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An adaptive coupling based on a low-pass filter (LPF) is proposed to manipulate dynamic activity of dif-
fusively coupled dynamical systems. A theoretical analysis shows that tracking either the external or internal
signal in the coupling via a LPF gives rise to distinctly different ways in regulating the rhythmicity of the cou-
pled systems. When the external signals of the coupling are attenuated by LPF, the macroscopic oscillations of
the coupled system are quenched due to the emergence of amplitude or oscillation death. If the internal signals
of the coupling are further filtered by LPF, amplitude and oscillation deaths are effectively revoked to restore
dynamic behaviors. The applicability of this approach is demonstrated in laboratory experiments of coupled
oscillatory electrochemical reactions by inducing coupling through LPFs. Our study provides a new insight on
understanding (ar)rhythmogenesis in diffusively coupled systems

PACS numbers: 05.45.Xt, 87.10.-e

I. INTRODUCTION

Model of coupled nonlinear oscillators serves as an ex-
cellent framework to unravel and understand the intricacies
involved in various complex collective dynamical behav-
iors/patterns that mimics real-world phenomena in diverse ar-
eas of science and technology [1–3]. Intrinsic dynamics of
the individual units and the coupling architecture plays a vi-
tal role in determining the onset of a rich variety of nonlin-
ear phenomena [4]. In particular, it was revealed that strong
couplings could give rise to the Bar-Eli effect [5, 6], where
the natural rhythm of coupled dynamical systems is lost via
two distinct processes, namely, amplitude death (AD) and os-
cillation death (OD) [7–9]. Generally, AD refers to the phe-
nomenon of the quenching of oscillations through the stabi-
lization of one of the existing unstable homogeneous steady
state (HSS), whereas OD is manifested as a stable inhomoge-
neous steady state (IHSS). AD and OD have their own advan-
tages, in particular, AD serves as control mechanism in sev-
eral physical systems, whereas OD provides a mathematical
background for cellular differentiation [10].

From the last several decades, a major interest was cen-
tered at revealing the emergence of AD and OD along with
the transition from AD to OD [11–21]. On the other hand,
a few recent investigations have unveiled the counterintu-
itive phenomenon of reviving of oscillations from AD and
OD [22–27], as AD and OD favor the onset of static states
from the evolutionary dynamical states thereby hampering the
functional activity of a large class of real-world networks.
Quenching and revival of oscillations has been investigated
as two different dynamical entities in coupled systems. Hith-
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erto, a simple unifying scheme to switch between both dynam-
ical behaviors in the same dynamical network is still lacking,
which opens up an interesting possibility of research from the
view point of engineering rhythmic dynamics of coupled dy-
namical networks.

We propose an adaptive coupling based on a conventional
low-pass filter (LPF), which provides a unifying and efficient
approach to manipulate rhythmicity of coupled dynamical
systems. A LPF disperses and attenuates the high-frequency
signals. Previously, it has been reported that the presence of
LPF has a variety of important applications, which modifies
the dynamics of systems in a nontrivial way [28–32]. For ex-
ample, a LPF was used to separate a local field potential from
the action potential in the electrode recordings of the neural
spiking activity in EEG [28]. A LPF was an essential building
block to regulate spatiotemporal dynamics of coupled digital
phase-locked loops [29]. The topological limitation concern-
ing an odd number of real positive eigenvalues of the steady
state was overcome by using an unstable LPF, which offers an
additional unstable degree of freedom [30–32].

In this paper, our study reveals that incorporating LPFs in
the coupling may serve as a powerful candidate to engineer
the rhythmic dynamics of diffusively coupled dynamical sys-
tems. Specifically, we systematically establish that tracking
the external or the internal signal of the coupling by LPF has
completely opposite dynamical effects. Filtering the external
signal through a LPF facilitates the onset of AD and OD to
suppress the intrinsic rhythmic activities of coupled systems.
In strong contrast, if the internal signal is further filtered via
a LPF, the quenched dynamics can be well revived by switch-
ing the stability of the stable homogeneous/inhomogeneous
steady states. The theoretical and numerical findings are con-
firmed in laboratory experiments with two coupled electro-
chemical reactions.
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II. RESULTS AND DISCUSSIONS

A. Effect of LPFs on AD with Stuart-Landau oscillators

We start with the analysis of the following paradigmatic
model of two coupled Stuart-Landau limit-cycle oscillators

Żj = (1 + iwj − |Zj |2)Zj +K[uk(t)− vj(t)], (1)

where Zj = xj + iyj is a complex variable, wj is the in-
trinsic frequency of the jth uncoupled Stuart-Landau oscilla-
tor (j, k = 1, 2, j 6= k), K is the strength of coupling. For
K = 0, each uncoupled Stuart-Landau oscillator has a stable
limit cycle Zj = eiwjt, accompanied with an unstable origin
Zj = 0. In the coupling, uk and vj are governed by two linear
ODEs relevant to Zk and Zj as

αu̇k = −uk + Zk, (2)
βv̇j = −vj + Zj , (3)

which in fact describe two LPFs to attenuate the signals of Zk

and Zj with the cut-off frequencies 1/α (α > 0) and 1/β
(β > 0), respectively. The larger the values α and β, the
stronger the Zk and Zj are attenuated. In the limit of α → 0
and β → 0, uk and vj are exactly Zk and Zj . Then the cou-
pling form is reduced to the standard diffusive one. Here, we
will unveil that by implementing the two LPFs in the external
and internal terms of the coupling have two opposite roles on
the dynamic activities of the coupled system.

The detailed dynamics of system (1) with α = 0 and β = 0
have been well addressed by Aronson et al. [11], who re-
vealed that AD occurs for 1 < K < (1 + ∆2/4)/2 if
∆ = |w1−w2| > 2, implying that the limit-cycle oscillations
of coupled systems (1) collapse to the origin only if both fre-
quencies are sufficiently disparate and the coupling strength is
large enough. Interestingly, by incorporating the external LPF
associated with the incoming signal Zk strongly alleviates the
restrictions for the onset of AD. Let us first examine AD in
system (1) with α > 0 and β = 0, whose stability can be
identified from a standard linear stability analysis of system
(1) with the LPF (2) around Z1 = Z2 = 0 and u1 = u2 = 0
[33]. Figure 1(a) illustrates the stable AD region for α = 0
and α = 0.165 on the (K,∆) space. w1 = 5 − ∆/2 and
w2 = 5 + ∆/2 are used. Clearly, the AD region sharply ex-
pands and even extends toward the ∆ = 0 axis for a finite
interval of coupling strength. The external LPF of Eq. (2)
in the coupling induces AD in coupled system (1) even with
zero frequency mismatch. Figure 2(b) further depicts the sta-
ble AD interval as a function of α for w1 = w2 = 5. Identical
oscillators suffer AD once α > αc = 0.16. Thus, when the
incoming signals are attenuated by LPF in the coupling, AD is
facilitated by suppressing the rhythmic activity of the coupled
system.

In contrast, if the internal signals of the coupling are fil-
tered by the LPF, a distinctly different effect arises. Next, we
incorporate the two LPFs of (2) and (3) simultaneously into
system (1), where the stability of AD is then determined from
the characteristic equation of the coupled system (1) around
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FIG. 1: Quenching and revival of oscillations in two coupled Stuart-
Landau oscillators (1). (a) The AD regions in the parameter space
of (∆,K) for α = 0 (bounded by the dashed lines) and α = 0.165
(Bounded by the solid lines). w1 = 5 −∆/2, w2 = 5 + ∆/2, and
β = 0. (b) The AD interval vs α for w1 = w2 = 5 and β = 0.
AD emerges for α > αc = 0.16 implying that stable limit-cycle
oscillations are quenched in identical oscillators. (c) The AD interval
vs β for w1 = w2 = 5 and α = 10. AD is completely revoked as
β > βc = 0.5. (d) The plot of time series of Real(Z1). Limit-cycle
oscillation is lost for α = 10 when β = 0, which is regained as β
switched from 0 to 1 at t = 15. K = 3 and w1 = w2 = 5.

Z1 = Z2 = 0 and u1 = u2 = v1 = v2 = 0 [34]. Fig-
ure 1(c) depicts the stable interval of AD vs β for α = 10,
which shows that the stable AD interval monotonically de-
creases and completely vanishes for β > βc = 0.5. Thus the
internal LPF can provoke oscillations from AD. To visualize
this more clearly, we plot the time series for the real part of
Z1 of system (1) with K = 3 and α = 10 in Fig. 1(d), where
β is switched from 0 to 1 at t = 15. Clearly, the limit-cycle
oscillation that is quenched by the external LPF is restored by
implementing the internal LPF. Thus, the external and inter-
nal LPFs have two drastically different dynamic effects: the
external LPF facilitates AD to suppress oscillations, whereas
the internal LPF revokes AD to revive rhythmic behavior.

B. Effect of LPFs on OD with Stuart-Landau oscillators

To further distinguish the distinct roles of the two LPFs in
engineering rhythmic behaviors of coupled system, we study
the following system of two Stuart-Landau oscillators now
with symmetry-breaking coupling:

Żj = (1 + iwj − |Zj |2)Zj +K[uk(t)− vj(t)], (4)
αu̇k = −uj + Re(Zk), (5)
βv̇j = −vj + Re(Zj), (6)

j, k = 1, 2 and j 6= k. Here the coupling involving only
the real parts breaks the rotational symmetry of the coupled
system, which is deemed to be a necessary condition for
OD in the coupled Stuart-Landau oscillators [8, 9]. System



3

1 10 100
-0.1

0.0

0.1

0.0 0.2 0.4 0.6 0.8 1.0
1

10

100
KKK

 

 

x2

x1x1,2

 

(a)


 

 

(b)



 

(c)



(d)



K

c=0.257

x s
s

K



(e)

FIG. 2: Quenching oscillations in the coupled system (4) by imple-
menting the LPF associated with only the external term of the cou-
pling. β = 0 and w = 5 are fixed. (a)-(d) The bifurcation diagrams
of the steady-state solutions for α = 0, 0.15, 0.27, and 0.35, respec-
tively. Solid black (dark gray) and solid red (light gray) lines denote
the stable HSS (AD) and the stable IHSS (OD). (b) The stable inter-
val of AD (black region) and OD (red region) vs α for β = 0. The
external LPF facilitates the onset of OD at small values of coupling
strength, and further even induces AD as α > αc = 0.257.

(4) with α = β = 0 reduces to the same case studied by
Koseska et al., where AD, OD, and the transition from AD
to OD were reported. To unveil the distinct roles of both
LPFs on AD and OD, we here assume the two oscillators
having identical frequencies w1 = w2 = w. The cou-
pled system (4) has a HSS Z1 = Z2 = 0 and an IHSS
P (x∗1, y

∗
1 ,−x∗1,−y∗1) with x∗1 = −wy∗1/(w2 + 2Ky∗21 ) and

y∗1 = ±
√

(K − w2 +
√
K2 − w2)/2K, where the IHSS ap-

pears via a pitchfork bifurcation at K = (w2 + 1)/2. Note
that the steady-state solutions of the coupled system are not
affected either by the external LPF or by the internal LPF in
the coupling, but whose stability may be switched. We will
illustrate that the presence of LPF in the external and inter-
nal signals of the coupling has a large impact on both AD and
OD of system (4), whose stability can be obtained from their
corresponding characteristic equations [35].

For α = β = 0, i.e., without any LPFs in the coupling, sys-
tem (4) experiences only OD for K > w2 + 1/4, where AD
is unstable for all K > 0 [8]. Interestingly, by implementing
only the external LPF in the coupling, we find that it can facil-
itate the onset of OD and even induce the occurrence of AD.
Figures 2(a)-(d) depict the four typical bifurcation diagrams
of the steady states of system (4) for different values of α.
(w = 5 and β = 0 are fixed.) These bifurcation diagrams are
generated by depicting the solutions of both HSS and IHSS as
a function of K, where the stable steady states are marked by
the solid red lines and the unstable ones by the dashed black
lines. For α = 0.15 in Fig. 2(b), OD occurs at a smaller value
of coupling strength compared with that of α = 0 in Fig. 2(a).
The presence of the external LPF renders the coupled system
to exhibit OD even at lower coupling strengths. For a larger
value of α = 0.27 in Fig. 2(c), AD is found to be stabilized
within a pronounced interval of coupling strength. The AD to
OD transition is established for α = 0.35 in Fig. 2(d). Fig-
ure 2(e) elucidates the stable interval of AD and OD as a func-
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FIG. 3: Reviving oscillations from AD and OD in the coupled system
(4) with α = 0.5 by implementing LPF in the internal term of the
coupling. w = 5 is fixed. (a)-(d) The bifurcation diagrams of the
steady-state solutions for β = 0, 0.2, 0.4, and 0.54, respectively. (b)
The stable interval of AD (black region) and OD (red region) vs β for
α = 0.5. The internal LPF destabilizes AD from the lower coupling
strength, which disappears at βc,1 = 0.3. For β > βc,1, OD begins
to be destabilized and is completely dismissed as β > βc,2 = 0.55.

tion of α and K. It is evident that the external LPF facilitates
the onset of OD for smaller values of K, then induces AD in
identical systems for α > 0.257, and finally establishes the
AD to OD transition when α > 0.29. Thus, the external LFP
has a strong tendency to induce both AD and OD to quench
oscillations in the coupled system.

In sharp contrast to the above uncovered role of the exter-
nal LPF, the internal LPF can revive oscillations from AD
and OD. Figures 3(a)-(d) provide four bifurcation diagrams
to display how the presence of β influences the stability of
the steady-state solutions of system (4), where the external
LFP is fixed as α = 0.5 and w = 5 is used. With in-
creasing β from zero first destabilizes AD from its lower
bound, e.g., Fig. 3(b) for β = 0.2. Then AD disappears for
β = 0.4 in Fig. 3(c), meanwhile OD is destabilized from the
lower coupling strength. With further increasing β to 0.54 in
Fig. 3(d), the coupled system only experiences OD. To sys-
tematically characterize the impact of β in destabilizing both
AD and OD, Fig. 3(e) plots the stable coupling intervals of
AD and OD as a function of β. Increasing β revokes AD
from small values of K at first, whereas the stable OD inter-
val remains unchanged until that AD is completely destabi-
lized at βc,1 = 0.3. For β > βc,1 OD starts to be destabilized
and vanishes at βc,1 = 0.55. The internal LPF prefers to re-
vive oscillations from deaths, in strong contrast to the external
LPF with the tendency to quench oscillations. Therefore, by
implementing the LPF associated with different terms in the
coupling has two completely distinct effects in manipulating
rhythmic activity of coupled system: the external LPF in the
coupling hampers the rhythmicity, while the internal LPF fa-
cilitates the revival of oscillations from death states.
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FIG. 4: Quenching and revival of oscillations in two coupled chaotic
Rössler oscillators (7). (a) Bifurcation diagram obtained by plotting
the local maxima of X = x1+x2

2
as a function of α for β = 0

and K = 3. The coupled system (7) undergoes a reverse period-
doubling bifurcation from chaos to one cycle, and then experiences
AD for α > αc = 0.24. (b) Bifurcation diagram as a function of β
for α = 0.4 and K = 3. AD is destabilized at β = βc = 0.444.
For β > βc = 0.444, the coupled system (7) experiences a period-
doubling bifurcation from period-one oscillation to chaos. (c) The
plot of time series of x1. Chaotic oscillation is regained from AD as
β is switched from 0 to 0.5 at t = 200. K = 3 and α = 0.4 are
fixed. (d) K vs α for the onset of AD for β = 0, 0.3, 0.5, and 0.7.

C. Effect of LPFs on AD with Rössler oscillators

Implementing LPFs in the coupling serves as a very generic
technique to manipulate dynamic activity of a diffusively cou-
pled system. To validate the generality, our study is extended
to the following system of coupled chaotic Rössler oscillators
with LPFs in the coupling,

ẋj = −yj − zj ,
ẏj = xj + ayj +K[uk(t)− vj(t)], (7)
żj = b+ zj(xj − c),

αu̇k = −uk + yk (8)
βv̇j = −vj + yj (9)

where a = b = 0.1, c = 14, j, k = 1, 2 and j 6= k. For K =
0, each uncoupled Rössler oscillator exhibits a phase-coherent
chaotic motion, and has an unstable focus P = (x∗, y∗, z∗)

with x∗ = −ay∗, y∗ = −z∗, and z∗ = c−
√
c2−4ab
2a . Sys-

tem (7) suffers AD via the manifestation of suppression of
the chaotic oscillations due to a stabilization of P . The emer-
gence of AD can be identified from the characteristic equation
of system (7) with the LPFs (8) and (9) at P [36].

Figure 4(a) shows the bifurcation diagrams by plotting the
local maximum of the centroid X = x1+x2

2 as a function of α
for the coupled system (7) with K = 3 and β = 0. As α is
increased, a reverse period-doubling cascade from chaos takes
place, leading to period-one oscillation at α = 0.153; the os-
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LPF

FIG. 5: Inducing AD and reviving the electrochemical oscillations
with coupling through LPFs. (a) Experimental setup. Rind: Indi-
vidual resistances attached to the Ni wires. Vk(t) and ik(t) are the
applied circuit potentials and the measured currents for electrodes
k = 1, 2, respectively. (b) Experimental implementation of feed-
back scheme. The measured currents (ik(t)) are filtered with coef-
ficients α and β in Eqs. 2 and 3 to obtain the corresponding uk(t)
and vk(t) variables. The potentiostat (GILL IK64) applies feedback
with set potential V0 and gain K. (c) Synchronized oscillations,
AD, and regained oscillations with coupling (K = −0.3 V/mA)
without LPF (t < 20 s, α = 0, β = 0), LPF in external signal
(20 s ≤ t < 110 s, α = 10 s, β = 0), and LPFs in both external
and internal signals (t ≥ 110 s, α = 10 s, β = 0.5 s), respectively.
V0 = 1100 mV.

cillation collapses to the fixed point P at α = 0.244. This
observation confirms that AD is indeed induced by imposing
the external LPF in coupled chaotic Rössler oscillators, where
the bifurcation route leading to AD is much richer than that
in coupled Stuart-Landau oscillators. As the internal LPF is
incorporated, the AD is stable only if β < 0.444 in Fig. 4(b)
with K = 3 and α = 0.4 fixed. With further increasing β,
the period-doubling bifurcation from period-one oscillation to
chaos is revived from AD. The chaotic oscillations suppressed
by the external LPF can be regained by implementing the in-
ternal LPF, which can be directly seen from the plot of time
series of X in Fig. 4(c) with β switching from 0 to 0.5 at
t = 200. To gain an overall view of the distinct roles of the
two LPFs, Fig. 4(d) depicts the dependence of K on α for the
onset of AD for β = 0, 0.3, 0.5, and 0.7. It is evident that
the emergence of AD critically depends on both α and β: the
threshold of coupling strength K for AD monotonically de-
creases for increasing α and rapidly grows for increasing β.
Therefore, we corroborate the generic nature of the external
LPF in quenching oscillations and the internal LPF in sustain-
ing rhythmicity.
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D. Effect of LPFs on AD with electrochemical oscillators

The effects of LPFs in the coupling on the oscillatory dy-
namics are further experimentally explored with two coupled
electrochemical oscillators. The nickel electrodissolution in
3 mol/L sulfuric acid electrolyte at 10 ◦C exhibits current
oscillations at constant circuit potential and individual resis-
tance attached to the wires [24]. We use two such wires, as
shown in Fig. 5(a); the currents (proportional to the metal
dissolution rate) are filtered with an LPF, and the circuit po-
tential of each wires are adjusted according to the coupling
scheme in Fig. 5(b). The coupling is induced by small ad-
justments of the circuit potential, proportional to the differ-
ence between the external and internal coupling variables. As
shown in Fig. 5(c), without any filters, the oscillations exhibit
in-phase synchronization. With LPF only in the external vari-
able (α = 10 s, β = 0), AD is observed. The addition of LPF
in the internal variable (α = 10 s, β = 0.5 s) revives oscilla-
tions from AD. The electrochemical experiments well confirm
that introducing coupling through the LPFs serves as a pow-
erful technique to control oscillatory behaviors.

III. CONCLUSIONS

To conclude, we have unraveled two distinctly opposite ef-
fects of LPF in manipulating rhythmic dynamics by associ-
ating with its role to the external and the internal signals of
the coupling. By numerical examples, we showed that the
limit-cycle oscillations of coupled Stuart-Landau oscillators
are quenched by the external LPF, which are regained by the
internal LPF. The chaotic dynamics of coupled Rössler oscil-
lators is annihilated to achieve AD through a reverse period-
doubling cascade by implementing the external LPF, which is
restored via a typical period-doubling bifurcation when im-
posing the internal LPF. Unlike conventional diffusive cou-
pling, in the proposed coupling scheme the output signals of
all the oscillators are independently filtered by LPFs. When
the internal signal of the coupling is attenuated via a LPF, the
macroscopic rhythmic activities of the coupled system could
be weakened seriously or even completely lost due to the high
possibility of the occurrence of AD (OD). The external LPF
of the coupling has a strong tendency to induce (facilitate)
AD (OD) to quench oscillations of the coupled system, while
the filtered internal coupling can restore oscillations from both

AD and OD.
We have experimentally demonstrated the ability to control

the rhythmogenesis of two electrochemical reactions coupled
with LPFs. The linear LPFs of the coupling were shown to
be vital and nontrivial factors in manipulating rhythmic be-
haviors of coupled systems. In realistic circumstances, signals
are often inevitable to suffer dispersion and attenuation during
their transmissions in diverse communication channels. The
coupling scheme with LPFs is thus of practical importance.
Our study may expand the understanding of the roots of emer-
gence of rhythmicity in populations of real-world systems, es-
pecially in biology, such as in the context of genetic regulatory
networks [37], where diffusion of autoinducer (AI) molecules
between the cell membranes is commonly governed by a quo-
rum sensing with dynamical evolution quite similar to the LPF
coupling.

Finally, we would like to emphasize that although only one
experimental (electrochemical) situation is described in the
present work, the proposed coupling technique is plausible in
many other experimental systems, where oscillatory units in
the networks can be reconnected by incorporating LPFs be-
fore they are coupled, such as in networks of unijunction tran-
sistors [38], Mackey-Glass analog circuits [39], semiconduc-
tor lasers [40], and photo-chemically coupled catalytic mirco-
oscillators [41]. In fact, the filtered internal coupling has
recently been experimentally demonstrated to revive oscilla-
tions from AD and OD in two mean-field coupled nonlinear
circuits [27], where the competing role of the filtered external
coupling in inducing death is ignored. As LPFs are very much
relevant and omnipresent in biological and physical systems
[42–44], our results are expected to be of widespread experi-
mental applicability.
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