interactions, as long as
they are short-ranged. In the long time limit, the dy-
namics shows super-diffusive motion, leading to fluidiza-
tion of the colony of cells. Our theory shows that the
universal long time behavior would arise in any systems
in which the cells (or particles) are born and undergo
apoptosis. These dynamical processes, surely relevant in
many biological processes, produce active forces of suf-
ficient magnitude to fluidize the dynamics of jammed
cells at long times. It is this mechanism that appar-
ently is also operative in soft glassy materials [19], that
produces the unexpected super diffusion in this abiotic
system. As a consequence of the fundamental similar-
ity between these completely distinct problems, we as-
sert that asymptotically the cells in an evolving tumor
and bubbles in a soap foam have precisely the same un-
derlying dynamics at long times. In other words, these
non-equilibrium systems belong to the same universality
class. It would be most interesting to explore if the mech-
anism proposed to explain the origin of super-diffusion is
present in other non-equilibrium systems as well. Finally
the theory presented here could help us to understand
how cancer spreads by invading adjacent tissue involved
in metastasis [30].
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Appendix A: Short-range interaction

To obtain the dynamics of an evolving collection of
cells, we use the following simplified form for cell-cell in-
teraction,

U(r(i)−r(j)) =
v

(2πλ2)3/2
e−

(r(i)−r(j))2

2λ2 − κ

(2πσ2)3/2
e−

(r(i)−r(j))2

2σ2 ,

(A1)
where v and κ are the strengths of excluded volume and
attractive interactions, respectively.

Appendix B: Non-linear term arising from
birth-death process:

We consider a minimal model to study the interplay
between stochastic cell growth and annihilation process

leading to apoptosis, and use it to derive a Langevin
type equation for logistic growth. We use the Doi-
Peliti formalism[31–33] in order to derive an expression
for the density dependence of the noise strength that
describes cell number fluctuations. The birth reaction

X
ka−→ X + X occurs with the rate constant ka for each

cell, and the backward reaction (annihilation or apop-

tosis) X + X
kb−→ X occurs with rate kb (see Fig. 1 in

the main text). The master equation for this process is
written as,

∂P (Xi, t)

∂t
= ka[(Xi − 1)P (Xi − 1, t)−XiP (Xi, t)](B1)

+kb[Xi(Xi + 1)P (Xi + 1, t)−Xi(Xi − 1)P (Xi, t)],

where P (Xi, t) is the probability of finding Xi particles
at time t, and kb is taken to be the apoptosis rate of
distinct pairs of cells. The central idea of the Doi-Peliti
formalism [31–33] is the introduction of a single vector
|ψ(t) >, which is a collection of a series of infinite number
of P (Xi, t) :

|ψ(t) >=

∞∑
Xi=0

P (Xi, t)|Xi > . (B2)

Using Eq. (B2), the master equation in Eq. (B1) can be
written in a compact form,

∂

∂t
|ψ(t) >= −L(c†, c)|ψ(t) > , (B3)

where

L(c†i , ci) = ka(c†i
2
− c†i )ci + kb(c

†
i − c

†
i

2
)c2i . (B4)

The Bosonic creation operator c†i and annihilation oper-
ator ci obey,

[ci, c
†
i ] ≡ cic

†
i − c

†
i ci = 1, (B5)

where [.,.] is the commutator, and the actions of the
creation and annihilation operators for the ket vectors

|n > are defined as, c†i |Xi >= |Xi + 1 >, ci|Xi >=
Xi|Xi − 1 >.

The Schrödinger like equation (Eq.(B3)) for the evolu-
tion of the state of the system may be integrate to find,

| ψ(t) >= e−Lt | ψ(0) > (B6)

with the initial state |ψ〉 = eX̄0
∑
i(c
†
i−1)|0〉. The initial

configuration for the master equation is an independent
Poisson distribution at each site,

P ({Xi}; 0) = ΠiP0(Xi) = Πie
−X̄0X0

−Xi/Xi!, (B7)

with mean initial input and output concentrations X̄0.
Our goal is to compute averages and correlation func-

tions with respect to the configurational probability
P ({Xi}; t), which is accomplished by using the projec-
tion state 〈P| = <0|Πie

ci , for which 〈P|0〉 = 1 and
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<P|c†i = 〈P|, since [eci , c†j ] = eciδij . The average value

of an observable A({Xi}) is,

〈A(t)〉 =
∑
{Xi}

A({Xi})P ({Xi}; t), (B8)

from which the statistical average of an observable can
be calculated using,

〈A(t)〉 = 〈P|A({c†i , ci})|ψ(t)〉 (B9)

= 〈P|A({c†i , ci})e
−H(({c†i},{ci})t|ψ(0)〉.

We follow a well-established route in quantum many
particle theory [34], and derive a field theory represen-
tation by constructing a path integral equivalent of the
time dependent Schrödinger equation (Eq.(B3)) based on
coherent states [31]. These are defined as right eigen-
states of the annihilation operators, ci|αi〉 = αi|αi〉 ,
with complex eigenvalues αi. The coherent states sat-

isfy |αi〉 = exp( 1
2 |αi|

2 + αiα
†
i )|0〉, the overlap integral

<αj |αi〉 = exp(− 1
2 |αi|

2 − 1
2 |αj |

2 + α∗jαi), and the com-

pleteness relation
∫

Πid
2αi|{αi}〉<{αi}| = π. After split-

ting the temporal evolution (Eq.(B3)) into infinitesimal
increments, inserting the completeness relation at each
time step, and with additional manipulations, we obtain
an expression for the configurational average,

〈A(t)〉 ∝
∫

Πidαidα
∗
iA({αi})e−S[α∗i ,αi]. (B10)

The exponential statistical weight is determined by the
action,

S[α∗i , αi] =
∑
i

[∫ tf

0

{
α∗i (t)

∂αi(t)

∂t

}
+ L(α∗i , α)

]
dt.

(B11)
Finally, by taking the continuum limit using

∑
i →

a−d0

∫
ddx, a0 is a lattice constant, αi(t) → φ(x, t) and

αi(t) → ad0φ(x, t), the expectation value is represented
by a functional integral,

〈A(t)〉 ∝
∫

ΠiD[φ∗, φ]A({φ})e−S[φ∗,φ], (B12)

with an effective action

S[φ∗, φ] =

∫ tf

0

[{
φ∗(t)

∂φ(t)

∂t

}
+ L(φ∗, φ)

]
dt. (B13)

In the Hamiltonian (Eq.(B4)), c† is replaced by the field
variable φ∗, and the c operator becomes φ.

The action in Eq.(B13) encodes the stochastic mas-
ter equation kinetics through four independent fields
(φ∗, φ). With this formulation, an immediate connec-
tion can be made to the response functional formula-
tion using the Janssen-De Dominicis formalism for the
Langevin equations [35, 36]. In this approach, the re-
sponse field enters at most quadratically in the pseudo-
Hamiltonian, which may be interpreted as an average

over Gaussian white noise. With this in mind, we ap-
ply the non-linear Cole-Hopf transformation [37, 38], in
order to obtain the quadratic terms in auxiliary fields,
φ∗ = eφ̄I , φ = e−φ̄IφI , to the action in Eq.(B13). The
Jacobian for this variable transformation is unity, and
the local particle density is φ∗φ = φI . We obtain the
following Hamiltonian,

L = −k̄bφ̄φ(
ka
kb
− φ)] + φ̄2[

ka
2
φ+ k̄b

φ2

2
]. (B14)

where k̄b = ad0kb. In the above equation, the exponen-
tial term has been expanded to second order. The rate
equations is obtained through δS/δφ̄ |φ̄=0= 0. The terms

quadratic in the auxiliary field φ̄ encapsulate the second
moment of the Gaussian white noise with zero mean.

We arrive at an expression for the action for a colony
of tumor cells, governed by the dynamics illustrated in
Fig. 1 in the main text, in the continuum description,

S[φ̄, φ] =

∫
dt{φ̄[

∂φ

∂t
− k̄bφ(

ka
k̄b
− φ)] + φ̄2[

ka
2
φ+ k̄b

φ2

2
]} .

(B15)
The term k̄bφ(ka

k̄b
−φ) gives the source term for cell birth-

death. The coefficient of φ̄2 gives the expression for noise
correlation in the Langevin description, which breaks the
cell number conservation and plays a crucial role in the
dynamical behavior of the collection of cells.

Appendix C: Effective diffusion coefficient

The emergence of super diffusion may be rationalized
by considering movement of a labeled cell as a diffusive
process with an effective time dependent diffusion coef-
ficient. In the spirit of mode-coupling theory, we write
Deffk

2 ∼ kz, where Deff is the effective diffusion coef-

ficient of the cell. In the real time, Deff scales as t
2−z
z .

Using Langevin equation of the form ẏ =
√
Deff (t)ηy,

where < ηy(t)ηy(t′) >= 2δ(t − t′), we obtain the mean

square displacement, < ∆y2 >∼
∫
Deff (t)dt ∼ t2/z.

In homogeneous state, the evolution of cells is given
by,

∂φ1(r, t)

∂t
= D∇2φ1(r, t) +∇ ·

(
η(r, t)φ

1/2
0 (r, t)

)
. (C1)

We assume that Eq.(C1) is invariant under the scale
transformations, r → sr, φ → sχφ and t → szt where
χ is the exponent corresponding the cell density fluctu-
ations, and z is the dynamical exponent. With these
transformation, Eq.(C1) becomes

∂φ1(r, t)

∂t
= Dsz−2∇2φ1(r, t)+s−d/2+z/2−χ−1∇·

(
η(r, t)φ

1/2
0 (r, t)

)
.

(C2)
To find the critical exponents z and χ, we require that

Eq.(C1) must be invariant under the scale transforma-
tions. Thus, to ensure scale invariance, each term on the
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rhs of Eq.(C2) must be independent of s, which implies
that z = 2 and χ = −d/2. Under these conditions, the
cells undergo normal diffusion with MSD∼ t .

In the growing phase, φ1(r, t) satisfies,

∂φ1(r, t)

∂t
= D∇2φ1(r, t) + (ka − 2k̄bφ0)φ1(r′, t)(C3)

−k̄bφ2
1 +∇ ·

(
η(r, t)φ

1/2
0 (r, t)

)
+
√
kaφ0 + k̄bφ2

0fφ,

which is obtained by neglecting interaction between
cells.

Using the same scale transformation as before, we ob-
tain,

∂φ1(r, t)

∂t
= Dsz−2∇2φ1(r, t) + sz(ka − 2k̄bφ0)φ1(r′, t)− sχ+z k̄bφ

2
1 + s−d/2+z/2−χ−1∇ ·

(
η(r, t)φ

1/2
0 (r, t)

)
(C4)

+s−d/2+z/2−χ
√
kaφ0 + k̄bφ2

0fφ.

To ensure scale invariance, one would expect that the
rhs of Eq.(C4) must be independent of s. However, this
procedure provides five scaling relations for two expo-
nents z and χ, thereby overdetermining them. In order to
get the correct values of exponents, the coefficients must

also change under scaling. Using stochastic quantization
scheme mentioned in the main text, we find z = 3/2
in the long time limit. The effective diffusion coefficient
Deff scales as t1/3, thereby, MSD scales as t4/3, implying
that at long times the motion is super-diffusive.
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