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The main point of this paper is to provide an affirmative answer through exploiting reinforcement
learning (RL) in artifcial intelligence (AI) for eliminating herding without any external control in
complex resource allocation systems. In particular, we demonstrate that, when agents are empow-
ered with RL (e.g., the popular Q-learning algorithm in AI) in that they get familiar with the
unknown game environment gradually and attempt to deliver the optimal actions to maximize the
payoff, herding can effectively be eliminated. Furthermore, computations reveal the striking phe-
nomenon that, regardless of the initial state, the system evolves persistently and relentlessly toward
the optimal state in which all resources are used efficiently. However, the evolution process is not
without interruptions: there are large fluctuations that occur but only intermittently in time. The
statistical distribution of the time between two successive fluctuating events is found to depend
on the parity of the evolution, i.e., whether the number of time steps in between is odd or even.
We develop a physical analysis and derive mean-field equations to gain an understanding of these
phenomena. Since AI is becoming increasingly widespread, we expect our RL empowered minority
game system to have broad applications.

I. INTRODUCTION

The tremendous development of information technol-
ogy has made it possible for artificial intelligence to pen-
etrate into every aspect of the human society. One of the
fundamental traits of AI is decision making - individ-
uals, organizations, and governmental agencies tend to
rely more and more on AI to make all kinds of decisions
based on vast available information in an ever increas-
ingly complex environment. At the present, whether a
strong reliance on AI is beneficial or destructive to the
mankind is an issue of active debate that attracts a great
deal of attention from all the professions. In the vast field
of AI related research, a fundamental issue is how AI af-
fects or harnesses the behaviors of complex dynamical
systems. In this paper, we address this issue by focusing
on complex resource allocation systems that incorporate
AI in decision making at the individual agent level, and
demonstrate that AI can be quite advantageous for com-
plex systems to reach their optimal states.

Resource allocation systems are ubiquitous and pro-
vide fundamental support for the modern economy and
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society, which are typically complex systems consisting
of a large number of interacting elements. Examples in-
clude ecosystems of different sizes, various transporta-
tion systems (e.g., the Internet, urban traffic systems,
rail and flight networks), public service providers (e.g.,
marts, hospitals, and schools), as well as social and eco-
nomic organizations (e.g., banks and financial markets).
In a resource allocation system, a large number of com-
ponents/agents compete for limited public resources in
order to maximize payoff. The interactions among the
agents can lead to extremely complex dynamical behav-
iors with negative impacts on the whole system, among
which irrational herding is of great concern as it can cause
certain resources to be overcrowded but leave others un-
used and has the potential to lead to a catastrophic col-
lapse of the whole system in relatively short time. A
general paradigm to investigate the collective dynamics
of resource allocation systems is complex adaptive sys-
tems theory [1–3]. At the microscopic level, multi-agent
models such as the minority game model [4] and interac-
tion models based upon the traditional game theory [5–7]
have been proposed to account for the interactions among
the individual agents.

Minority game is a paradigmatic model for resource al-
location in population, which was introduced in 1997 [4]
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for quantitatively studying the classic El Farol bar-
attendance problem first conceived by Arthur in 1994 [8].
In the past two decades, minority game and its variants
were extensively studied [9–35], where a central goal was
to uncover the dynamical mechanisms responsible for the
emergence of various collective behaviors. In the original
minority game model, an individual’s scheme for state
updating (or decision making) is essentially a trial-and-
error learning process based on the global historical win-
ning information [4]. In other models, learning mecha-
nisms based local information from neighbors were pro-
posed [11, 12, 16, 17, 25, 28, 31–35]. The issue of control-
ling and optimizing complex resource allocation systems
was also investigated [32], e.g., utilizing pinning control
to harness the herding behavior, where it was demon-
strated that a small number of control points in the net-
work can suppress or even eliminate herding. A theoreti-
cal framework for analyzing and predicting the efficiency
of pinning control was developed [32], revealing that the
connecting topology among the agents can play a sig-
nificant role in the control outcome. Typically, control
requires external interventions. A question is whether
herding can be suppressed or even eliminated without
any external control.

In this paper, we address the question of how AI can
be exploited to harness undesired dynamical behaviors to
greatly benefit the operation of the underlying complex
system. More generally, we aim to study how reinforce-
ment learning (RL) in AI affects the collective dynamics
in complex systems. For this purpose, we introduce a
minority game model incorporating RL at the individual
agent level, where the agents participating in the game
are “intelligent” in the sense that they are capable of
RL [36], a powerful learning algorithm in AI. Empow-
ered with RL, an agent is capable of executing an ef-
ficient learning path toward a pre-defined goal through
a trial-and-error process in an unfamiliar game environ-
ment. Our model is constructed based on the interplay
of a learning agent and the environment in terms of the
states, actions, rewards, and decision making. In RL, the
concepts of value and value functions are key to intelli-
gent exploration, and there have been a number of RL al-
gorithms, such as dynamic programming [36, 37], Monte
Carlo method [36, 37], temporal differences [36, 38], Q-
Learning [36, 39, 40], Sarsa [36], and Dyna [36], etc. We
focus on Q-learning, which was demonstrated previously
to perform well for a small number of individuals in their
interaction with an unknown environment [41–45]. Espe-
cially, it was demonstrated that incorporating Q-learning
into minority game dynamics [46] can suppress herd-
ing. Distinct from previous work, here we study minority
game dynamics with a large number of “intelligent” play-
ers, where Q-learning is adopted for state updating in a
stochastic dynamical environment, without involving any
other algorithm. The question is whether the multi-agent
RL minority game system can self-organize itself to gen-
erate optimal collective behaviors. Our main result is
an affirmative answer to this question. In particular, we

find that the population of RL-empowered agents can ap-
proach the optimal state of resource utilization through
self-organization regardless of the initial state, effectively
eliminating herding. However, the process of evolution
toward the optimal state is typically disturbed by inter-
mittent, large fluctuations (oscillations) that can be re-
garded as failure events. There can be two distinct types
of statistical distributions of the “laminar” time intervals
in which no failure occurs, depending on their parity, i.e.,
whether the number of time steps between two consecu-
tive failures is odd or even. We develop a physical analy-
sis and use the mean-field approximation to understand
these phenomena. Our results indicate that Q-learning
is generally powerful in optimally allocating resources to
agents in a complex interacting environment.

II. MODEL

Our minority game model with agents empowered by
Q-learning can be described, as follows. The system
has N agents competing for two resources denoted by
r = +1 and −1, and each agent chooses one resource
during each round of the game. The resources have a
finite capacity Cr, i.e., the maximum number of agents
that each resource can accommodate. For simplicity, we
set Cr = N/2. Let A(t) denote the number of agents se-
lecting the resource r = +1 at time step t. For A(t) ≤ Cr,
agents choosing the resource +1 belong to the minority
group, and win the game in this round. Conversely, for
A(t) > Cr, the resource +1 is overcrowded, so the corre-
sponding agents fail in this round.

The Q-learning adaptation mechanism [40] is incorpo-
rated into the model by assuming that the states of the
agents are parameterized through Q functions that char-
acterize the relative utility of a particular action. The
Q functions are updated during the course of the agents’
interaction with the environment. Actions that lead to a
higher reward are reinforcement. To be concrete, in our
model, agents are assumed to have four available actions,
and we let Q(s, a) be the Q value of the corresponding
action at time t, where s and a denote the current state
of agent and the action that the agent may take, respec-
tively. A Q function can then be expressed in the follow-
ing form:

Q =

[
Q(+1,+1) Q(+1,−1)
Q(−1,+1) Q(−1,−1)

]
.

For an agent in state s, after selecting a given action a,
the corresponding Q value is updated according to the
following rule:

Qt(s, a) = Qt−1(s, a) + α[Rt(a) + γQmax
t−1 (s′, a′)

−Qt−1(s, a)],
(1)

where s denotes the current state of the agent, i.e., the
agent’s action in the last step, a denotes the action that
the agent may take, α ∈ (0, 1] is the learning rate, and
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Rt(a) is the reward from the corresponding action a at
time t. The parameter γ ∈ [0, 1) is the discount factor
that determines the importance of future reward. Agents
with γ = 0 are “short sighted” in that they consider
only the current reward, while those with larger values
of γ care about reward in the long run. The quantity
Qmax

t−1 (s′, a′) is the maximum element in the row of the
s′ state, which is the outcome of the action a based on
s, namely, s′ is equal to action a at the current time
step. Equation (1) indicates that the matrix Q contains
information about the accumulative experience from his-
tory, where the reward Rt(a) (for action a from state s)
and the expected best value Qmax

t−1 (s′, a′) based on s′ both
contribute to the updated value Qt(s, a) with the weight
α, and the previous value Qt−1(s, a) is also accumulated
into Qt(s, a) with the weight 1− α.

While agents select the action mostly through RL, cer-
tain randomness can be expected in decision making. We
thus assume that a random action occurs with a small
probability ε, and agents select the action with a large
value of Q(s, a) with probability 1 − ε. For a given set-
ting of parameters α and γ, the Q-learning algorithm is
carried out, as follows. Firstly, we initialize the matrix Q
to zero to mimic the situation where the agents are un-
aware of the game environment, and initialize the state
s of each agent randomly to +1 or −1. Next, for each
round of the game, each agent chooses an action a with
a larger value of Qt(s, a) in the row of its current state s
with probability 1 − ε, or chooses an action a randomly
with probability ε. The Q(s, a) value of the selected ac-
tion is then updated according to Eq. (1). The action
leading to the state s′ identical to the current winning
(minority) state has Rt(a) = R = 1, and that leading
to the failed (majority) state has Rt(a) = 0. Finally, we
take the selected action a to update the state from s to
s′.

Distinct from the standard supervised learning [47],
agents adopting RL aim to understand the environment
and maximize their rewards gradually through a trial-
and-error process. The coupling or interaction among
the agents is established through competing for limited
resources. Our RL based minority game model also dif-
fers from the previously studied game systems [32] in
that our model takes into account agents’ complicated
memory and decision making process. For our system, a
key question is whether the resulting collective behaviors
from RL may lead to high efficiency or optimal resource
allocation in the sense that the number of agents that a
resource accommodates is close to its capacity.

III. SELF-ORGANIZATION AND
COMPETITION

In minority game dynamics, a common phenomenon is
herding, in which a vast majority of the agents compete
for a few resources, leaving other resources idle. The
phenomenon emerges due to the feedback on historical

information in the game system, i.e., the individuals rely
on global or local historical information before making a
decision. Herding is harmful and undesired as it can lead
to starvation of certain resources and ineffective usage
of others, greatly reducing the system efficiency. Herd-
ing can even cause the whole system to collapse in short
time. In our system with RL, herding also occurs but,
due to the intrinsic Q-learning mechanism, the behavior
is spontaneously suppressed in a periodic fashion, as the
periodic bursts of failures can lead to dramatic fluctua-
tions in the utilization of the resources.

In the traditional minority game, the dynamical rules
stipulate that competition and learning among agents
can lead to the detrimental herding behavior, to which
game systems composed of less diversified agents are par-
ticularly susceptible [32–35]. In our minority game sys-
tem of agents empowered with RL, herding is dramat-
ically suppressed. To give a concrete example, we set
the parameters for Q learning as: learning rate α = 0.9,
discount factor γ = 0.9, and exploration rate ε = 0.02.
Figure 1(a) shows the temporal evolution of the number
A(t) of agents choosing resource +1. The main features
of the time series are the continuous oscillations of A(t)
about the capacity Cr of resources, convergence of the
oscillation amplitude, and bursts of A(t) that occur in-
termittently. As the oscillations converge to the optimal
state, the two resources r = +1 and r = −1 play as the
minority resource alternatively. The remarkable feature
is that the agent population tends to self-organize into
a non-equilibrium state with certain temporal pattern in
order to reach the highly efficient, optimal state, but the
process is interrupted by large bursts (failures or fluctu-
ations).

A. Convergence of oscillations

Emergence of two types of agents. From numerical
simulations of the RL minority game system, we find
that, as the system self-organizes itself into patterns of
regular oscillations, agents with two types of behaviors
emerge. The first type is those agents who are “self-
satisfied” in the sense that they remain in either the
s = +1 state or the s = −1 state. Those agents win and
lose the game alternatively as the system develops regu-
lar oscillations. The population sizes of the self-satisfied
agents are denoted as n(+1,+1) and n(−1,−1), respec-
tively. The second type of agents are the “speculative”
agents, or speculators, who switch state at each time step
between s = +1 and s = −1. These agents always win
the game when the system exhibits regular oscillations.
We denote the population sizes of the speculative agents
as n(+,−) and n(−,+), which correspond to the two
possibilities of switching: from s = +1 to s = −1 and
vice versa, respectively.

Figure 1(b) shows the state transition paths induced
by the self-satisfied agents and the speculative agents.
The oscillations of A(t) associated with the convergent
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FIG. 1. Typical temporal evolutionary behavior of the pro-
posed minority game system with RL empowered agents. (a)
Time series of the attendance A(t) of resource +1. Interac-
tions among the agents make the system self-organize into a
special temporal pattern with two main features: the con-
vergence of regular oscillations towards the optimal value
Cr = N/2, and intermittent bursts of failures in utilizing
resources. (b) A schematic sketch of the state transitions of
agents during the dynamical process. There are self-satisfied
agents in a fixed state and speculative agents that continu-
ously switch state between +1 and −1. (c) Time series of
Q(s, a) as the numerical solutions of Eqs. (2-4). The param-
eters are: learning rate α = 0.9, discount factor γ = 0.9,
exploration rate ε = 0.02, and system size N = 5001.

process can be attributed to the state transition of the
speculative agents between the states +1 and −1. This
agrees with the intuition that, e.g., the investing behavior
of speculators in a financial market is always associated
with high risks and large oscillations. Due to the decrease
in the population of the speculative agents, the oscillation
amplitude in any time interval between two successive
failure events tends to decay with time.

Stable state of Q table. The oscillations of A(t) mean
that r = +1 and −1 act as the minority resource alterna-
tively. For the self-satisfied agents, according to the Q-
learning algorithm, the update of the element Q(s+, a+)
can be expressed as,

Qt+1(s+, a+) = Qt(s+, a+)

+ α[R+ γQt(s+, a+)−Qt(s+, a+)],

Qt+2(s+, a+) = Qt+1(s+, a+)

+ α[γQt+1(s+, a+)−Qt+1(s+, a+)],

(2)

where Qmax
t (s′, a′) = Qt(s+, a+) due to the inequality

Q(s+, a+) > Q(s+, a−). The update of the element

Q(s−, a−) is described by

Qt+1(s−, a−) = Qt(s−, a−)

+ α[R+ γQt(s−, a−)−Qt(s−, a−)],

Qt+2(s−, a−) = Qt+1(s−, a−)

+ α[γQt+1(s−, a−)−Qt+1(s−, a−)],

(3)

where Qmax
t (s′, a′) = Qt(s−, a−) as a result of the in-

equality Q(s−, a−) > Q(s−, a+).
For the speculative agents, the updating equations of

elements Q(s+, a−) and Q(s−, a+) are

Qt+1(s+, a−) = Qt(s+, a−)

+ α[R+ γQt(s−, a+)−Qt(s+, a−)],

Qt+2(s−, a+) = Qt+1(s−, a+)

+ α[R+ γQt+1(s+, a−)−Qt+1(s−, a+)],

(4)

where Qmax
t (s′, a′) = Qt(s−, a+) or Qt(s+, a−), due to

the inequalities Q(s+, a+) < Q(s+, a−), and Q(s−, a−) <
Q(s−, a+).

Figure 1(c) shows numerically obtained time series
of the elements of the matrix Q from Eqs. (2-4). For
the self-satisfied agents, the values of Q(s+, a+) and
Q(s−, a−) increase initially, followed by an oscillating so-
lution between the two values Q∗1 and Q∗2, where

Q∗1 =
[1 + α(γ − 1)]αR

1− [1 + α(γ − 1)]2

and Q∗2 =
αR

1− [1 + α(γ − 1)]2

are obtained from Eqs. (2) and (3). For the specula-
tive agents, both Q(s+, a−) and Q(s−, a+) reach a single
stable solution Q∗3 = R/(1 − γ), which can be obtained
by solving Eq. (4). The three relevant values have the
relationship Q∗1 < Q∗2 < Q∗3.

The emergence of the two types of agents can be un-
derstood from the following heuristic analysis. In the
dynamical process, a speculative agent emerges when the
element associated with an agent satisfies the inequalities
Q(s+, a−) > Q(s+, a+) and Q(s−, a+) > Q(s−, a−) si-
multaneously. Initially, the agents attend both resources
+1 and −1, with one group winning but the other losing.
Only the group that always wins the game can reinforce
themselves through further increment in Q(s+, a−) and
Q(s−, a+). The stable group of speculative agents leads
to regular oscillations of A(t), because they switch states
together between +1 and −1. An agent becomes self-
satisfied when it is in the +1 state and the inequality
Q(s+, a+) > Q(s+, a−) holds, or in the −1 state and
Q(s−, a−) > Q(s−, a+) holds. The self-satisfied state
can be strengthened following the evolution governed by
Eqs. (2) and (3), with Q(s+, a+) or Q(s−, a−) reaching
the oscillating state between Q∗1 and Q∗2, as shown in
Fig. 1(c). We see that the condition for an agent to be-
come speculative is more strict than to be self-satisfied.
Moreover, a speculative agent has certain probability to
become self-satisfied, as determined by the value of the
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exploration rate ε. As a result, the population of the
speculative agents tends to shrink, leading to a decrease
in the oscillation amplitude |n(+,−)−n(−,+)| and con-
vergence of A(t) closer to the optimal state N/2.
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FIG. 2. Convergence of regular oscillations and bursts of fail-
ure. (a,b) Convergence of the regular oscillation pattern de-
pends on the exploration behavior of the agents as character-
ized by the rate ε. For ε = 0 (gray region), the oscillation
amplitude does not converge. (c,d) Detailed processes for
the bursts of failure. If the regular oscillations do not cross
the line Cr = N/2 but behave either as (c) A(t) > Cr and
A(t+1) > Cr or as (d) A(t) < Cr and A(t+1) < Cr, the reg-
ular oscillations stop and a systematic failure burst emerges.
The blue line specifies A(t) = Cr. The parameters are the
same as in Fig. 1.

For the special case of ε = 0 [the gray regions in
Figs. 2(a) and 2(b)], agents take action entirely based
on historical experience Q. In this case, the numbers
of the self-satisfied and speculative agents become con-
stant, and A(t) no longer converges to that associated
with the optimal state. In general, randomness in explo-
ration can affect the convergence of the system dynamics
toward the state in which the resources are optimally uti-
lized. Specifically, random explorations can dramatically
increase the number of possible evolutionary paths, while
actions according to Q-function restrict the evolution di-
rection of the system toward the optimal reward-driven
path. As a result, setting ε 6= 0 can lead to an optimal
path of equilibrium attendance, effectively eliminating
herding. Nonetheless, a bursting behavior can emerge
in the long-term evolution of the system, reducing effi-
ciency. Randomness in exploration thus plays the role
of a double-edged sword: a larger value of ε can facili-
tate system’s settling into the optimal convergence path
and suppressing herding, but it can lead to an undesired
bursting behavior.

B. Intermittent failures in the RL empowered
minority game system

The intermittent bursts of failure events in the whole
system take place during the convergent process to the
optimal state. An understanding of the mechanism of
the failures can provide insights into the articulation of
strategies to make the system more robust and resilient.

The criterion to determine if an agent selecting +1
wins the minority game is A(t) < Cr = N/2. If the
event A(t) < Cr [or A(t) > Cr] occurs twice in row,
the oscillation pattern will be broken. Since the agents
are empowered with RL, two consecutive winnings of ei-
ther resource −1 or resource +1 represent an unexpected
event, and this would lead to cumulative errors in the
Q table, triggering a burst of error in decision making
and, consequently, leading to failures in utilizing the re-
sources. To see this in a more concrete way, we note that
a self-satisfied agent wins and fails alternatively follow-
ing a regular oscillation pattern. If the agent fails twice
in row, its confidence in preserving the current state is
reduced. As a result, the event Q(s+, a+) < Q(s+, a−)
or Q(s−, a−) < Q(s−, a+) would occur with a high prob-
ability, leading to a decrease in the populations n(+,+)
and n(−,−) of the self-satisfied agents. The populations
of the speculative agents, n(+,−) and n(−,+), are in-
creased accordingly. These events collectively generate a
bursting disturbance to the regular oscillation pattern of
A(t), terminating the system’s convergence toward the
optimal state, as shown in Figs. 2(a) and 2(b).

In general, the stability of the regular oscillations de-
pends on two factors: the equilibrium position deter-
mined by the self-satisfied agents, and the random fluc-
tuations introduced by agents’ exploration behavior. For
the first factor, the equilibrium position is given by
A0 = n(+,+) + [n(−,+) − n(+,−)]/2, which deviates
from Cr due to the asymmetric distribution of the self-
satisfied agents in the two distinct resources. Figures 2(c)
and 2(d) show two examples with the equilibrium posi-
tion A0 larger or smaller than Cr (the blue solid line),
respectively. We see that the converging process is termi-
nated when either the upper or the lower envelope reaches
Cr, i.e., when two consecutive steps of A(t) stay on the
same side of Cr in replacement of an oscillation about Cr.
In the thermodynamic limit, for an infinitely large sys-
tem with self-satisfied agents symmetrically distributed
between +1 and −1 (so that the equilibrium position A0

is at Cr), the oscillation would persist indefinitely and
A(t) approaches Cr asymptotically.

The second factor of random fluctuations in agents’
exploratory behavior is caused by the finite system size,
which affects the oscillation stability. As the popula-
tions [n(+,−) and n(−,+)] of the speculative agents de-
crease during the converging process, the amplitude of
oscillation, |n(+,−) − n(−,+)|, becomes comparable to√
εN , the level of random fluctuations in the system.

The occurrence of two consecutive steps of A(t) > Cr

(or A(t) < Cr) as a result of the fluctuations will break
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the regular oscillation pattern. In the thermodynamical
limit, the effects of the random fluctuations are negligi-
ble. We note that, while similar bursting behaviors were
observed previously [48, 49], the underlying mechanisms
are different from ours. Especially, a finite memory was
introduced into the standard or grand-canonical minor-
ity game models, where in the former, the non-ergodic
behavior and sensitive dependence on initial conditions
were suppressed but in the latter, large fluctuations arise.
The main reason for the bursts is a finite score effect
based on the memory factor λ, where speculators who
may abstain from playing if the game was not profitable
enough are allowed to participate in the game. That
is, the long term weighted historical memory is used in
agents’ decision making. In our work, the bursting phe-
nomenon can be attributed to the interaction between
the Q function and random explorations in systems of
finite size, i.e., the historical information is recorded in
the Q function through RL.

C. Time intervals between failure bursts

The dynamical evolution of the system can be de-
scribed as random failure bursts superimposed on reg-
ular oscillations with decreasing amplitude. The inter-
mittent failures can be characterized by the statistical
distribution of the time interval T0 between two succes-
sive bursting events. Figure 3(a) shows a representative
histogram of T0 obtained from a single statistical realiza-
tion of the system dynamics (the inset’s showing the same
data but on a semi-logarithmic scale). A remarkable fea-
ture is that the distributions of the odd (red crosses) and
even values of T0 (blue squares) are characteristically dis-
tinct. In particular, the odd values of T0 emerge with
a smaller probability and the corresponding distribution
has a smaller most probable value as compared with that
for the even values of T0. A possible explanation lies in
the existence of two intrinsically distinct processes.

Our computation and analysis indicate that the regu-
lar oscillation processes can be classified into two cate-
gories, as shown in Figs. 3(c-f), leading to insights into
the mechanism for the two distinct types of statistical
distributions in T0. In Fig. 3(c), A(t) starts from a value
below Cr = N/2 and terminates at a value above Cr,
due to the two consecutive values above Cr as the lower
envelope of A(t) crosses Cr. Similarly, in Fig. 3(d), A(t)
starts from a value above Cr and terminates at a value
below Cr, with the upper envelope of A(t) crossing Cr.
In Fig. 3(e), A(t) starts from a value below Cr and ter-
minates at a value below Cr. In Fig. 3(f), A(t) starts
from a value above Cr and terminates at a value above
Cr. In Figs. 3(c) and 3(d), odd intervals are generated,
while in Figs. 3(e) and 3(f), the intervals are even. Be-
tween the cases in the same category [e.g., (c,d) or (e,f)],
there is little difference in the statistical distribution of
T0, especially in the long time limit.

We have seen that the equilibrium position A0 plays

FIG. 3. Statistical distributions of the time interval T0 be-
tween two successive bursts of failure. (a) The distributions
obtained from one realization of the system dynamics, where
those of the odd T0 values (red crosses) and even T0 values
(blue squares) are remarkably distinct. (b) T0 versus the de-
viation A0 −Cr of the equilibrium position from the resource
capacity. The solid squares (triangles) denote the most prob-
able value of the set of even (odd) T0 values. The parameters
are α = 0.9, γ = 0.9, and N = 5001. (c-f) Schematic illus-
tration of four cases associated with the regular oscillations
of A(t), where cases (c,d) lead to odd intervals T0 while cases
(e,f) lead to the even values of T0. The dashed curves repre-
sent the envelopes that cross the capacity value Cr (solid blue
lines), which triggers a failure burst.

an important role in terminating the regular oscillations,
which can be calculated as A0 = 〈A(t)〉t, where 〈·〉t de-
notes the average over time. From Fig. 3(b) where the
time interval T0 is displayed as a function of the quantity
A0−Cr, we see that the values of A0 closer to the capac-
ity Cr lead to regular oscillations with larger values of T0.
The most probable values of the distributions of the even
(squares) and odd (stars) T0 values are also indicated in
Fig. 3(b).

D. Mean-field theory

We develop a mean-field analysis to capture the main
features of the dynamical evolution of the multi-agent RL
minority game system. We assume that the agents em-
powered with RL are identical and share the same matrix
Q. The dynamical evolution of A(t) can be described by
the following equation:

dA(t)

dt
= ε

N

2
+ (1− ε)[A(t)Θ(X1)

+ (N −A(t))Θ(X2)]−A(t),
(5)

where the first item εN/2 is the number of agents that act
randomly with probability ε, half of which select +1. The
second item indicates the number of agents that act based
on the matrix Q with probability 1 − ε, which include
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FIG. 4. Comparison of dynamical evolution of the system
obtained from simulation and mean-field theory. The atten-
dance A(t) obtained from (a) multiagent simulation, and (b)
numerical solution of Eqs. (4-9). (c,d) The corresponding re-
sults of the elements of Q from multi-agent simulation and
from numerical solution, respectively. The insets in (a-d)
show the corresponding time series of A(t) and Q in a large
time regime. The parameters are α = 0.9, γ = 0.9, ε = 0.02,
and N = 5001.

agents that stay in the +1 state and those that transition
from −1 to +1. Θ(X) denotes the step function: Θ(X) =
0 for X < 0, Θ(X) = 1/2 for X = 0, and Θ(X) = 1
for X > 0. The quantities X1 and X2 are defined as
X1 ≡ Qt(s+, a+) − Qt(s+, a−), and X2 ≡ Qt(s−, a+) −
Qt(s−, a−). The elements of the matrix Q are updated
according to the following rules:

dQt(s+, a+)

dt
= α[RΘ(X3) + γQmax

t

−Qt(s+, a+)][(1− ε)Θ(X1) +
1

2
ε],

(6)

dQt(s+, a−)

dt
= α[RΘ(−X3) + γQmax

t

−Qt(s+, a−)][(1− ε)Θ(−X1) +
1

2
ε],

(7)

dQt(s−, a+)

dt
= α[RΘ(X3) + γQmax

t

−Qt(s−, a+)][(1− ε)Θ(X2) +
1

2
ε],

(8)

dQt(s−, a−)

dt
= α[RΘ(−X3) + γQmax

t

−Qt(s−, a−)][(1− ε)Θ(−X2) +
1

2
ε],

(9)

where, X3 ≡ N − 2A(t), the step function Θ(X3) in-
dicates whether or not the agents gain a reward, Qmax

t

is the expected value after action. Specifically, we have
Qmax

t = max[Qt(s+, a+), Qt(s+, a−)] in Eqs. (6) and (8)

for the agents who take action to transition to +1. Sim-
ilarly, Qmax

t = max[Qt(s−, a+), Qt(s−, a−)] in Eqs. (7)
and (9) is for agents taking action to transition to the
state −1.

The dynamical evolution of the system can thus
be assessed either through simulation, as presented in
Figs. 4(a) and 4(c), or through the mean-field equations
Eqs. (4-9), as shown in Figs. 4(b) and 4(d). A com-
parison between these results indicates that the mean-
field equations Eqs. (4-9) capture the main features of
the collective dynamics of the RL minority game system,
which are regular oscillations with converging amplitude
and intermittent bursts of failure. Due to the approx-
imate nature of the mean-field analysis, its predictions
tend to deviate slightly from the simulation results. In
particular, the analysis predicts bursts of sizes somewhat
larger than those from simulations. The reason is that,
under the mean-field approximation, the dynamical be-
haviors of the agents are determined by a Q table. As
a result, a burst characteristic of system failure involves
the whole population of agents, making the size of the
burst larger than that from simulation. In addition, the
mean-field analysis gives that the period between adja-
cent bursts is approximately constant while simulation
reveals more variations in the period. The discrepancy
can be attributed to the randomness in the size of the
bursts in simulation. The state of the system after the
last burst serves effectively as the initial condition of the
process leading to a convergent solution, the length of
which is affected by the burst size and randomness.

IV. DISCUSSION

Complex resource allocation systems with a large num-
ber of interacting components are ubiquitous in the mod-
ern society. Optimal performance of such a system is
typically measured by uniform and even utilization of
all available resources by the users. Often this is not
possible due to the phenomenon of herding that can
emerge spontaneously in the evolution of the system, in
which most agents utilize only a few resources, leaving
the vast majority of the remaining resources little ex-
ploited [11, 16, 17, 32, 34, 35, 50–55]. The herding behav-
ior can propagate through the system, as the few heavily
used resources would be depleted quickly, directing most
agents to another possibly small set of resources, which
would be depleted as well, and so on. A final outcome is
the total collapse of the entire system. An important goal
in managing a complex resource allocation system is to
devise effective strategies to prevent the herding behavior
from occurring. We note that similar behaviors occur in
economics [56–59]. Thus any effective methods to achieve
optimal performance of resource allocation systems can
potentially be generalized to a broader context.

Mathematically, a paradigm to describe and study
the dynamics of complex resource allocation is minority
games, in which a large number agents are driven to seek
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the less used resources based on available information
to maximize payoff. In the minority game framework, a
recent work addressed the problem of controlling herd-
ing [33] using the pinning method that had been studied
in controlling collective dynamics such as synchronization
in complex networks [32, 60–67], where the dynamics of
a small number of nodes are “pinned” to some desired
behavior. In developing a pinning control scheme, the
fraction of agents chosen to hold a fixed state and the
structure of the pinned agents are key issues. For the
minority game system, during the time evolution, fluc-
tuations that contain characteristically distinct compo-
nents can arise: intrinsic and systematic, and this allows
one to design a control method based on separated con-
trol variables [33]. A finding was that biased pinning
control pattern can lead to an optimal pinning fraction
that minimizes the system fluctuations, and this holds
regardless of the network topologies.

Any control based method aiming to suppress or elim-
inate herding requires external input. The question we
address in this paper is whether it would be possible to
design a “smart” type of resource allocation systems that
can sense the potential emergence of herding and adjust
the game strategy accordingly to achieve the same goal
but without any external intervention. Our answer is af-
firmative. In particular, we introduce RL from AI into
the minority game system in which the agents are “in-
telligent” and empowered with RL. Exploiting a popular
learning algorithm in AI, Q-learning, we find that the
collective dynamics can evolve to the optimal state in a
self-organized fashion, which is effectively immune from
any herding behavior. Due to the complex dynamics, the
evolution toward the optimal state is not uninterrupted:
there can be intermittent bursts of failures. However, be-
cause of the power of self-learning, once a failure event
has occurred, the system can self-repair or self-adjust to
start a new process of evolution toward the optimal state,
free of herding. A finding is that two distinct types of the
probability distribution of the intervals of free evolution
(the time interval between two successive failure events)
arise, depending on the parity of the system state. We
provide a physical analysis and derive mean-field equa-
tions to understand these behaviors. AI has become in-
creasingly important and has been universally applied to
all aspects of the modern society. Our work demonstrates
that the marriage of AI with complex systems can gen-
erate optimal performance to certain extent, without the
need of external control or intervention.
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APPENDIX

Convergence mechanism of A(t)

Typically, after a failure burst, A(t) will converge to
the value corresponding to the optimal system state. The
mechanism of convergence can be understood, as follows.
The essential dynamical event responsible for the con-
vergence is the change of agents from being speculative
to being self-satisfied within the training time. If the
inequalities Q(s+, a+) < Q(s+, a−) and Q(s−, a−) <
Q(s−, a+) hold, the agent is speculative and wins the
game all the time as a result of the state transition.
Otherwise, for Q(s+, a+) > Q(s+, a−) and Q(s−, a−) >
Q(s−, a+), the agent is self-satisfied and wins and loses
the game alternatively.

Consider a speculative agent. Assume that its state
is r = +1 at the current time step. The agent selects
r = +1 with the probability ε/2 and updates Q(s+, a+)
with reward or selects r = −1 with the probability ε/2 +
(1 − ε) and updates Q(s+, a−) without reward. If the
agent selects r = +1, the game will be lost, but the value
of Q(s+, a+) can increase. At the next time step, the
agent selects r = −1 and loses the game, and Q(s+, a−)
will decrease. As a result, the inequality Q(s+, a+) >
Q(s+, a−) holds with the probability ε/2. That is, the
probability that a speculative agent changes to a self-
satisfied one is approximately ε/2.

Now consider a self-satisfied agent in the r = +1 state
at the current time step. The agent selects r = +1
with the probability ε/2 + (1− ε) and updates Q(s+, a+)
with two stable solutions (Q∗1 and Q∗2), or the agent
selects r = −1 with the probability ε/2. The agent
selects r = −1 from the two stable solutions Q∗1 or
Q∗2 with the respective probability 1/2. If the agent
is associated with the smaller stable solution Q∗2, then
Q(s+, a−) will decrease. As a result, the agent remains
to be self-satisfied. If the agent is associated with the
larger stable solution Q∗1, then Q(s+, a−) will increase
due to reward, and the inequality Q(s+, a−) > Q(s+, a+)
holds with the probability 1/2. At the same time, if
Q(s−, a+) > Q(s−, a−), the probability is approximately
equal to 1/2, and the self-satisfied agent successfully be-
comes a speculative agent. Otherwise, the self-satisfied
agent remains to be self-satisfied. That is, the probabil-
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ity that a self-satisfied agent changes to being speculative
is approximately ε/16� ε/2. As a result, A(t) will con-
verge to Cr asymptotically.

FIG. 5. Matrix norm d for all agents empowered with RL.
The norms are indicated by the two red arrow positions in
Fig. 1(a). (a-d) Evolution of the Matrix norm d at three
adjacent time steps: t+1 vs t and t+2 vs t+1. The blue line
is x = y. Panels (a,b) correspond to the left arrow, and (c,d)
to the right arrow. (e,f) The corresponding distributions of
the Matrix norm.

Two types of agents in the phase space For the RL
minority game system, we can construct the phase space,
in which the two types of agents can be distinguished.
We define the Matrix norm d = ‖Q‖ for the Q matrix
of each agent as the square root of the sum of all the
matrix elements. For the two positions indicated by the
red arrows in Fig. 1(a), Figs. 5(a-d) show the relationship
of Matrix norm d at three adjacent time steps. We see
that the agents can be distinguished and classified into
two categories through the Matrix norm d, where the
self-satisfied and the speculative agents correspond to the
top and bottom sides of the line x = y and on the line
x = y, respectively. The reason that the speculative
agents change their state while the self-satisfied agents
remain in their state lies in the property of the elements
of the Q matrix. In particular, after the system reaches
a steady state after training, for the speculative agents,
the following inequalities hold: Q(s+, a+) < Q(s+, a−)
and Q(s−, a−) < Q(s−, a+), while for the self-satisfied
agents, the inequalities are Q(s+, a+) > Q(s+, a−) and
Q(s−, a−) > Q(s−, a+). Since the values of the matrix
elements Q(s+, a+) and Q(s−, a−) associated with the
self-satisfied agents are between Q∗1 and Q∗2, the Matrix
norm d of these agents rolls over on the line x = y at
the adjacent time. However, the elements Q(s+, a−) and
Q(s−, a+) associated with the speculative agents reach
only the stable solution Q∗3. As a result, the Matrix norm
d of these agents remain unchanged. Figures 5(e) and
5(f) show that the Matrix norms for the agents display
a two-peak distribution, corresponding to the two types.
The peak height on the left hand side increases with time,
while that on the right hand side decreases.
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