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Large cascades are a common occurrence in many natural and engineered complex systems. In
this paper we explore the propagation of cascades across networks using realistic network topologies,
such as heterogeneous degree distributions, as well as intra- and interlayer degree correlations. We
find that three properties, scale-free degree distribution, internal network assortativity, and cross-
network hub-to-hub connections, are all necessary components to significantly reduce the size of large
cascades in the Bak-Tang-Wiesenfeld sandpile model. We demonstrate that correlations present in
the structure of the multilayer network influence the dynamical cascading process and can prevent
failures from spreading across connected layers. These findings highlight the importance of internal
and cross-network topology in optimizing robustness of interconnected systems.

PACS numbers: 02.50.Ey 05.65.+b 87.19.L-

I. INTRODUCTION

Occasionally, natural as well as man-made complex
networks suffer massive cascades, which are initialized
by a breakdown of a small portion of the entire system.
Such cascades characterize a plethora of complex phe-
nomena, including neural avalanches [1–4], blackouts in
power grids [5–7], secondary extinctions in ecological sys-
tems [8, 9], and systemic default of financial institutions
[10, 11]. Massive failures are associated with dispropor-
tionately high cost to systems in which they occur, there-
fore the ability to predict and control such events is an
area of active studies.

In the past twenty years, resistance to failure has been
one of the main focuses of network science. Initially the
problem of network resilience has been defined within the
framework of percolation theory [12, 13], where damage
to certain nodes results in fragmentation of the network.
Extension of this approach to the case of failure cascades
in the interconnected networks improved our understand-
ing of network features responsible for structural robust-
ness of such systems [14]. In particular work of Reis et al.
[15] established the importance of multilayer correlations
and multilayer assortativity for structural robustness of
interconnected scale-free networks.

Concurrently to topological network resilience studies,
complementary studies of dynamical processes on static
networks have been developed. Resilience to failure in
this context is defined as propensity to limit particu-
lar dynamical behavior. Examples of these processes in-
clude diffusion through a network, such as social con-
tagion processes [16] , and cascading failures, such as
electrical grid blackouts [17]. Recently research within
this framework has focused on how modular structures or
interconnections between networks affect large cascades
for simple regular network topologies [17]. More realistic
topological features, such as broad-scale degree distribu-
tions [18, 19], assortativity [20–22], or non-random inter-
connectivity between communities [15, 23–25], have yet
to be explored. These structural features are seen, for
example, in functional brain networks.

Here we develop a systematic study to fill this gap.
Our goal is to identify near-optimal architectures for pre-
venting cascading failures in realistic interconnected sys-
tems. We demonstrate that as well as interlayer degree
correlations play crucial roles in affecting the occurrence
of catastrophic cascades in interdependent heterogeneous
networks. In particular we show that vulnerability of in-
dividual nodes to fail correlates with degree of assortativ-
ity present in the network. This behavior illustrates the
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importance of considering higher-order network proper-
ties when maximizing robustness of interconnected sys-
tems.

We study failure cascades with the Bak-Tang-
Wiesenfeld (BTW) sandpile model, which self-organizes
to an apparent critical state, in which cascades sizes are
distributed as a power law [2, 17, 26–32]. This char-
acteristic mimics the heavy-tailed distributions of fail-
ure cascades seen in electrical blackouts [5, 6, 33], neu-
ronal avalanches [3], earthquakes [34, 35] and forest fires
[36, 37]. Furthermore, the BTW model captures a com-
mon feature of many systems in which individual ele-
ments carry a load, but have a fixed capacity [17]. This
property makes the BTW model a valuable tool when
studying how network cascades result from the individ-
ual elements failing due to exceeding their capacity and
shedding their load to neighboring elements.

The universality of the cascade size statistics observed
in numerous dynamical systems poses significant chal-
lenges to the design of strategies to control the occur-
rence of large catastrophic failures. Namely, because
independent of whether the underlying network topol-
ogy is homogeneous or heterogeneous, failure sizes are
characterized by heavy-tailed distributions, thus reduc-
ing cascade sizes is not easily achieved through changing
connectivity alone [38]. Brummitt et al. [17], however,
demonstrated that connections between networks act as a
control mechanism regulating frequency of catastrophic
failures in coupled random regular networks. Here one
network can minimize the likelihood of a large cascade
by forming an intermediate amount of connections with
the other network. Changing the connectivity away from
this point enhances the likelihood of large cascades.

Our work extends upon Brummitt et al. by coupling
together scale-free networks, rather than random regu-
lar networks, to better approximate many natural and
man-made systems [39]. We show that the probability
of large cascades is significantly affected by the degree
distribution, the inter-layer degree correlations, and the
intra-layer degree correlations. These results could not
have been obtained without exploring the dynamics of
the BTW model on heterogeneous coupled networks, and
may provide insight into the evolutionary advantages of
particular network structures seen in nature.

We organize the rest of the paper as follows. We be-
gin in Sec. II with a brief background on the sandpile
process on individual complex networks. In Sec. IV we
show fundamental disparities between results of numeri-
cal simulations and assumptions made by branching pro-
cess approximations to the sandpile model, which moti-
vates discussing the BTW model for large cascades. In
Sec. V we study the spread of large cascades through in-
terconnected networks. Finally, we discuss our findings
in Sec. VI.

FIG. 1. Probability distribution of cascade size, P (s) (red cir-
cles), and cascade area, P (a) (blue triangles), for a) a neutral
and b) an assortative scale-free network. The dashed line cor-
responds to the mean-field solution to the BTW model, where
P (s) scales as a power law with exponent = 3/2. Overlap
of two measures demonstrates that nodes typically fail once
during each cascade. Network size is N = 5000, the degree
distribution scale-free exponent is γ = 3.00 and the BTW
dissipation parameter f = 0.01.

II. SANDPILE PROCESS ON ISOLATED
COMPLEX NETWORKS

The BTW sandpile model is a prototypical, idealized
model of cascading dynamics caused by load shedding on
a network [26, 27]. Throughout this paper, the following
formulation of the dynamics is used. Consider a network
of N nodes, where each node has some capacity to hold
grains of sand, and each grain corresponds to a unit of
load. The topology of the network is fixed, while the
amount of sand on individual nodes changes in time. The
capacity of a node is the maximal amount of sand that
it can hold. A natural choice is for the node to topple
when the amount of sand first equals its degree, k [32],
as the node can then shed one grain of sand to each
neighbor. We therefore set the capacity of each node
to k − 1. Hence, a (k − 1)-sand node of degree k is at
capacity, meaning that it holds as much sand (load) as it
can withstand. Adding a grain to such a node brings it
over capacity, and it therefore topples.

The dynamics of the sandpile model consists of a se-
quence of cascades on this network, defined as follows.
At each discrete time step, a grain of sand is dropped
on a node chosen uniformly at random. If this addition
does not bring the initial node over capacity, then that
cascade is finished. However, if the node is over capacity,
then it topples and sheds one grain to each of its neigh-
bors. Any node that then exceeds its capacity topples in
the same way, shedding to its neighbors who may in-turn
topple, which continues until all nodes are below or at
their capacity (i.e., equilibrium is restored). In order to
prevent the system from becoming saturated with sand,
a dissipation mechanism is required: whenever a grain
of sand is shed from one node to another, it dissipates
(is removed) with a small probability f . In this paper
f = 0.01, unless stated otherwise. This dissipation rate
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is chosen so that the largest cascades topple almost the
entire network.

The size of a cascade is the total number of toppling
events, while the area of the cascade is the total number
of nodes that ever topple. In scale-free networks, we find
that these two quantities are essentially the same [2] (see
Fig. 1), which is in contrast to the situation for regular
random graphs [31, 32]. As our interest is in scale-free
networks, we thus focus on the cascade size in the rest of
the paper.

The mean-field solution to the BTW model is char-
acterized by a distribution of cascade sizes, P (s), that
exhibits a power law with exponent −3/2 [40]. The same
scaling behavior is observed for a wide range of networks,
from random regular networks and other networks with
narrow degree distributions [28], to even classes of broad-
scale networks [2]. For scale-free random networks, the
distribution deviates from the mean-field result only if
the degree distribution is sufficiently heavy tailed. If the
exponent of the degree distribution is 2 < γ ≤ 3, one ob-
serves cascade size distribution of exponent γ/(γ−1) [2].
Otherwise the mean-field value is observed [2]. Degree
heterogeneity therefore creates either the -3/2 exponent
or heavier-tailed cascades, and is not a priori a mecha-
nism to reduce the probability of large cascades.

III. INDIVIDUAL NETWORKS

Individual scale-free networks are generated using a
modified version of the configuration model [41]. Our
results in the main text are for a degree distribution
P (k) ∼ k−γ , where γ = 3.00, the mean degree 〈k〉 = 4
and the minimum degree is kmin = 2. We find, however,
that the main results appear to not strongly depend on
the value of γ, as seen in the Appendix (cf. Fig. 11).
Next, we adopt the rewiring algorithm of [42] to obtain
networks with positive correlations between degrees of
individual nodes and that of their neighbors. This proce-
dure leads to a modular structure where nodes of similar
degree are more likely to be connected with each other.
Although the assortativity of the original neutral scale-
free networks is low (a = 0.020±0.005) [43], the rewiring
procedure increases assortativity to a = 0.25 ± 0.02,
which corresponds to significant degree-degree correla-
tions. The assortativity of each network is demonstrated
by the block structure of the adjacency matrix showed on
Fig. 2. Although our algorithm can produce assortativity
as high as a = 0.45 ± 0.05, we choose a more moderate
assortativity to reduce degree-induced modularity, and
to better match the assortativity of empirical networks
[44].

In Fig. 2 we demonstrate how the probability for nodes
to topple changes with cascade size for both neutral and
assortative networks. In assortative scale-free networks,
low degree nodes topple more often in small cascades
than in large ones. The opposite is true for high degree
nodes. We therefore infer that high degree nodes must

FIG. 2. Chance of toppling in a cascade of size s. Top four
panels show chance of a node toppling in cascades of size: a)
50 < s < 100, b) 100 < s < 500, c) 500 < s < 1000 and
d) s > 2500. In a neutral network (red circles), nodes of
various degree are approximately equally likely to participate
in cascades of different sizes. In an assortative network (blue
squares) high degree nodes topple frequently in large cascades
and infrequently in small ones, while the reverse is true for
low degree nodes. Bottom two panels illustrate chance that a
link between two nodes is used in sand redistribution during
a cascade. Adjacency matrices for e) neutral scale-free net-
work and f) assortative network, where nodes in each figure
are sorted from low degree (bottom left corner) to high de-
gree (top right corner). Colors indicate the probability that,
in a large cascade, a given link participates in sand redistri-
bution. These panels further demonstrate that, in assortative
networks, links connected to high degree nodes are more likely
to participate in large cascades.

topple if a large cascade is to occur. In comparison the
likelihood for nodes to topple in neutral networks is much
less dependent on degree.

IV. SAND DISTRIBUTION ASSUMPTION

In the previous section, we notice the relationship be-
tween cascade size and node degree is different for neu-
tral and assortative scale-free networks. In particular the
almost constant probability for nodes to topple in the
neutral topology comes as a surprise, because it contra-
dicts the existing assumption that the probability that
a node topples is proportional to the inverse of a node’s
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FIG. 3. A corollary of the “1/k ansatz” is that the probability
for a degree-k node to have i grains of sand is constant and
equal to 1/k, as denoted by the dashed line. However, for
k-regular networks, as well as neutral and assortative scale-
free networks, behavior deviates strongly from this corollary.
Degree−10 nodes (a) and degree−20 nodes (b) are more likely
to have near-critical amounts of sand, and less likely to have
low amounts of sand. Furthermore, nodes in assortative scale-
free networks behave similarly to nodes in k-regular graphs of
the same degree, while nodes in neutral scale-free networks
show the strongest deviation from the 1/k ansatz, with loads
skewed strongly towards critical capacity. Network size is
N = 5000 and the degree distribution scale-free exponent is
γ = 3.00.

degree, which is commonly referred to as the 1/k ansatz.
This ansatz is often a fundamental assumption when de-
termining how the dynamics approach a critical branch-
ing process [2, 28, 32]. Because we observe that high-
degree nodes topple with a relatively high probability
that strongly diverges from 1/k, we are motivated to in-
vestigate the validity of the 1/k ansatz. In [32] the au-
thors do show that the 1/k assumption is not strictly
valid and that higher degree nodes are more likely to be
at capacity. Yet, they attribute the observed power law
distribution of failures sizes to be due to universality. We
shown below that analyzing the out of equilibrium dis-
tribution of sand on nodes for the BTW model provides
the resolution for how a critical branching process can
arise from a system seemingly poised for a super-critical
branching process.

A. Equilibrium configuration of the sandpile model

We begin by considering the distribution of sand on the
network in equilibrium (just before an additional grain of
sand is dropped). A corollary of the 1/k ansatz is that the
probability for a degree-k node to have i grains of sand is
constant and equal to 1/k, such that there is no typical
amount of sand in any inactive node [2, 28, 32]. In Fig. 3,
we notice that the distribution of sand differs significantly
from analytic assumptions. Although past works [2, 28,
32] report that the 1/k corollary approximately holds,
our observations demonstrate a more complex picture.
As shown in Fig. 3, the probability that a degree-k node

has i-sand is not 1/k, but is strongly skewed towards
larger values of i. This observation holds for various node
degrees, network topologies, network sizes, and various
values of the dissipation rate, f , as discussed in detail in
the Appendix.

Furthermore, we observe a strong effect of degree corre-
lations: degree−k nodes in neutral and assortative scale-
free networks are characterized by different sand distribu-
tions. The departure from 1/k distribution is particularly
pronounced for the neutral topology, where probability
for a node to be close to capacity is nearly twice what we
would expect theoretically.

Additionally we notice strong similarities between i-
sand distributions for k-regular and assortative networks.
This property, combined with the modular nature of as-
sortative network, suggests that modules of similar de-
gree dynamically behave like regular graphs with the
same degree. One could interpret the BTW dynamics
on assortative scale-free networks as one on a set of cou-
pled regular graphs of increasing degree. We will demon-
strate later that this property has significant impact on
the occurrence of catastrophic failures in interconnected
heterogeneous networks.

In summary, the probability that a node topples
(Fig. 2), and the probability that a node has i grains
of sand (Fig. 3) both show strong deviations from the-
oretical assumptions previously relied upon to explain
the critical dynamics of the BTW model. Because em-
pirically we observe that the probability of a node top-
pling is greater than 1/k, it would naively imply that
the BTW model always produces a super-critical branch-
ing process. Why, then, does all past research observe a
power-law tail in the distribution of cascade sizes, a sig-
nature of a critical process? Figure 1, for example, shows
that the cascade size and area distribution for scale-free
networks broadly follows a power-law distribution over
several orders of magnitude. Larger networks produce
even stronger agreement with the theoretical power-law
distribution.

B. Dynamics out of equilibrium

To understand why the BTW model creates power-law
distributions, we study out-of-equilibrium behavior of the
model’s dynamics. Namely, we investigate the probabil-
ity of a degree-k node having i-sand as a large cascade
progresses. We consider a cascade evolution scheme that
proceeds according to generations, in parallel with the
nomenclature of the branching processes. The node top-
pling as a result of the initial random deposition of a
grain of sand is called a root and forms the first genera-
tion of the cascade. Each successive generation is formed
by the nodes that received sand from the previous gener-
ation’s nodes that have toppled. Figure 4 demonstrates
our results. We find that, regardless of node degree, the
sand distribution on nodes in the nth generation is a bet-
ter and better approximation of the analytic assumption
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FIG. 4. Distribution of sand in and out of equilibrium;
a) degree−5, b) degree−10, and c) degree−20 nodes. Black
lines are the equilibrium distribution, just before any sand is
dropped. Red, blue, cyan and magenta lines correspond to the
sand distribution among nodes that receive grains of sand over
the course of large cascades, where s > N/2 nodes topple. As
the cascade progresses (from early generations to later ones),
the sand distribution approaches the 1/k corollary, and sand
topples with probability 1/k in agreement with the ansatz. In
the figures, the networks are neutral scale-free with γ = 3.00
and size N = 5000. Other topologies show similar behavior.

of 1/k.

Initial generations strongly disagree with theory. For
example, there is a clear peak in the distribution at sec-
ond generation because, in order for a cascade to be large,
a high number of neighbors must topple. These initial
generations, however, consist of very few nodes. The
second generation consists of at most k nodes, and the
third generation has less than k×〈k〉nn nodes on average,
where 〈k〉nn is the mean degree of the nearest neighbors.
Each generation g is bounded by k× (〈k〉nn)g−2 thus the
bulk of the nodes in large cascades are those in the later
generations that happen to closely approximate the 1/k
assumption.

In summary, the BTW dynamics are characterized
by the equilibrium sand distribution differing from 1/k
ansatz, but, over the course of a cascade, the sand dis-
tribution among nodes that receive sand evolves to the
theoretically expected distribution. There are two prop-
erties of large cascades that allow the observed BTW
dynamics to more closely approximate the prediction of
the theory. First, the out-of-equilibrium statistics are
only based on nodes that receive sand, implicitly intro-
ducing a biased sub-sampling of sand distribution on the
nodes. This is why the equilibrium distribution disagrees
with the 1/k assumption. Second, we observe the nodes
that toppled in earlier generations receive sand in future
generations, but never enough sand to topple a second
time. For example, a node that topples during a cascade
will send sand back to the parent node that toppled it.
Additionally, due to non tree-like structure of the net-
work, a non-negligible fraction of nodes receive two and
more grains of sand per generation. Thus loops present
in the network affect the sand distribution on the net-
work, and are responsible for skewed equilibrium i-sand
distribution.

FIG. 5. The probability of a large cascade for two coupled
assortative scale-free networks versus the connectivity proba-
bility p. Inter-layer connectivity has a strong impact on the
BTW dynamics, with the hub-to-hub coupling resulting in a
constant chance of cascading failures, while random coupling
results in an increasing occurrence of large events. Each net-
work has N = 5000 and the dissipative parameter f = 0.01.

V. INTERCONNECTED SCALE-FREE
NETWORKS

In this section, we study how network topology affects
the probability of large cascades with various intra- and
interlayer connectivity statistics. We focus on the excep-
tionally large cascades in the BTW sandpile model due to
the disproportionate cost associated with such large ex-
treme events, when compared to the cost of small events,
occurring in real interconnected systems. We generate
two scale-free networks, denoted here network (or layer)
A and network (or layer) B, each with N nodes (2 × N
nodes total). We connect nodes within layers either at
random or assortatively, and connect nodes between lay-
ers either at random or in a hub-to-hub fashion. Random
inter-layer connectivity is created by connecting p × N
random pairs of nodes together between layers. Hub-to-
hub inter-layer connectivity is created with the following
algorithm:

1. Sort nodes in each network from highest-degree to
lowest-degree

2. Connect p × N nodes in each network together
starting with the highest-degree node and working
down.

The parameter p, which varies between 0 and 1, dictates
the strength of coupling between individual networks.
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FIG. 6. The probability of a cascade greater than N = 5000
versus inter-layer connectivity p. Shown are neutral networks
with random and hub-to-hub coupling as well as assortative
networks with random and hub-to-hub coupling.

A. Assortative scale-free networks

We first focus our attention on the effect that the pres-
ence of other layers has on an individual network layer
(without loss of generality, we can choose layer A). For
each cascade, we record the number of nodes that toppled
during the process, sA and sB , separately for both layers.
We then determine the probability sA > N/2. We dif-
ferentiate between the chance of large cascades occurring
locally in layer A, denoted PAA(sA > N/2), and that of
cascades originating in layer B (inflicted cascades) and
traversing into layer A, denoted PBA(sA > N/2). This
allows us to understand how local cascades spread within
and across networks.

In Fig. 5, we find that the probability of large cascades
in coupled assortative networks depends strongly on the
mode of interlayer coupling. With hub-to-hub coupling,
we notice that PAA(sA > N/2) initially drops dramati-
cally with increasing interlayer coupling and, furthermore
this probability barely changes for p > 0.2. In compari-
son, PBA(sA > N/2) increases initially but also reaches
a constant value for p > 0.2. The overall probability
of large cascades stays thus constant for p > 0.2. With
random inter-layer coupling, however, moderate to high
inter-layer connectivity significantly increases the likeli-
hood of large cascades that originate in both layer A or
B. This latter behavior resembles one observed in ran-
dom regular networks examined by Brummitt et al. [17],
suggesting a similar mechanism.

The decrease in the likelihood of large cascades for hub-
to-hub coupled assortative networks lies in their highly
modular structure (see connectivity of nodes in Fig. 2).
Hub-to-hub connectivity extends the modular structure
of individual layers to the entire dual-layer system, pre-

serving linkage of nodes of similar degree. Furthermore,
in an individual assortative layer, the occurrence of a
large cascade is conditioned on toppling of several high
degree nodes (see Fig. 2), a rare event. It is quadrati-
cally less probable that such condition will be met in a
double layer system. Coupling layers of assortative scale-
free networks in a hub-to-hub fashion therefore decreases
the likelihood of large cascades by absorbing excess load
from a layer.

In contrast, by coupling the layers of assortative net-
works randomly, there is a greater amount of connectiv-
ity between degree-k modules, and the connectivity gives
rise to a more homogeneous network, reminiscent of cou-
pled random regular networks studied by [17]. Following
Brummitt et al. [17], we believe that an increase in the
probability of large cascades for large p is caused by di-
verted loads that return to the network. Random wiring
allows for high-degree nodes in one layer to connect to
low-degree nodes in another, which allows for cascades to
more easily cross layers because low-degree nodes topple
more often. Because low-degree nodes shed their sand
more often, there is also a greater likelihood for high-
degree nodes to topple, thereby triggering a large cas-
cade.

We can extend our results to large cascades affecting
both layers of the network as well. We show in Fig. 6 that
for p > 0.3, the regime where large cascades are sup-
pressed, assortative, hub-to-hub coupled networks have
the smallest probability of large cross-network cascades
where s > N . Predictably, however, greater connectiv-
ity increases the probability of large cascades overall. In
real systems, however, it may be important to connect
all regions together, therefore the assortative hub-to-hub
topology produces the best trade-off of inter-connectivity
without as large a probability of large cascades.

B. Neutral scale-free networks

In this section, we focus on coupled random scale-free
networks. This represents networks with the least intra-
layer structure. As illustrated in Fig. 7, the probability
for large cascades that originate in network A drops sub-
stantially with p, while the probability of large inflicted
cascades rises. The overall probability that any cascade
occurs in network A, PA, is reduced with introduction of
interlayer coupling, although for p > 0.3, the probabil-
ity is roughly constant, similar to assortative scale-free
networks coupled hub-to-hub. The mechanism responsi-
ble for this behavior, however, differs fundamentally from
that in the case of assortative networks.

Namely, the lack of degree correlations in neutral scale-
free network causes the toppling rate to be almost inde-
pendent of node degree (Fig. 2), regardless of cascade
size. Thus, interlayer coupling, whether random or hub-
to-hub, has approximately the same effect on the dynam-
ics. With low coupling, network A benefits from shedding
load to network B, but once there is moderate coupling,
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FIG. 7. The probability of a large cascade occurring in a
system of two coupled neutral scale-free networks versus the
connectivity probability, p. This probability is virtually indis-
tinguishable between hub-to-hub and random interlayer con-
nectivity. As the connectivity probability p increases, cascad-
ing failures reach a constant. In each network, N = 5000 and
the dissipative parameter f = 0.01.

the two networks act as a single random network, im-
plying the probability of large cascades does not vary
significantly for p > 0.2.

Finally, we notice that random networks produce
higher probabilities of large cross-network cascades com-
pared to assortative networks, as seen in Fig. 6. This
further demonstrates the rationale for assortative net-
works, and suggests that real systems undergoing failure
cascades may be evolutionarily disinclined to be random.

VI. DISCUSSION

We set out to better understand the dynamics of the
BTW sandpile model, a prototypical SOC model [26, 27].
In doing so, we first noticed an under-appreciated aspect
of the model: the node sand distribution differs markedly
from the theoretical assumption. The distribution would
seemingly imply that the dynamics are super-critical in
equilibrium, but the non-equilibrium statistics demon-
strate that the sand redistributes to create critical dy-
namics.

Although the BTW model is simplistic, it creates im-
portant insights into how the spread of cascading failures
is affected by underlying network topology. We demon-
strate that the robustness of interconnected systems is
a function of correlations between intra- and interlayer
interactions. This is similar to earlier results of Reis et
al. [15], based on studies of bond percolation-like process
on interconnected scale-free networks.

Intriguingly, the network topology that we found
most effective in reducing large cascades—assortative
scale-free networks with hub-to-hub inter-connectivity—

is found in functional brain networks [15, 18–21, 23]. Be-
cause neuronal avalanches appear to self-organize to a
critical state [1–4], the human brain can be modeled in
a simplified manner via the BTW model. Taking these
results together, we would predict that the brain is con-
structed so as to prevent large cascades. If we were to in-
terpret large cascades as seizures, for example, this would
make the surprising suggestion that a healthy brain nat-
urally reduces the likelihood of seizures, and a reduction
in assortativity, or hub-to-hub inter-connectivity would
make seizures more likely. This agrees with recent find-
ings that particular abnormal functional brain networks,
such as those observed in schizophrenia [45, 46], increase
the likelihood of seizures [47, 48].

Furthermore, in agreement with our model (Fig. 2),
rich club nodes (hub nodes in assortative networks) are
strongly associated with generation seizures [49]. Over-
all, our results show that despite the BTW model’s sim-
plicity, it can qualitatively approximate the occurrence
of brain seizures. Moreover, it can provide insight into
the evolutionary motivation of functional brain network
topologies. At the same time we realize that complex,
multi-scale structure of real networks poses challenges for
the identification of unique topological features responsi-
ble for observed cascading behavior. Numerous network
features, such as clustering, assortativity, or broad de-
gree distributions, are present concurrently in real sys-
tems, such as brains. Therefore, any changes in topo-
logical structure often affect those measures simultane-
ously, making controlled experiments extremely difficult.
This demonstrates the validity of computational studies
of networks possessing realistic features observed in real
systems, such as one presented in this paper.

Our work suggests several avenues of future research.
We find that high-degree nodes in assortative networks
are likely to topple in large cascades, therefore one could
design protocols controlling the amount of load on those
nodes or devise quarantine scenarios in order to limit
the spread of catastrophic failures. Moreover, a fruit-
ful avenue of research would be predicting large cascades
when a cascade is beginning, such as detecting whether
hub nodes shed their load. In addition, we only explored
this behavior for the BTW model. It is an open question
to understand if these same three features of heteroge-
neous degree distributions, internal network assortativ-
ity and interlayer degree correlations also suppress large-
scale failure for other types of cascade models, such as
threshold models.
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FIG. 8. Choice of the dissipation rate f adopted in the sand-
pile dynamics affects the tail of the distribution of cascade
sizes, P (s). Inverse power law scaling that characterises P (s)
is preserved for a) regular random graph, b) neutral scale-free
network and c) assortative scale-free network.

FIG. 9. Probability that a degree-k node holds i grains of sand
stays constant despite significant variation in the dissipation
rate f of the sandpile process. Behavior of a random 10-
regular network is compared with k = 10 nodes of a neutral
and assortative scale-free network, respectively.

VIII. APPENDIX

In this section, we discuss several details of the model
that, in the interest of space, we leave out of the main
text.

A. Dissipation rate and system size.

After observing the sand distribution shown on Fig. 3,
which differs from theoretical assumption of critical
branching process, one might suspect that presented re-
sults are side effects of one of the model’s two parameters:
the dissipation rate, f , or the system size, N . However,
varying those parameters does not appear to better ap-
proximate the 1/k corollary.

First we consider the effect of different values of the dis-
sipation rate f on the sandpile dynamics. Because this

constant regulates total amount of sand on the network,
higher values correspond to increased sand removal, while

FIG. 10. Probability that a degree-k node holds i grains of
sand saturates as a network size N increases. Behavior of a
sandpile process on a random 10-regular network with dissi-
pation rate a) f = 0.01 and b) f = 0.001 is shown.

lower values lead to the accumulation of load in the sys-
tem. This behavior is reflected in the statistics of ob-
served cascades, illustrated in Fig. 8. The former condi-
tion of lowering load results in decreased probability of
large cascades, denoted by a truncation of the tail of the
cascade size distribution. On the other hand excessive
sand accumulation gives rise to more frequent large cas-
cades, as shown by a visible peak in the P (s) function
for s ∼ O(N).

However, even though varying f significantly changes
the cascade size distribution, it has little effect on the
sand distribution on individual nodes (Fig. 9). As lower
value of f leads to sand accumulation, we observe slight
increase in probability of node being at capacity, but the
effect is very subtle, especially when contrasted with the
impact that change in f has on macroscopic observables,
such as P (s). As noted earlier, the distribution of sand
on nodes of assortative scale-free network overlaps with
the distribution of sand on random regular network of
the same degree, independent of the selected value of f .

Finally, we consider the impact of finite system size,
N . In Fig. 10 we show, that despite increasing the system
size by three orders of magnitude, the disparities in sand
distribution are preserved.

B. Exponent of the scale-free network degree
distribution.

All results reported in the main text refer to scale-free
networks with a degree distribution P (k) ∼ k−3, there-
fore we want to test if heavier-tail distributions affect
significantly those observations. However, we find that,
e.g., for P (k) ∼ k−2.5, our results appear similar to those
discussed in the main text. Despite differences in abso-
lute values of probabilities of large cascades, qualitative
behavior for all considered intra- and interlayer coupling
modes is the same, as shown in Fig. 11.
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FIG. 11. Chance of large cascades occurring in a system of a)
neutral and b) assortative interconnected scale-free networks,
where scaling exponent of the individual layer degree distri-
bution is γ = 2.50. Despite differences in absolute probability
values, qualitative behavior remains the same as for γ = 3.00
(compare to Fig.7 and Fig.5).
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