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The magnetization dynamics of nano-oscillators may be excited by both magnetic fields and spin-polarized
currents. While the dynamics of single oscillators has been well characterized, the synchronization of several
ones is not fully understood yet. An analytical and numerical study of the nonlinear dynamics of two magneto-
statically coupled spin valves driven by spin-transfer torques is presented under the macrospin approximation.
The oscillators interact via magnetostatic fields and exhibit a robust synchronized magnetization motion. We
describe the magnetization dynamics of the system using the Landau-Lifshitz-Gilbert-Slonczewski equation.
Using a modal decomposition technique, we describe the dynamics, synchronization, and competition of
oscillatory modes as a function of the current density, and the geometrical parameters of the setup. Simula-
tions of the Landau-Lifshitz-Gilbert-Slonczewski equation show good agreement with an approximate analytic
solution.

I. INTRODUCTION

Spin-polarized electric currents can exert a torque in
magnetic materials. This is known as the spin-transfer
torque1–4, and it can induce magnetic switching4–6, sta-
tionary magnetic textures7–9, and self-sustained oscilla-
tions4,5,10,11. The aforementioned oscillations are par-
ticularly interesting because they can be used to gen-
erate alternating signals from a purely dc electric cur-
rent. The dynamics of single spin-transfer-driven devices
has been largely studied from the experimental, ana-
lytic, and numeric points of view3,4,10,12–14, while the
collective behavior of several coupled oscillators is less
explored. During the last years, the networks of spin-
transfer-torque nano oscillators (STNOs) have received a
great deal of attention because they are candidates for
the implementation of associative memories15–17, where
the degree of synchronization may be used as a measure
of pattern recognition18–20. This synchronization may be
obtained through several means, for example by electrical
connections or by spin-wave emission, and also by mag-
netostatic interactions21–24. The synchronization occurs
when non-identical oscillators tune their frequency due to
their weak interaction25. In the case of oscillators with
the same frequency, the synchronization manifests as a
locking of the oscillation phases25. The synchronization
phenomenon is beyond the field of nano-magnetism and
is present in several branches of science including biologi-
cal, mechanical, and electronic systems, among others25.

Some examples of interacting oscillators include vor-
tices coupled by dipolar fields21,26 and spin valves in-
teracting via spin pumping27, electric currents28, and
spin-Hall29 effect. Specifically, some works have investi-
gated the synchronization of spin-torque nano oscillators
coupled through the magnetostatic interaction. For ex-

ample, Locatelli et. al21 showed that the magnetostatic
interaction between a pair of vortex-based spin-transfer
nano oscillators is an efficient mechanism to synchronize
neighboring oscillators. In addition, Chen et al.23 de-
termined the critical current needed for synchronizing
two nano-oscillators when the same or different currents
are applied in both oscillators. Additionally, Zhang et
al.30, found that a two nano-oscillator system exhibits
a locked-phase dynamic for small applied currents, and
an unlocked one for large currents. Despite the advances
made by these authors, it is important to note that in an
array of oscillators, the relative position between them
plays an essential role because it may favor a parallel
or antiparallel magnetization alignment. In a previous
work31, developing a linear study, we concluded that it is
possible to control the normal modes of STNOs as well
as the critical current densities necessary to induce os-
cillations of the magnetization by changing the relative
position of the oscillators. Then, in order to understand
the role that the position of the oscillators could play in
the synchronization phenomenon, it is necessary to study
the nonlinear dynamics of the magnetization.

In this article, we study the nonlinear dynamics of the
uniform magnetization of two spin-transfer-driven thin
disks that interact via magnetostatic fields, for two dif-
ferent relative positions between them. At the current-
induced instability, the magnetizations of both disks os-
cillate with the same frequency. Furthermore, the dif-
ference between the oscillation phases remains constant.
This synchronized motion can have two modes, namely
the in-phase and the antiphase ones31, where the phase
difference is zero and π, respectively. To elucidate the
behavior of the modes for larger currents, we derive sim-
plified equations for the envelope of the in-phase (IP) and
antiphase (AP) modes from the Landau-Lifshitz-Gilbert-
Slonczewski (LLGS) equation. Using the analytical and
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numerical solutions of the simplified model, we charac-
terize the competition of the modes and find the stable
equilibria. In particular, we find a transition between the
IP and the AP modes. For a finite range of electric cur-
rent values, this transition goes through a mixed-mode
with a finite contribution from both the IP and AP os-
cillations.

This paper is organized as follows: in Sec. II we de-
scribe the system under study, in Sec. III we present
and discuss our results using analytical and numerical
approaches, and finally in Sec. IV we present our con-
clusions and remarks.

II. MODEL

Let us introduce a device known as a spin valve, in our
case of cylindrical geometry. It consists of a disk made of
a soft ferromagnetic material, whose magnetization is free
to evolve in time, and that is grown on top of a bilayer
composed by a fixed-magnetization material and a non-
magnetic spacer. When an electric current runs through
the structure, the fixed layer polarizes the spin of the
conduction electrons, then the current keeps its polariza-
tion as it passes through the non-magnetic spacer, and
later transfers angular momentum to the free layer, i.e. a
spin transfer torque acting on the free layer is generated.

Then, we consider two identical cylindrical spin valves
that are side by side, as illustrated in Fig. 1(a). The
free layers are separated by a center-to-center distance of
D = 2R+S, where S is the shortest distance between the
surfaces of the free layers [see Fig. 1(b)]. The parameter θ
is the angle between the x-axis and the line that connects
the centers of both valves. The free layers have magneti-
zations Mk = Msmk, where k = {1, 2} is the valve label,
Ms is the saturation magnetization that we assume equal
for both materials, and mk = mx

kx̂ + my
kŷ + mz

kẑ. The
same magnetic field H = 4πMshxx̂ (Gaussian system
of units) and current density J = J ẑ are applied to each
valve, as shown in Fig. 1. The magnetization dynamics of
this system is governed by the Landau-Lifshitz-Gilbert-
Slonczewski equation32

dmk

dt
=−mk × heff,k + αmk ×

dmk

dt
+ βJmk × (mk × x̂).

(1)

This equation is written within the macrospin approxi-
mation (that is, we consider that the magnetizations of
the free layers are uniform), and with a dimensionless
time t = 4πMsγt

′, with γ = 1.76×107 (Oe s)−1 the mod-
ulus of the gyromagnetic ratio and t′ the original time in
seconds. The vector heff,k is the effective field normalized
by 4πMs. The dimensionless parameter α is associated
with the strength of the energy dissipation. The transfer
of angular momentum by the current density J is propor-
tional to the parameter βJ ≡ 2π~εJ/[(4πMs)

2eL], where
ε is the polarization of the interface, 0 ≤ ε ≤ 1, e is the
modulus of the electron charge (βJ is positive when the

θ

R
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FIG. 1. (a) Top view and (b) side view of two nano oscilla-
tors that are both driven by a spin-polarized current density
J and coupled via magnetostatic fields. The magnetization
Mk = Msmk of each free layer (upper disk in each valve)
evolves according to the Landau-Lifshitz-Gilbert-Slonczewski
equation.

current density flows from the fixed to the free layer),
and L is the thickness of each free layer. The normalized
effective field is

heff,k = hxx̂− hdmz
kẑ + hI,k, (2)

where the second term of the effective field corresponds to
the self-magnetostatic interaction, and it leads to a hard
z-axis, or unfavorable direction for the magnetization.
The coefficient hd is the demagnetization factor which
depends on the parameters R and L [see Appendix A,
Eq. (A1)]. The last term accounts for the magnetostatic
interaction between the nanopillars, and it represents a
field that is exerted by pillar k′ into pillar k31:

hI,k = (gxm
x
k′ + gxym

y
k′)x̂ + (gym

y
k′ + gxym

x
k′)ŷ + gzm

z
k′ ẑ,

gx(θ) = K1 +K2 cos(2θ),

gy(θ) = K1 −K2 cos(2θ),

gxy(θ) = K2 sin(2θ),

gz = K3, (3)

where Kj are functions of the geometrical parameters of
the system R, L, and D. Explicit formulas for Kj are
shown in Eq. (A2), Appendix A.

In the case of single-valve devices, the self-sustained
magnetization oscillations emerge when the applied cur-
rent density injects enough energy to counterbalance the
dissipation. For two nano-oscillators coupled via mag-
netostatic fields, there are two critical current densities
which correspond to the ones of the in-phase and an-
tiphase modes of oscillation31. If the applied current den-
sity exceeds the minimum critical current density of the
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system, the magnetizations of the free layers oscillate.
To understand the behavior for larger current densities,
a nonlinear study of the magnetization dynamics is nec-
essary. We develop this analysis in the next section.

III. RESULTS AND DISCUSSION

We focus on a system of two free layers composed of
permalloy withMs = 860 emu/cm3. In relation to the ge-
ometrical parameters, we consider R = 50 nm and L = 5
nm. For these parameters hd ≈ 0.816; and K1 ≈ 0.0025,
K2 ≈ 0.0054, and K3 ≈ −0.0050. To describe the mag-
netization dynamics by solving the LLGS equation, we
consider hx = 0.1 (|H| = 1 kOe), α = 0.01, and ε = 0.11.
We focus our attention on the magnetization dynamics
around the equilibrium state defined as mx

1 = mx
2 = 1.

In the rest of this section we present and discuss results
from analytic and numerical approaches.

A. Analytical approach

When the current density attains its critical value
βJ = βJ,c, the linear modes of the system correspond
to an in-phase oscillation δmip = A0vipe

iωipt + c.c, or an
antiphase one δmap = B0vape

iωapt+ c.c, where (ωip,vip)
and (ωap,vap) are the frequencies and eigenvectors of
the in-phase and antiphase modes31, respectively. Ex-
plicit expressions for the vectors and frequencies are given
in Appendix B. The complex amplitudes A0 and B0

are fixed by the initial conditions, and c.c. stands for
the complex conjugate. Above the instability point, i.e.
βJ > βJ,c, we propose the following change of variables

δm = A(t)vipe
iωipt +B(t)vape

iωapt + c.c, (4)

in which the oscillation amplitudes become dynamical
variables, and δm = (my

1,m
z
1,m

y
2,m

z
2)T , where the su-

perindex T refers to the transpose of the quantity inside
the brackets. The frequencies ωip/ap and vectors vip/ap
are those obtained for βJ = βJ,c. The amplitudes of os-
cillation A(t) and B(t) depend on time and are complex
quantities. We insert the ansatz of Eq. (4) in Eq. (1).
Furthermore, we consider that the functions A(t), B(t),
and e2i(ωap−ωip)t are slow variables as compared to the
self-sustained oscillations (|Ȧ| � |ωipA|, |Ḃ| � |ωapB|,
and |ωip − ωap| � ωip ∼ ωap). After a temporal average
in the fast time scales, we could eliminate the terms con-
taining fast oscillations. Then, we obtain the following
expressions for the amplitudes:

Ȧ = (ε1 − η1|A|2 − µ1|B|2)A− ν1e
2i(ωap−ωip)tB2A∗,

(5a)

Ḃ = (ε2 − η2|B|2 − µ2|A|2)B − ν2e
2i(ωip−ωap)tA2B∗,

(5b)

where A∗ and B∗ stands for the complex conjugate of
A and B, respectively. The coefficients of Eqs. (5a) and
(5b) can be decomposed into their real and imaginary
parts εj = εjR + iεjI , ηj = ηjR + iηjI , µj = µjR + iµjI ,
and νj = νjR + iνjI , where j = 1 or 2. The parame-
ters ε1R and ε2R are interpreted as the energy injection
that makes the amplitudes grow (if they are positive)
or decay (if they are negative). These coefficients ac-
count for the competition between the spin-transfer and
the Gilbert torques. The coefficients η1R and η2R repre-
sent the nonlinear dissipation mechanisms that saturate
the amplitudes. The coefficients {µ1, µ2} and {ν1, ν2}
account for the interaction between the two eigenmodes
without and with frequency mixing (ωip ∼ ωap), respec-
tively. The imaginary parts of the above parameters rule
the phase dynamics. Note that {εj , ηj , µj , νj} depend on
the geometrical parameters of the system, such as the an-
gle θ and the distance S. Tables with a direct mapping
from the coefficients of the LLGS equation to the ones of
Eqs. (5a), (5b) are shown in Appendix C.

The magnetization δm has two superimposed oscilla-
tions at frequencies ωip and ωap, and their harmonics. We
obtained equations for the envelope of those oscillations,
Eqs. (5a) and (5b), by means of the rotating-wave-like
change of variables in Eq. (4), and by applying the or-
thonormality condition of Fourier functions. The modes
have slightly different frequencies, and then there are in-
teraction terms that obey the orthogonality condition ap-
proximately. Those terms manifest as time-dependent
modal interaction. Using Eqs. (5a) and (5b), we look
for single-mode oscillations with constant amplitude, i.e.,
solutions for |A| = ā and |B| = b̄ where ā and b̄ = are
constants, i.e., d|A|/dt = d|B|/dt = 0. We obtain the
following three solutions

(ā, b̄)s0 = (0, 0), (6a)

(ā, b̄)s1 =

(√
ε1R
η1R

, 0

)
, (6b)

(ā, b̄)s2 =

(
0,

√
ε2R
η2R

)
, (6c)

where (ā, b̄)s0 represents a static solution, while (ā, b̄)s1
and (ā, b̄)s2 represent single-modes of oscillation that
emerge via a supercritical Andronov-Hopf bifurcation34.
Figure 2 illustrates the amplitude of these oscillatory
single-modes as a function of the applied current density
for θ = 0, i.e. the solutions of Eqs. (6b) and (6c). As
shown in this figure, the system has two normal modes,
the antiphase and the in-phase ones. Note that the an-
tiphase mode emerges at a lower current in comparison
with the in-phase mode. Below the critical density cur-
rent that indicates growth of the antiphase mode, the
system is static, that is, δm = 0.

In addition to the simple antiphase and in-phase modes
shown in Fig. 2, we search for non-trivial solutions
of Eqs. (5a), (5b). In particular, we use the following
change of variables that eliminates the explicit temporal
dependence of the terms proportional to νj in these equa-



4

5.1 5.2 5.3
0.0

0.1

0.2

Legend Antiphase

In-phase

FIG. 2. Amplitude of single-mode oscillations as a function
of the applied current density, for θ = 0 and S = 10 nm.
The free layers are made of Permalloy with R = 50 nm and
L = 5 nm. The solid and dash-dotted lines correspond to
the oscillation amplitude of the antiphase and the in-phase
modes, respectively. The square-root form of the oscillation
amplitude and the finite frequency are the hallmarks of su-
percritical Andronov-Hopf instabilities.

tions, namely, A = ae−i(∆ωt+ψ)/2 and B = bei(∆ωt+ψ)/2,
where ∆ω = ωip−ωap. One obtains the new set of equa-
tions

ȧ =(ε1R − η1Ra
2 − [µ1R + ν1R cos(2ψ)− ν1I sin(2ψ)]b2)a,

(7a)

ḃ =(ε2R − η2Rb
2 − [µ2R + ν2R cos(2ψ) + ν2I sin(2ψ)]a2)b,

(7b)

ψ̇ =−∆ω + (ε2I − ε1I) + (µ1I − η2I)b
2 − (µ2I − η1I)a

2

+ cos(2ψ)
(
b2ν1I − a2ν2I

)
+ sin(2ψ)

(
a2ν2R + b2ν1R

)
.

(7c)

Usually, oscillators coupled via weak interactions exhibit
a synchronized phase dynamics, where the coupling does
not significantly alter the oscillation amplitudes25. How-
ever, in the present case, even if the magnetostatic cou-
pling is relatively small compared to the magnetic and
anisotropy fields, the oscillation phases are not the only
relevant variables. Indeed, the dynamics of the oscilla-
tion amplitudes are relevant because the nano-oscillators
operate at the onset of oscillatory instabilities (both
modes have similar critical currents and similar frequen-
cies). We may obtain approximate solutions of the set of
Eqs. (7a)-(7c) by the following approximation

a = ā+ a1 sin(2ω0t) + a2 cos(2ω0t), (8a)

b = b̄+ b1 sin(2ω0t) + b2 cos(2ω0t), (8b)

ψ̇ = ω0, (8c)

which we name mixed-mode state. The above ansatz rep-
resents a global oscillation in which both the in-phase and
the antiphase modes contribute, that is, a, b 6= 0. Fur-
thermore, the mode amplitudes oscillate at 2ω0, with ω0

an unknown frequency. This temporal dependence arises
from the time-dependent modal interaction in Eqs. (5a),
(5b), and it originates from the frequency detuning,

ωip 6= ωap. After replacing the ansatz of formulae into
Eqs. (7a)-(7c), and using that Fourier modes are linearly
independent, one obtains the solutions for {ā, a1, a2},
{b̄, b1, b2}, and ω0. Appendix D contains plots of these
solutions as a function of βJ , which are characterized
by a continuous growth of ā (b̄) for θ = 0 (θ = π/2).
This supercritical behavior, in addition to the emergence
of a frequency, allows us to recognize the supercritical
Andronov-Hopf bifurcation of the antiphase (in-phase)
oscillation for θ = 0 (θ = π/2). The direct numerical
simulation of the magnetization equations will confirm
this identification in the next subsection.

The amplitude of the oscillation of the magnetization,
|δmj |, is defined as

|δmj | =
1

T

∫ t0+T

t0

dt
√
my
j (t)2 +mz

j (t)
2. (9)

Figure 3(a) illustrates |δmj | whit t0 = 0 and T = 105.
We obtain |δmj | for different solutions and θ = 0,
by replacing the amplitudes from Eqs. (6b), (6c) and
(8a)-(8c) in Eq. (4). This figure shows that the first
mode that emerges is the antiphase one, characterized
by an oscillation phase difference of π. To better un-
derstand the results in this figure, we study the mag-
netization behavior of the system in this regime. Fig-
ures 3(b) show the magnetization trajectories my

1 ≈ −my
2

for βJ = 0.00513 (left), 0.00522 (center), and 0.00535
(right), respectively. Figures 3(c) illustrate the phase di-
agram of points (my

1,m
y
2) from Figs. 3(b), respectively.

The corresponding phase diagram given by Fig. 3(c) is
known as Lissajous figures25. We note that for θ = 0,
we have ωap < ωip, that is, the antiphase mode has lower
frequency and consequently requires less energy to be ex-
cited31. Thus, it is natural to observe this mode at the
onset of the Andronov-Hopf instability [see the left pan-
els of the Figs. 3(b) and 3(c)]. Above a critical current,
an oscillatory secondary instability of the system takes
place. In this bifurcation, a small in-phase oscillation
emerges around an antiphase orbit. In this case, the so-
lution corresponds to a superposition of modes with a
mixing of frequencies, namely mixed-mode state, where
the in-phase and the antiphase modes co-exist, and the
dynamics is quasi-periodic. The corresponding phase di-
agram for this mixed state has a tie-like shape as shown in
Fig. 3(c) (center). When the energy injection increases,
the system undergoes a third instability in which the an-
tiphase contribution of the mixed-mode disappears, and
the system stabilizes the in-phase oscillation [see the right
panel of Fig. 3(b) and 3(c)]. Since the analytic study of
the stability of periodic and quasi-periodic orbits is com-
plicated in general, we specify the details of this bifurca-
tion using the numerical results of the next subsection.
Since the in-phase oscillation has a larger frequency and
then requires more energy, it is expected that the sta-
bilization of this state is only possible for larger electric
currents. The mixed-mode solution is then the transi-
tion regime that mediates the existence of the IP and AP
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FIG. 3. (a) Oscillation amplitude of the magnetization, |δm|,
for θ = 0 and S = 10 nm. The solid, dash-dotted and dot-
ted lines correspond to the amplitude of the oscillation of the
antiphase, in-phase and mixed modes, respectively. (b) Mag-
netization components my

1 and my
2 as functions of time for

θ = 0 and S = 10 nm, for different currents. At the left for
the antiphase mode βJ = 0.00513 , at the center for the mixed
mode βJ = 0.00522 , and at the right for the in-phase mode
βJ = 0.00535. (c) Phase space in terms of the components
my

1(t) and my
2(t), and parametrized by the time t. The figures

have the same current densities as in row (b), respectively.

states. Appendix E shows the trajectories of the magne-
tization components my

1 and my
2 for a longer time, where

we consider Eqs. (8a), (8b) and (8c). As shown in this
Appendix, the oscillation amplitudes are not constant.

Figures 4 and 5 illustrate analogous quantities for θ =
π/2. For the latter angle, the magnetostatic interaction
inverts the energy consumption of each oscillation mode,
i.e., ωip < ωap. Thus the zones for θ = π/2 are inverted
with respect to θ = 0.

To verify the predictions of the simplified model for
the oscillation modes given by Eqs. (5a) and (5b), we
conduct in the next subsection numerical simulations of
the Landau-Lifshitz-Gilbert-Slonczewski equations (1).

B. Numerical results

The numerical integration of the LLGS equation is con-
ducted using a fifth-order Runge-Kutta method33 with
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FIG. 4. Amplitude of single-mode oscillations as a function
of the applied current density, for θ = π/2 and S = 10 nm.
The free layers are made of Permalloy with R = 50 nm and
L = 5 nm. The solid and dash-dotted lines correspond to
amplitude of oscillations for the antiphase and the in-phase
modes, respectively.

0 100

-1

0

1 Legend

t

m
y

my
1 my

2

-1 0 1
-1

0

1

my
1

m
y 2

5.0 5.1 5.2 5.3
0.0

0.2

0.4

0.6

0.8

1.0

�J

✓ = ⇡/2

|�m
|

⇥10�3

st
at

ic

0 100

-1

0

1 Legend

m
y

t

my
1 my

2

-1 0 1
-1

0

1

my
1

m
y 2

0 100

-1

0

1 my
1 my

2

t

m
y

-1 0 1
-1

0

1

m
y 2

my
1

(a)

(c)

(b)

FIG. 5. (a) Amplitude of the oscillation of magnetization,
|δm|, for θ = π/2 and S = 10 nm. The solid, dash-dotted,
and dotted lines corresponds to amplitude of oscillation of the
magnetization of the antiphase, in-phase, and mixed modes,
respectively. (b) Magnetizations my

1 and my
2 as a function of

time for θ = π/2 and S = 10 nm, for different currents. At
the left for the in-phase mode βJ = 0.00507, at the center
for the mixed mode βJ = 0.00527, and at the right for the
antiphase mode βJ = 0.00530. (c) Phase space in terms of
the components my

1(t) and my
2(t), and parametrized by the

time t. The figures have the same current densities as in row
(b), respectively.
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constant step size dt = 0.001, small enough to ensure
the conservation of the magnetization norm for each free
layer disk, m2

k = 1. Figure 6 summarizes the trajectories
of the magnetizations, for θ = 0 and S = 10 nm, as a
function of the parameter βJ proportional to the current
density. We focus on the deviation from the station-
ary equilibrium, δmk = my

k(t)ŷ + mz
k(t)ẑ. Figure 6(a)

illustrates the phase difference, φ, between the magneti-
zations, defined as

φ = arccos

(
δm1 · δm2

|δm1||δm2|

)
, (10)

and also the time-averaged oscillation envelope, |δmj |,
from Eq. (9), where the times t0 = 106 and T = 105

are much larger than the transient time and the oscilla-
tion period, respectively. We used those values for t0 and
T throughout all the numerical part of the study. It is
important to point out that we consider t0 = 0 for the
analytical study because in that model the solution does
not have a transient response, i.e., we obtain the steady
state for an arbitrary t. We define in Eq. (10) the rela-
tive angle φ(t) between the magnetizations δm1 and δm2,
which is a measure of the degree of synchronization be-
tween the two nano-oscillators. In particular, when φ(t)
is constant in time, it means that the oscillators synchro-
nize their phases. Figure 6 shows five zones: the first zone
(static), for βJ < 0.00511, corresponds to the static equi-
librium mx

1 = mx
2 = 1. At βJ = 0.00511 occurs a super-

critical Andronov-Hopf bifurcation resulting in a stable
limit cycle, this is the beginning of the second zone (an-
tiphase) which represents an antiphase oscillation, where
my

1(t) ≈ −my
2(t) with φ ≈ π. At βJ = 0.005175, a sec-

ondary instability of the system occurs, in this case it is
a supercritical Andronov-Hopf bifurcation, in which the
antiphase mode becomes unstable, resulting in a new sta-
ble limit cycle. This third zone (mixed-mode) represents
a quasi-periodic state where the mixed mode bifurcated
from an antiphase state. At the onset of this supercriti-
cal instability, the oscillatory trajectory is similar to the
mode that became unstable. Finally, at βJ = 0.005255
the in-phase oscillation is stabilized, and it coexists with
the mixed-mode until βJ = 0.005275, where the mixed-
mode is no longer observed.

The study of bifurcations of the periodic and quasi-
periodic orbits is not a trivial task, however, from the
previous subsection we know that the bifurcations at
βJ = 0.005255 and βJ = 0.005275 are not related to
the creation or destruction of the equilibria but to their
stability (because these solutions exist in a wider region).
Furthermore, the in-phase mode is always stable in the
single-amplitude model (i.e., b̄ ≡ 0), and then the stabil-
ity change at βJ = 0.005255 must be from an unstable
saddle-point-like to a stable one, where the unstable di-
rection in the phase space flows towards the mixed-mode
equilibrium. With a similar reasoning34, we discard the
saddle-node bifurcation at βJ = 0.005275 (the mixed-
mode exists beyond that current value), and attribute its
destabilization to the transition towards a saddle point

or an unstable spiral. The last zone (in-phase) corre-
sponds to an in-phase oscillation, where my

1(t) ≈ my
2(t)

with φ ≈ 0.

The in-phase and antiphase oscillations represent syn-
chronized states, where the phase difference is locked.
On the other hand, the mixed-mode is characterized by
a dynamic phase difference. The bar in Fig. 6(a) is the
standard deviation of the temporal series of φ(t), and
it plays the role of a dynamical indicator. Note that
in the mixed-mode region the phase difference depends
on time. This shows that the magnetization of each free
layer is governed by two incommensurate frequencies, ωap
and ωip. Thus, the free layers magnetizations can ac-
celerate and decelerate during the oscillation cycles. In
addition, the maximum value of the phase difference in-
creases with the current because the amplitude of the
in-phase mode grows with the current, and it eventually
becomes the dominant contribution to the mixed-mode
solution. Figure 6(b) shows the magnetization compo-
nents my

1 and my
2 as a function of time, for several cur-

rent densities: βJ = 0.00513 (left), that corresponds to
the antiphase mode, βJ = 0.00520 (center), that gener-
ates a mixed mode, and βJ = 0.00535 (right), that corre-
sponds to the in-phase mode. Figure 6(c) corresponds to
the phase space of the system projected on the variables
my

1(t) and my
2(t), parametrized by the time t, for the re-

spectively current densities of Fig. 6(b). As this figure
illustrates, the analytic solutions of Eqs. (6) and (8a)-
(8c) are in good agreement with the simulations of the
magnetic model with the static, antiphase, in-phase, and
the mixed modes. Note that the numerical integration
of the Landau-Lifshitz-Gilbert-Slonczewski equation re-
veals a subcritical transition, also known as a first-order
phase transition, between the mixed-mode and the in-
phase mode. The subcriticality reflects as a bi-stability
between the two aforementioned states in the lighter re-
gion of Fig. 6 between the mixed-mode and in-phase
zones, in which the system selects one equilibrium or the
other depending on the initial condition. We have not
been able to find this bi-stability with the simple model
presented in the previous sub-section, partially because
the analytic treatment of the stability of periodic orbits
is, in general, a very hard task. Our analytic model al-
lowed us to discover the solutions and their existing re-
gions in the parameter space, however, finding the cur-
rent intervals at which each state is stable is beyond the
possibilities of our treatment.

On the other hand, Fig. 7 summarizes the trajectories
of the magnetizations, for θ = π/2 and S = 10 nm, as
a function of the current density βJ . Figure 7(a) illus-
trates the amplitude of the oscillation of the magnetiza-
tion, |δm| , and the difference of phase φ, as a function of
the current density. We observe five different zones: the
first zone (static), for βJ < 0.00503, represents the stable
static equilibrium mx

1 = mx
2 = 1. At βJ = 0.00503 occurs

a supercritical Andronov-Hopf34 bifurcation resulting in
a stable limit cycle. In this second zone (in-phase), the
stable limit cycle corresponds to an in-phase oscillation,
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FIG. 6. Nonlinear dynamics of the magnetization for two
magnetostatically coupled nano-oscillators for θ = 0. (a) Am-
plitude of oscillation of magnetization and phase difference as
a function of the current density. The left panel represents
the antiphase mode (antiphase zone), the center panel the
quasi-periodic state (mixed-mode zone) and the right panel
the in-phase mode (in-phase zone). (b) Both magnetizations
my

1 and my
2 as a function of time, for βJ = 0.00513 (left),

βJ = 0.00520 (center) and βJ = 0.00535 (right). (c) Phase
space in terms of the components my

1(t) and my
2(t) for the

same current densities used in (b).

where my
1 ≈ my

2 with φ ≈ 0. At βJ = 0.00511 the an-
tiphase state is stabilized. In a similar reasoning to pre-
vious paragraphs, we conclude that the antiphase state
is an unstable-node for βJ < 0.00511 and a stable one
at βJ > 0.00511. In this third zone, there are two sta-
ble states (bi-stability) where one of them corresponds
to an in-phase oscillation and the other to an antiphase
oscillation. At βJ = 0.00517 occurs a new supercritical
Andronov-Hopf bifurcation, in which the in-phase mode
becomes unstable. The new stable orbit corresponds to
a quasi-periodic state bifurcated from the in-phase state.
In this fourth zone, there are two stable dynamic states
where one of them corresponds to a quasi-periodic state
(mixed-mode) and the other to an antiphase oscillation.
Finally, at βJ = 0.00525 the mixed mode destabilizes by
becoming a saddle point or an unstable spiral, or by col-
liding with an unstable state that is not observable in the
simulations. The last zone (antiphase) corresponds to an
antiphase oscillation, where my

1 ≈ −my
2 with φ ≈ π. Fig-

ure 7(b) shows the magnetizations my
1 and my

2 as a func-
tion of time, for different current densities. βJ = 0.00507
(left) corresponds to the in-phase mode, βJ = 0.00520
(center) gives a mixed mode, and βJ = 0.00530 (right)
corresponds to the antiphase mode. Figure 7(c) corre-

sponds to the graph of the system of parametric equa-
tions, my

1(t) and my
2(t), where t is the parameter, for the

respective current densities in Fig. 7(b). As this figure il-
lustrates, the analytic solutions of Eqs. (6) and Eqs. (8a)-
(8c) are in good agreement with the simulations of the
magnetic model for the static, antiphase, in-phase, and
the mixed modes.
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FIG. 7. Nonlinear dynamics of the magnetization for two
magnetostatically coupled nano-oscillators for θ = π/2. (a)
Amplitude of oscillation of magnetization and phase difference
as a function of the current density. The left panel represents
the in-phase mode, the second panel represents bi-stability
between the in-phase mode and antiphase modes, the third
panel the quasi-periodic state (zone III) and the right panel
the antiphase mode. (b) Both magnetizations my

1 and my
2 as

a function of time, for βJ = 0.00507 (left), βJ = 0.00520 (cen-
ter) and βJ = 0.00530 (right). (c) Phase space in terms of the
components my

1(t) and my
2(t) for the same current densities

used in (b).

So far, we have analyzed two relevant angles, namely
θ = 0 and θ = π/2, each one of them showing different
behavior. There are two intermediate angles, θ1 ≈ 0.64,
where the frequencies of the two modes (in-phase and an-
tiphase) are identical, and θ2 ≈ 1.08, where the critical
current densities of the two modes are equal31. These
two angles separate the two aforementioned cases (θ = 0
and θ = π/2), as it is shown in Fig. 8. This figure il-
lustrates a simplified phase diagram in the current-angle
parameter space. It is obtained slowly increasing in time
the dc current at a fixed given angle: the initial current is
below critical values, and different initial conditions are
tested. When the current is below its critical value for all
the modes the system is in the static phase, and as the
current increases other phases appear (there are approx-
imate limits in this diagram). Then, the first mode that
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we observe is the one with the lowest critical current. As
the current increases, the mixed-mode exists, and finally,
we observe the mode with the biggest critical current.
We observe that for 0 ≤ θ ≤ θ1 and θ2 ≤ θ ≤ π/2, the
results are qualitatively consistent with the ones shown
in Figs. 6 and 7, respectively (notice that Fig. 8 corre-
sponds to an increasing current direction). Now, if we
consider a fixed angle θ . 0.64 we observe the antiphase
mode for low currents and the in-phase one for large cur-
rents. The mixed-mode exists in an intermediate region.
For θ & 1.08 occurs the opposite, i.e., the in-phase and
antiphase modes are stable in the low and high current
limits, respectively, and the mixed-mode state is also in
the intermediate region. If we compare results depicted
in Fig. 8 with results in Figs. 6(a) and 7(a), we only ob-
serve one of the branches of the magnetization dynamics,
and we do not observe the bi-stability zones that appear
in the previous figures. To observe the other branch, the
current density should be decreased from a high value.
For angles in the range 0.64 . θ . 1.08 (grey zone in
Fig. 8), the mode with the lowest critical current is the
antiphase mode, with the biggest frequency. This be-
havior is opposite to what occurs for the other ranges
of angles, where the mode with the lowest critical cur-
rent, also has the lowest frequency31. Additionally, for
θ ≈ 0.64, the frequencies of both modes are very simi-
lar and the mixing between them is strong. While, for
θ ≈ 1.08, the critical current densities of both modes
are very similar, and the bi-stability zone between the
in-phase and antiphase modes is very narrow. In this
range of angles we principally observe two behaviors de-
pending on the initial conditions: if the antiphase mode
is excited first (for lower currents), for higher currents
we do not observe the mixed-mode, but if the in-phase
mode is excited first (for lower currents), then we observe
the mixed-mode (for higher currents). The behavior for
this range of angles should be studied in detail in another
work.

To finalize, if we reduce the magnetostatic interaction
between the oscillators by increasing the distance S, we
observe that the zone of stability of the antiphase and
the mixed states decreases for θ ≤ θ1 [see Fig. 6(a) for
S = 10 nm and Fig. 9(a) for S = 50 nm at θ = 0]. In
these figures, we observe that the antiphase zone changes
from 0.00511 ≤ βJ ≤ 0.005175 (∆βJ = 6.5 × 10−5)
to 0.00508 ≤ βJ ≤ 0.00511 (∆βJ = 3 × 10−5) when
we change S from 10 nm to 50 nm. The corresponding
change for the mixed-mode zone goes from 0.005175 ≤
βJ ≤ 0.00525 (∆βJ = 7.5 × 10−5) to 0.00511 ≤ βJ ≤
0.00513 (∆βJ = 2 × 10−5), respectively. Consistently,
the zone where the in-phase is stable becomes larger [see
Figures 6(a) and 9(a)]. A similar situation is obtained
for θ ≥ θ2, where the in-phase and mixed-mode zones
decrease when we increase the distance between the os-
cillators, while the zone where the antiphase is stable
becomes larger. The stability zones become narrower
and we could not find the bi-stability regions present for
S = 10 nm. Then, the phenomenon of synchronization

FIG. 8. Phase diagram in the current-angle parameter space,
done under the assumption that the dc current is increased
from a low value (i.e. below the critical current of any mode).
Different initial conditions are tested. For θ . 0.64, as the
current increases, first an antiphase mode appears, then the
mixed-mode occurs, and finally the in-phase mode is observed.
For θ & 1.08, as the current increases, the first mode that
appears is the in-phase mode, then we observe a mixed-mode,
and finally the antiphase mode. In the intermediary zone,
0.64 . θ . 1.08, the behavior is not simple to analyze due to
their similar frequencies and critical currents.

depends on the magnetostatic interaction.
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FIG. 9. Nonlinear dynamics of two magnetostatic coupled
nano-oscillators for θ = 0 and S = 50 nm. The free layers are
made of Permalloy with R = 50 nm and L = 5 nm. The first
zone shows the static equilibrium, for larger currents, there
is an antiphase mode, and then a quasi-periodic state. The
right-most zone is the in-phase mode.

IV. CONCLUSIONS AND REMARKS

In summary, through nonlinear analytic and numerical
simulations we have studied the magnetization dynam-
ics of spin-transfer-driven oscillators coupled via magne-
tostatic fields, as a function of the current density, the
relative position of the oscillators, and the distance be-
tween them. For most values of the density current, the
system exhibits a synchronized motion of the magnetiza-
tions. In this regime, the difference between the oscilla-
tion phases of the free layers remains nearly 0 for an in-
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phase mode and π for an antiphase mode. Those modes
interact and compete and, depending on the particular
values of the parameters and the initial conditions, the
system chooses one of them. For example, for free lay-
ers arranged collinear to the magnetic field (θ = 0), the
antiphase mode dominates for smaller density currents,
and the in-phase one dominates for the larger density cur-
rents. The transition between the two regimes, as men-
tioned above, is characterized by a mixed-mode state,
in which both the antiphase and in-phase modes partic-
ipate with a finite amplitude of oscillation. Concerning
the distance between the valves, if we increase the magne-
tostatic coupling by approaching them, the zone where
the in-phase (antiphase) mode is stable becomes larger
for θ = 0 (θ = π/2). When the free layers are well sep-
arated, the first zones of the stability diagram get nar-
rower. However, the phase locking still exists, as is ex-
pected from a system exhibiting synchronization. Thus,
these results could be used as one step in the quest for
the design and control of spin-transfer-driven oscillators
in associative memories.
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Appendix A: Magnetostatic fields

In this section we show the expressions for the mag-
netostatic fields related to the self-magnetostatic field
and the magnetostatic interaction field between the
nano-oscillators. The normalized self-magnetostatic field
points along the z-axis with hdk = −hdmz

kẑ, where the
demagnetization factor hd depends on the geometrical
parameters of the nano-oscillator, i.e., the thickness L
and the radius R. With hd given by31

hd = 1 +
3

L/R

∫ ∞
0

J ′0(q)2 (1− e−qL/R − qL/R)

q2
dq,

(A1)

where J ′0(q) = −J1(q) is the derivative of J0(q), and Jn is
the Bessel function of the first kind and order n. The de-
magnetizing field is obtained from the functional deriva-
tive of the self-magnetostatic energy, and it is averaged
over the disk volume. For L = 5 nm and R = 50 nm, we
have hd ≈ 0.8155.

The normalized magnetostatic interaction field be-
tween the free layers is defined as a function of the K1,

K2, and K3 parameters31 appearing in Eq. (3). These
are

K1 =
1

L/D

∫ ∞
0

J2
1 (qR/D)J0(q)

(1− e−qL/D − qL/D)

q2
dq,

K2 = − 1

L/D

∫ ∞
0

J2
1 (qR/D)J2(q)

(1− e−qL/D − qL/D)

q2
dq,

K3 =
2

L/D

∫ ∞
0

J2
1 (qR/D)J0(q)

(e−qL/D − 1)

q2
dq, (A2)

where D = 2R + S. Table I shows the values of these
parameters as a function of S. We observe that, as S
increases, these quantities approach 0.

S = 10 nm S = 50 nm S = 100 nm

K1 0.002510 0.0006275 0.0002281

K2 0.005441 0.001648 0.0006390

K3 −0.005021 −0.001255 −0.0004562

TABLE I. Values of the parameters K1, K2, and K3 for S =
10 nm, S = 50 nm, and S = 100 nm.

Appendix B: Oscillation frequencies and modes at the
instability point

The linear modes of the system of two cou-
pled thin disks correspond to an in-phase oscillation
δmip = A0vipe

iωipt + c.c, and an antiphase one
δmap = B0vape

iωapt + c.c. We have that (ωip,vip) and
(ωap,vap) are the frequencies and eigenvectors of the in-
phase and antiphase modes, respectively.

The explicit expressions of the eigenfrequencies are31

ωip =
√
hx + gx − gy

√
hx + gx + hd − gz,

ωap =
√
hx + gx + gy

√
hx + gx + hd + gz. (B1)

The explicit expressions of the eigenvectors are31

vip =


m1 +m3 + ωip
−(m2 +m4)

m1 +m3 + ωip
−(m2 +m4)

 , vap =


−(m1 −m3 + ωap)

m2 −m4

(m1 −m3 + ωap)

−(m2 −m4)

 ,

(B2)

where

m1 +m3 = ω0 + (λ2 + µ2)gx − [(λ+ µ)2gy + (λ− µ)2gz]/2,

m2 +m4 = −2λµgx + [(λ+ µ)2gy − (λ− µ)2gz]/2,

m1 −m3 = ω0 + (λ2 + µ2)gx + [(λ+ µ)2gy + (λ− µ)2gz]/2,

m2 −m4 = −2λµgx − [(λ+ µ)2gy − (λ− µ)2gz]/2,

and

ω0 =
√
hx(hx + hd),
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λ =

√
hx + hd/2 + ω0

2ω0
,

µ =

√
hx + hd/2− ω0

2ω0
.
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Appendix C: Particular parameters of Eqs. (5a)-(5b)

Table II contains the values of the parameters ε1, η1,
µ1, ν1, ε2, η2, µ2, and ν2 as a function of βJ for θ = 0

and θ = π/2 at S = 10, 50, and 100 nm. These values
are obtained by mapping Eq. (1) into Eqs. (5a) and (5b).

S = 10 nm, θ = 0 S = 50 nm, θ = 0 S = 100 nm, θ = 0

ε1 βJ − 0.00520 βJ − 0.00511 βJ − 0.00509

η1 (0.0428 + 1.02i)− 9.37βJ (0.0430 + 0.885i)− 9.897βJ (0.0430 + 0.845i)− 10.1βJ

µ1 (0.0846 + 1.55i)− 19.5βJ (0.0858 + 1.61i)− 20.1βJ (0.086 + 1.63i)− 20.2βJ

ν1 (0.0420 + 0.678i)− (9.66 + 0.00614i)βJ (0.0428 + 0.776i)− (10.0 + 0.00258i)βJ (0.0430 + 0.802i)− (10.1 + 0.00109i)βJ

ε2 βJ − 0.00512 βJ − 0.00509 βJ − 0.00508

η2 (0.0427 + 0.914i)− 9.75βJ (0.0430 + 0.845i)− 10.1βJ (0.0431 + 0.829i)− 10.12βJ

µ2 (0.0836 + 1.52i)− 18.8βJ (0.0853 + 1.60i)− 19.8βJ (0.0858 + 1.62i)− 20.1βJ

ν2 (0.0407 + 0.761i)− (9.46− 0.00601i)βJ (0.0423 + 0.803i)− (9.93− 0.00256i)βJ (0.0428 + 0.813i)− (10.1− 0.00109i)βJ

S = 10 nm, θ = π/2 S = 50 nm, θ = π/2 S = 100 nm, θ = π/2

ε1 βJ − 0.00506 βJ − 0.00507 βJ − 0.00508

η1 (0.0420 + 0.899i)− 9.64βJ (0.0428 + 0.840i)− 10.02βJ (0.0430 + 0.827i)− 10.1βJ

µ1 (0.0915 + 1.76i)− 22.6βJ (0.0876 + 1.68i)− 20.9βJ (0.0867 + 1.65i)− 20.6βJ

ν1 (0.0465 + 0.774i)− (10.9 + 0.0294i)βJ (0.0440 + 0.810i)− (10.4 + 0.00768i)βJ (0.0434 + 0.816i)− (10.2 + 0.00286i)βJ

ε2 βJ − 0.00503 βJ − 0.00506 βJ − 0.00507

η2 (0.0447 + 0.569i)− 11.3βJ (0.0435 + 0.752i)− 10.47βJ (0.0433 + 0.794i)− 10.3βJ

µ2 (0.08328 + 1.616i)− 19.28βJ (0.0854 + 1.63i)− 20.0βJ (0.0859 + 1.64i)− 20.2βJ

ν2 (0.0422 + 0.936i)− (10.0− 0.0269i)βJ (0.0428 + 0.856i)− (10.1− 0.00750i)βJ (0.0430 + 0.834i)− (10.1− 0.00283i)βJ

TABLE II. Values of the parameters of Eqs. (5a), (5b) as a
function of βJ for S = 10 nm, S = 50 nm, and S = 100 nm
at θ = 0 and θ = π/2.

Appendix D: Parameters of Eqs. (8a)-(8c)

In this section we show the parameters of Eqs. (8a)-(8c)
as a function of the applied current density. Figure 10
illustrates ā, b̄, a1, a2, b1, b2, and ω0, for S = 10 nm and
θ = 0 (left panel), and for θ = π/2 (right panel).
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FIG. 10. Parameters of Eqs. (8a)-(8c) as a function of the
applied current density. ā, b̄, a1, a2, b1, b2, and ω0, for S = 10
nm and θ = 0 (left panel), and for θ = π/2 (right panel).
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Appendix E: Magnetization components as a function of
time

In this section, we show the trajectory of the magneti-
zation components my

1 and my
2 for a larger time interval,

by using the solutions of Eqs. (8a), (8b) and (8c). For
θ = 0, we consider βJ = 5.22 × 10−3 (Fig. 11) and for
θ = π/2, we use βJ = 5.27 × 10−3 (Fig. 12). It can be
observed that the oscillation amplitudes of the magneti-
zations are not constant.
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FIG. 11. Magnetization components my
1 and my

2 as a function
of time for maximum time (a) t = 500 and (b) t = 4000, and
for βJ = 5.22× 10−3 and θ = 0.
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FIG. 12. Magnetization components my
1 and my

2 as a function
of time for maximum time (a) t = 500 and (b) t = 4000, and
for βJ = 5.27× 10−3 and θ = π/2.
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