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We examine the dynamics of cutting-and-shuffling a hemispherical shell driven by alternate rota-
tion about two horizontal axes using the framework of piecewise isometry (PWI) theory. Previous
restrictions on how the domain is cut-and-shuffled are relaxed to allow for non-orthogonal rotation
axes, adding a new degree of freedom to the PWI. A new computational method for efficiently exe-
cuting the cutting-and-shuffling using parallel processing allows for extensive parameter sweeps and
investigations of mixing protocols that produce a low degree of mixing. Non-orthogonal rotation
axes break some of the symmetries that produce poor mixing with orthogonal axes and increase the
overall degree of mixing on average. Arnold tongues arising from rational ratios of rotation angles
and their intersections, as in the orthogonal axes case, are responsible for many protocols with low
degrees of mixing in the non-orthogonal-axes parameter space. Arnold tongue intersections along a
fundamental symmetry plane of the system reveal a new and unexpected class of protocols whose
dynamics are periodic, with exceptional sets forming polygonal tilings of the hemispherical shell.

I. INTRODUCTION

Mixing of fluids by diffusion, chaotic advection, and
turbulence has been well studied [I, 2]. Cutting-and-
shuffling is a mixing mechanism that is far less un-
derstood, but is particularly relevant to systems with
flow discontinuities, such as granular materials [3-8],
valved fluid flow [9, [I0], thrust faults in geology [TIHI3],
and, of course, the typical example of mixing a deck of
cards [I4HI6]. In one dimension, cutting-and-shuffling
is described mathematically by interval exchange trans-
forms (IETs) [I7H28] which naturally extend to higher
dimensions under the framework of piecewise isometries
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(PWIs). PWIs, which cut an object into pieces and spa-
tially rearrange them to form the original shape, can pro-
duce complex dynamics despite their relative simplicity
[29-37]. There are several, though somewhat similar, def-
initions of PWIs [0, B3H37]. A piecewise isometry (PWI)
M : S — S is amap on a domain S such that, for some
partition of S into a finite number N of closed [38], mutu-
ally disjoint (up to their boundaries) partition elements
{P;}N.| (termed atoms), the action of M is a Euclidean
isometry (length preserving, e.g. rotation, translation,
reflection) on each P;. A PWI is invertible if the mapped
atoms, {MP;}Y |, are also mutually disjoint (again, up
to their boundaries). Overlapping atom boundaries are
treated as members of both adjacent atoms, resulting in
a map that is multi-valued on atom boundaries and in-
troduces complications that ultimately have no bearing
on the measurements in this paper. A PWI is orientation
preserving if there are no reflections.

We investigate a specific family of invertible, orien-
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tation preserving PWIs on a hemispherical shell [4-
[7, 29, [39-4T]. The hemispherical shell has become a pro-
totypical PWI for its relation to a half-filled spherical
tumbler of granular particles rotated sequentially about
two different horizontal axes (called the Bi-axial Spheri-
cal Tumbler, or BST). The stripped down version of this
system is a PWI on a hemispherical shell.

Previous studies of mixing by PWIs on hemispheres
[4, 29, [40, 41] or hemispherical shells [6] [7, 29 B9] fo-
cused almost exclusively on the case where the two ro-
tation axes are orthogonal with the single apparent ex-
ception of Juarez et al. [5] where a general mixing metric
for non-orthogonal axis protocols was investigated using
this same PWI. An investigation of a related system for a
non-hemispherical spherical cap (i.e., less-than-half-filled
hemisphere), which induces shear along the axial direc-
tion (Ou/0a) and is therefore no longer a PWI, was re-
cently carried out by Smith et al. [42].

This paper uses the PWI formulation to examine mix-
ing on a hemispherical shell when the restriction of or-
thogonal axes is relaxed, as described in Section [II] (the
PWI studied here can be expanded to a full sphere, see
Supplementary Material Section S-I at [URL will be in-
serted by publisher]). First, we describe a highly effi-
cient approach for computing the “exceptional set” asso-
ciated with PWIs in Section [[Il and determine its areal
coverage, which is correlated with the degree of mixing
[6]. Second, we explore symmetry-breaking and other ef-
fects that occur when rotations of the hemispherical shell
occur about non-orthogonal axes, instead of orthogonal
axes, in Section[[V] Finally, in Section [V] we examine the
position of resonant structures (protocols with minimal
coverage) within the non-orthogonal parameter space as
the angle between axes changes. Some resonances have
polygonal non-mixing regions and some are polygonal
tilings of the hemispherical shell. Section [V presents
our conclusions.

II. PWI MAPPING FOR NON-ORTHOGONAL
AXES

The procedure defining the PWI on a hemispherical
shell (HS) as well as the coordinate system used in this
paper is shown schematically in Fig. [ Begin by ro-
tating the hemispherical shell about the first horizon-
tal axis by angle o [Fig. [[{a) to (b)], rotating the sec-
tion that passes above the equator by an additional 180°
[Fig. (L] l(c and (d)], which provides the cutting action.
Next, rotate about the second axis by angle 8 [Fig. []] I(e
to (f)], again rotating the section that passes above the
equator by an additional 180° [Fig. [fg) and (h)]. The
angle between the rotation axes is 4. Thus, we con-
sider the PWI mapping on a hemispherical shell (HS),
My~ :S— S, which maps the lower hemispherical unit
shell, S = {(x,y, 2) 22+ y? + 22 =1,y <0}, to itself.
Note that the procedure here differs from some previous
definitions [6] [7, B9] in that both rotations are counter-
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FIG. 1. Demonstration of the rotations that define the PWI,
here a = 57°, 8 = 57°, and v = 120°. (a) The initial condi-
tion of the hemispherical shell (HS). (b) Rotation about the
first axis (z-axis) by a. (c) Separation of the portion above
the equator and beginning of the rotation to reconstruct the
HS. (d) Re-formed HS. (e-h) Repeat of (a-d) about the second
horizontal axis.

(e)
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clockwise (this merely results in a left-right mirroring of
the PWI compared to other work). More importantly,
the rotation axes are not necessarily orthogonal to one
another, as in the degree of mixing study by Juarez et al.
).

Together, the two rotations shown in Fig. [1| make up
the PWI mapping M, g ; the ordered triple of control
parameters (v, 3,7) is termed the mapping protocol. The
mapping can be written as the composition of the two
modular rotations about horizontal axes a; and ay (ap-
plied right to left),

Mo 5 = Mg* Mg, (1)

where ]\ng represents a rotation about axis a by angle 6
with the condition that points crossing the equator are
rotated additionally by 180° to reconstruct the HS, as
shown schematically in Fig.[I} Here, axes a; and as lie
in the equatorial zz-plane with angle v between them.

The physical description outlined in Fig. [I helps to vi-
sualize the cutting and shuffling of the HS and relate it
to the physical system, but the composition of these ac-
tions alone defines the PWI mapping. Figure[2]shows the
PWI Ms70 570 1200 viewed from below (along the negative
y-axis) as an example. The hemispherical surface is split
into four atoms, the closed regions labeled P, P, P53, Py
in Fig. a), and rearranged to reconstruct the HS as
shown in Fig. 2b). Thus, the combination of step-wise
cuts and rotations in Fig. [1| is formally equivalent to
the rearrangement of Py, P», P3, P, between Fig. l(a ) and
Fig. [2(b) as a single action.

The domain is split along curved cutting lines (great
circle arcs) which represent discontinuities in the map,
shown in Fig. a) as the red arc D; and the two black
arcs that make up Dy. The atoms Py, P», P3, P, are re-
arranged and combined along the cutting lines of the in-
verse map, shown in Fig. I(b as the blue and red arcs.
Note that the black cutting lines D5 in Fig. [2) I(a become
the equatorial edge of the HS, which is called 0.5,



FIG. 2. The PWI mapping Ms7o 570 1200 (shown from
the negative y-axis) (a) cuts the domain into four atoms,
Py, P>, P3, Py, and (b) rearranges them according to the ro-
tation procedure in Sec. @ Cutting lines D; and D2 are the
red and black arcs in (a). Angles «, 3,~ specify the size and
orientation of the atoms. Angle 4’ is the spherical angle be-
tween cutting planes. (c) The union of cutting lines (red and
blue) when M, g is applied 20,000 times.

Fig. b)7 and the blue equatorial edge in Fig. a) be-
comes the blue cutting lines in Fig. b). The union of
cutting lines Dy and Ds is the set of discontinuities D,
also called the unstable set [43], which is formally defined
as the union of all intersections of the closed partition el-
ements of S, P;, such that D = J, ., P; N P; [6] [44].

It is more difficult to visualize the angles «, 3, and v
in Fig. 2] than in Fig. [I] but these angles are still present
despite being distorted by the view from the bottom of
the hemispherical shell. For example, § is the angle be-
tween the black cutting line Dy and the red cutting line
D; that form two edges of atoms P3 and P,. The area
of each atom (a unit hemisphere having a total area of
27) is the sum of the angles in the spherical triangle that
specifies the atom minus 7w such that the surface area A;
of P; is

[\

Al=m—a—-8+7,
Ay=mta—B—,
Az=m—a+p—°,
Ay=-m+a+B+7,
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where the spherical angle +' is the angle between the

cutting planes forming cutting lines D, and D-, given by

v = arccos|cos(7) sin(a) sin(83) — cos(a) cos(B)].  (6)

Applying the Ms70 570 1200 map 2 x 10* times and
recording the positions of the cutting lines at the end
of each iteration while keeping the blue and red coloring
of each of the cutting lines, generates the pattern shown
in Fig. ) where red and blue are used for the first and
second cuts of the protocol, respectively [45]. The overall
structure has white non-mixing islands (uncut regions),
termed cells [0l B2] [34], spread throughout the domain.
In addition, while it is not obvious from Fig. c), the
structure is fractal [6].

As the number of iterations, IV, approaches infinity, the
structure formed by the cutting lines (top row of Fig. [3)
reveals the singular set, E, which is the union of all pre-
and post-images of the discontinuities D [36], 37, 9] [46],

E= |J M,.D. (7)

n—=—oo

The closure of E is the exceptional set, E, containing E
and its limit points. The exceptional set has been referred
to as the “skeleton” of mixing because of its structural
role in specifying mixing and non-mixing regions [4, [7,
[47]. Visually, E approximates E when cutting lines are
given non-zero thickness.

A Hamiltonian system for a kicked harmonic oscillator
that exhibits similar behavior [31} [43] provides strong nu-
merical evidence that cells form a circle packing of the do-
main that is not dense, suggesting that F is a fat fractal
[48, [49] (i.e. has non-zero measure) for almost all proto-
cols [6]. Since E is a countable collection of zero-measure
lines, the non-zero measure of E comes entirely from the
boundary points of £, £\ E where “\” denotes E is
removed from E.

An example of how the cutting line structure devel-
ops for increasing iterations of the (90°,90°,60°) map
is shown in Fig. a). Note that the prominent circu-
lar cells become visible after only 20 iterations, though
at this point they are 14-sided (irregular) polygons with
each side formed by a cutting line. Successive iterations
of the PWI rotates the 14-sided polygons about a cen-
tral axis, trimming off its corners and leading to a truly
circular cell as N — oco. The set of cells, or non-mixing
islands, is called the stable or regular set [43] [50]. The
stable set is the complement of E and contains all non-
mixing islands. Typically, the stable set has structure
at all scales; for this protocol it forms an intricate, but
incomplete, circle packing of the HS [6] [43]. Cells are the
maximally open neighborhoods around periodic points
of the domain that contain points with the same periodic
itinerary [i.e., a symbolic representation of an orbit by
way of the atom labels (1,2,3,4) in Fig. 2f(a)] [7,51]. The
complement of E, evident in Fig. c) and Fig. [3(a) at
2 x 10* iterations as the white portion of the domain, is
the remainder of the HS that is never cut.

The relationship of the exceptional set to mixing can
be understood by iterating the PWI mapping to scramble
a scalar field on the HS. The mixing of a scalar field—an
initial condition with continuously varied shading—due



to the (90°,90°,60°) map as it is iterated is shown on
the left of Fig. [3{b). With each iteration, regions of the
domain are cut and shuffled, while other regions remain
uncut. By 20 iterations, the large non-mixing circular
cells have taken shape. These circular cells follow peri-
odic paths through the domain as the mapping is iter-
ated, but also undergo internal rotation about a central
elliptic periodic point within the cell [6, [7, [39]. This in-
ternal rotation is evident in the large lower left cell (as
well as other period-2 cells in the map), which has a light
color on the left at 20 iterations and the same light color
on the right at 200 iterations, at the top at 2 x 103, and
back on the left at 2 x 10% iterations. Cells are often cir-
cular in shape due to irrational internal rotation about
a central elliptic periodic point [7]. However, a cell that
rotates about its periodic center by a rational fraction of
m will be polygonal.

The open circular cells outside of E match the unmixed
circular regions in iterates of the scalar field, while dense
regions of cutting lines in F match the well-mixed regions
in iterates of the scalar field, which appear gray (the av-
erage color of the initial condition). The correspondence
between F and mixing for non-orthogonal axes is con-
sistent with previous results for orthogonal rotation axes
(v =90°) [39].

III. MEASURING THE COVERAGE OF £

One measure of the degree of mixing of the the do-
main, is the fractional coverage of E, ® [6] 130], which
is inversely correlated with the Danckwerts’ intensity of
segregation, a measure of the degree of mixing for seg-
regated initial conditions [0, 52]. Formally, ® is the
Lebesgue measure (here a measurement of 2D area) of
E normalized by the area of the unit hemispherical shell,
® = ur(E)/2m [6]. Although cutting lines have zero
measure, I has non-zero measure for almost all proto-
cols [6] [7, [43] [53].

Comparing the fractional coverage, @, of a large num-
ber of protocols is a computationally challenging task.
To efficiently construct an approximation for the struc-
ture of F and subsequently obtain an estimate for ® as
a function of protocol, we approximate F by giving the
cutting lines that make up E a finite width, ¢ > 0, re-
ferred to as D, = {xz € B.(y),y € D}, i.e. all 2 within
a geodesic e-radius ball of any point y in D. We refer
to this fattened E as E. = {z € B:(y),y € E}, and
the approximation of E. after N iterations of the PWI
applied to D, as E. n. Grebogi et al. [49] utilize a sim-
ilar fattening in determining the external dimension of
fat fractals. Whether or not N is sufficient to completely
cover E with E. n depends on the choice of ¢ and the
specific PWI protocol. But this fattened exceptional set
can completely cover E within a finite number of itera-
tions since for every € > 0, there exists a finite N > 0

such that
B ~ N
ECECE.y=|JM;,D. CE.. (8)
n=0

In other words, after a finite number of iterations, N,
all cells with radius smaller than e are covered by F. n,
thereby completing the approximation such that any fur-
ther iterations do not add additional information about
the location or size of E. We refer to E. N as “complete”
if N is at least sufficient to satisfy Eq. A proof of
Eq. [§]is provided in Supplementary Material Section S-II
at [URL will be inserted by publisher], though the proof
gives no information about how to find N [54]. In the
limit as € — 0 and N — oo, the fat-lined fractional cover-
age of E, @ v, is equal to the fractional coverage of E, ®.
® is expected to be positive for almost all protocols based
on box-counting measurements of E [6]. Although F is
formally the union of all pre- and post-images of D under
Mg g.~, due to symmetry in the PWI mapping, specifi-
cally Eq. only the post-images (or the pre-images)
of D are required to construct all of E [see discussion
in Supplementary Material Section S-IIT at [URL will be
inserted by publisher] for additional details].

In previous studies, E was constructed by seeding
points along (or near) D and iterating their positions
[0, B9]. This method has the advantages of providing a
close approximation to the structure of F if seeded points
in D are sufficiently dense and ® can be directly mea-
sured using a box-counting method with equal-area boxes
throughout the hemisphere. However, this Lagrangian,
cutting-line-centered, box-counting method has two ma-
jor shortcomings: (1) as D is iterated, it splits into small
segments and eventually individual seed points separate
from one another, destroying all knowledge of the curves
between separated points; (2) D and its iterates are de-
coupled from the HS, which means the entirety of F must
be generated to investigating the structure of E in small
regions of the HS, which results in significant memory
usage and wasted computation, especially for large num-
bers of iterations.

The following FKEulerian, fat-line, domain-centered
method addresses the shortcomings of the cutting-line-
centered box-counting method and optimizes generation
of E by utilizing parallel computing. F can be computed
by iterating the positions of a grid of tracer points us-
ing the PWI and labeling all points in the grid that fall
within D, at some iteration. ~

Using the fat-line method to compute ®, F can be
imagined as a sieve which is dusted with a uniform dis-
tribution of seed-points. The fraction of seed-points that
do not fall through the sieve is the value of ®. . The ac-
curacy of the measurement is determined by the number
of points used, but the value of ®. y depends entirely on
the sieve, EE,N.

Since measuring ®. y depends only on the fraction of
grid points within E€7 ~, computation for any single point
can cease once its membership in EE’ N is confirmed or



Iteration: 0

(a)

FIG. 3. Iterating the (90°,90°,60°) map. (a) The cutting line structure approaches the structure of the exceptional set as the
number of iterations increases. Circular regions appear around periodic points. We use € = 0.01 for 1 < N < 20 and € = 0.001
for 200 < N < 2 x 10*. Larger values of € are used for small numbers of iterations to give a visible thickness to the few cutting
lines that are present. (b) With a colored initial condition (N = 0), the mixed part of the domain for N = 2 x 10* (gray region)
closely matches regions in (a) that are densely cut, while circular unmixed regions correspond to open cells in (a).

N iterations are completed. The points used to poll E
are selected from an equal-area distribution on the hemi-
sphere to ensure an accurate measurement of area. In this
paper, a Cartesian grid of polling points is projected onto
the hemisphere using the Lambert azimuthal equal-area
projection [55], details of which are provided in Supple-
mentary Material Section S-IV at [URL will be inserted
by publisher].

The fat-line method avoids the break-up of cutting-
lines as the number of iterations increases since cutting
lines remain fixed and continuous. It also couples the
domain and cutting lines, which allows selective compu-
tation of details of sub-regions without wasting compu-
tation time and memory on other regions. Since seeded
points are independent from one another, the fat-line
method is “embarrassingly parallel” [56]. Therefore, it
can be executed efficiently using a GPU architecture
(here, NVIDIA’s CUDA architecture) by assigning each
polling-point its own GPU core. The increase in speed
from the serial box-counting method for a comparable
resolution is more than three orders of magnitude.

Furthermore, the fat-line method is mostly indepen-
dent of the resolution of the seed-point grid. Although
more points increase the accuracy of the measurement of
®. v, the true value of ®.  is wholly determined by e
and N. Measurements of ®. n obtained in this way are
uncertain when the number of seed-points are low, but
the general trends in ®. x across protocols, discussed in
Section [V] remain unaffected by this uncertainty.

The problem of guaranteeing that E has been suffi-
ciently resolved by N iterations is not unique to this
method, and an a priori method for determining N as a
function of € and protocol is not known to us. Previous
box-counting methods relied on the number of iterations
between visiting new boxes as a metric for determining
completeness of an exceptional set and stopping the com-
putation [6]. Although a similar stopping condition could

be implemented using the grid of tracer points, computa-
tions are so fast on a parallel architecture that it is unnec-
essary to implement for almost all protocols except those
asymptotically close to polygonal tilings where internal
rotation of cells closely approaches a rational multiple of
7 (i.e., cells only approach circles as N — o). Instead,
typical values of N = 2 x 10% iterations with e = 1 x 10™*
are used with a (2 x 10%) x (2 x 10%) Cartesian grid of
tracer points to generate images of E’E, n for the protocols
in this paper except when noted.

Since the fat-line method iterates the domain and not
the cutting lines, other interesting features of the PWI
can be easily measured. Mixing an initial condition such
as that shown in Fig. b) becomes a trivial task of map-
ping a color from a tracer point’s initial to its final po-
sition. When mixing initial conditions, as in Fig. |3] it
is more convenient to use the inverse mapping M a, 15 - SO
that mixed conditions due to forward iterations end up
on the well-aligned grid used to seed the HS (this is the
Perron-Frobenius operator for transforming scalar fields

[57).-

IV. EFFECTS OF NON-ORTHOGONAL AXES
A. Changes in the exceptional set

Using the approach described above, the effect of non-
orthogonal axes on mixing and the structure of F can be
explored. Starting from protocols with orthogonal axes
(v = 90°), Fig. |4/ shows how E changes as the angle be-
tween axes increases to 120° for two different protocols.
Consider first the (90°,90°,90°) protocol in Fig. [(a).
Because of the rotation symmetry and orthogonal axes,
this protocol results in a simple resonance, or locally min-
imal mixing protocol that corresponds to a fully periodic



structure and a polygonal tiling of the hemisphere [7]. As
~ increases from 90°, E begins to fill in, losing its tiled
appearance by Fig. @b) for the (90°,90°,95°) protocol,
effectively breaking the horizontal and vertical symme-
tries inherent to (90°,90°,90°). The period-2 cell labeled
A which rotates internally by 120° (a rational fraction of
m) after every second iteration for v = 90°, now rotates
internally by 119.49...° (an irrational fraction of ) re-
sulting in a circular cell. Within the (90°,90°, 95°) struc-
ture, Moiré-like patterns appear around the large period-
2 cells which seem to be related to cutting lines tangent
to the large cells. When ~ is increased by another 5°
to (90°,90°,100°) in Fig. [dc), smaller cells appear be-
tween the larger period-2 cells. At v = 120° in Fig. [4[d),
the period-2 cells have significantly diminished in size
and large period-4 cells, one of which is labeled B, have
appeared. It is evident that the fractional coverage of
FE increases as 7y increases, and corresponding values of
®, n are indicated in the figure.

Variation in E also occurs for the (57°,57°,+) proto-
cols, but it is somewhat different. For orthogonal axes,
E has relatively large cells (like the period-3 cell labeled
C) surrounded by smaller cells, as shown in Fig. [ffe).
When 7 is increased to 95° in Fig. El(f), the period-3 cells
increase in size. All other cells have decreased in size
and many smaller cells have appeared. Nearly all of the
smaller cells disappear when ~ increases to 100°, leaving
only six larger period-3 cells and ten small period-5 cells
(four of these cells are barely visible near the edge of the
HS). Note that 2n period-n cells would be expected [40],
n from a regular set and n from a conjugate set. When
v = 120°, the period-3 cells have shrunk so much that
period-4 cells are now the largest.

The (57°,57°,100°) protocol has fewer noticeably large
non-mixing islands than the other protocols shown in
Fig. e—h). This is due to the protocol’s proximity in
the protocol space to a resonant, periodically non-mixing,
protocol at (57°,57°,99.275...°) shown in Fig. This
resonant PWT is complete after only 160 iterations [58].
The smaller, circle-like cells are actually period-5 32 sided
polygons; a part of a polygonal cell is shown in the detail
on the right of Fig. [f] The polygonal cells tile the HS
and result in zero coverage, which reveals that ®. y does
not monotonically increase with . The near miss of the
(57°,57°,100°) protocol to a resonant protocol explains
its densely packed cutting lines. Cutting lines gradu-
ally fill in closely to one another as E evolves, but the
cutting lines slightly miss returning upon themselves by
small amounts due to nearly rational internal rotation
within cells. Of course, even though the densely packed
lines suggest a high degree of mixing in those regions of
the HS, it would take many iterations for this to occur.
This behavior will be exploited later to locate resonant
protocols by their nearly resonant neighbors that have
very low, near-resonant coverage for small N.

(@)  (90°,90°,90%) (e) (57°,57°,90°)
A
®. n = 0.00
(57°,57°,95°)

(b) (90°, 90}‘.’, 95°) (f)

®.n = 0.25

(c) (90°,90°,100°)

O, N = 0.43
(57°,57°,120°)

®. N =0.29
(d) (90°,90°,120°) (h)

®., v =0.50 ®. v =0.63

FIG. 4. The exceptional set E'g, ~ for increasing 7 viewed
from the negative y-axis with the z-axis pointing toward the
top of the page [¢ = 1 x 107 and N = 2 x 10* except for
(90°,90°,90°) which uses € = 0.01 to yield visible line thick-
ness|. (a-d) (90°,90°,~) and (e-h) (57°,57°,~), ~ increases
downward. One of the four period-2 cells for the (90°,90°, )
protocols is labeled A. A period-4 cell is labeled B in (d) and
a period-3 cell is labeled C' in (e-h).



FIG. 5. A resonance, or locally minimally mixing protocol,
occurs for the (57°,57°,99.3°) protocol. E is complete after
only 160 iterations. FE forms a polygonal tiling, with large reg-
ular pentagons, small regular 32-gons, and irregular polygons
(mostly or all quadrilaterals). Compare this simple cutting
line structure to that of the densely packed (57°,57°,100°)
protocol in Fig. @g) where v differs by only 0.7°.

B. Special symmetries with orthogonal axes and
breaking them

As v is increased from v = 90° in Fig. [if(a) to (b), it
is clear that a symmetry is broken. The orthogonal axes
case has additional barriers to mixing not present in the
non-orthogonal case due to additional symmetries that
occur when v = 90°, specifically symmetries across 8 =
90° (Eq.[AR)) and across a = 90° (Eq.[A6]). An example of
this appears for (90°, 3,90°) in the orthogonal axes case
shown in Fig. [6] where there is a clear barrier to mixing
regardless of the value of 8. The left and right sides for
the colored initial condition do not mix, even though F
on the right appears to indicate mixing for § = 60° and
B = 30°. Likewise, for (a,90°,90°) there would be a
horizontal barrier to mixing [not shown, but analogous
to the (90°, 3,90°) case shown in Fig. [f| with a horizontal
instead of vertical barrier]. The (90°,90°,90°) protocol
in Fig. a) has both horizontal and vertical barriers,
resulting in a non-mixing system. The barriers to mixing
result directly from the inability of the two rotational
axes to interact with one another due to the symmetry
created by orthogonal axes. The barriers to mixing are
not evident in the structure of E. For example, in the
right column of Fig. [0} even though there is a symmetry
in E about the vertical z-axis, there is no evidence of the
lack of mixing between the left and right halves of the
hemisphere.

Figure [7] demonstrates that this left-right barrier to
mixing is not apparent for all initial conditions. Specifi-
cally, when the initial condition itself has left-right sym-
metry, as demonstrated in Fig. El(a), the barrier to trans-
port is not evident. For any other initial condition, such
as those in Figs.[7[b) and (c), the barrier is evident. The
barrier is most notable when there is large variation in
the initial condition in the direction orthogonal to the
barrier, as shown in Fig. [f[c).

For any fixed v # 90°, the symmetries evident in Fig.[6]
(and shown in mathematical detail in Supplemental Ma-

E B
90°
Initial conditiV
! 60°
(90°, 3, 900)\A
/ ' 30°

FIG. 6. Barriers to mixing occur in the (90°,3,90°) case
shown after 2 x 10% iterations of the initial condition for 8 =
30°,60°,90°. Although FE, shown on the right, appears to
indicate mixing throughout the domain (except, of course,
the cells) based on the fractional coverage of E, the symmetry
of the system resulting from orthogonal rotation axes creates
a barrier to mixing between the left and right halves of the
hemisphere.

(60°,60°,90°)  (90°,60°,90°)

FIG. 7. Various initial conditions (left column) under
(60°,60°,90°) and (90°, 60°,90°) after 2 x 10* iterations show
sensitivity of mixing to initial conditions. Initial condition
varied in (a) vertical z-direction, (b) both z- (blue) and =z-
(yellow) directions, and (c) horizontal z-direction.



terial Section S-III, Eqgs. and are broken and no
longer create degenerate mixing cases like those shown
for v = 90°, since v # —v mod 180° essentially removes
a reflection symmetry from the system. Although the re-
flection symmetries across (90°, 3,90°) and (a, 90°,90°)
are the only symmetries broken by non-orthogonal axes,
breaking them opens up a much wider range of unique
protocols to be considered. For example, the completely
non-mixing exceptional set shown in Fig. (a), which is
the result of both of these symmetries, becomes a mixing
protocol by eliminating the aforementioned symmetries
that occur when v = 90°.

V. RESONANCES IN THE FRACTIONAL
COVERAGE &, n

The fat-line method for constructing E described in
Section |T£[| allows us to efficiently generate ®. y to iden-
tify resonances in the fractional coverage over a broad
range of protocols. To this end, the number of itera-
tions used to identify resonances is intentionally kept low,
N = 500, to better reveal resonant protocols through
their nearly resonant neighbors in the protocol space as
explained shortly.

A. Revisiting orthogonal axes, v = 90°

Although fractional coverage of E for the orthogonal
axis case (v = 90°) has been previously investigated
[6, [7, B9], it is informative to contrast some of its fea-
tures with those of E for non-orthogonal axes. Since
periodic rotations about the z-axis (by Mg) have pe-
riod 180°, ®. n is examined for v = 90° over the range
0 < a,8 < 180°. Figure a) shows ®g.01,500 where
dark gray represents low coverage and light gray rep-
resents high coverage. A value of ®g01,500 = 1 (white)
means that E0.017500 for that protocol completely cov-
ers the HS with fattened cutting lines by 500 iterations,
while ®¢.91,500 ~ 0 (black) indicates no coverage. Of
course, due to the fattening of E into FEy.01, values of
®g.01,500 can never be exactly zero, and without a way
to determine a sufficient NV a priori such that E covers
E, there is no way to know if Ey.01,500 is complete (sat-
isfies Eq. [§]) or if ®¢.01,500 is an over- or under-estimate.
However, when comparing ®¢.1,500 with a more accu-
rate estimate, ®;,19-3 2x104, for more than 140,000 pro-
tocols with v = 90°, ®¢.01,500 typically overestimates
Dy 10-3,2x104 (for 84.0% of protocols), but with only a
very small number (3.5%) differing by more than 5% in
value. On average, ®g.01,500 Overestimates ®;,19-3 25101
by 1.5%. Protocols for which ®g 1500 underestimates
@1 10-3,2x104 by more than 5% account for only 0.6% of
all the protocols.

Figure (a) has many local minima, which appear as
dark regions, and represent protocols at or near reso-
nances [7]. Resonances are located along Arnold tongues

that originate from rational fractions of m along the
axes. Two such Arnold tongues are highlighted with
black dashed curves emanating from (60°,0,90°) and
(0,60°,90°). The Arnold tongues are centered along
curves where periodic points of the PWI are equally
spaced between two of the three cutting lines that form
the atoms of the PWI [7]. Resonances occur whenever pe-
riodic points of the PWI, each of which corresponds with
a particular periodic itinerary, are maximally far from
the cutting lines defining the PWI and result in large
cells in E. In this way, resonances occur at the intersec-
tion of the three curves that represent a periodic point
equidistant between two cutting line borders of an atom
when v = 90° [7]. For v = 90°, the blue dashed lines,
corresponding to Arnold tongues from (90°,180°,~) and
(180°,90°,~) in Fig. 8] are also lines of symmetry in the
protocol space.

Smith et al. [7] have explained much of the structure in
the v = 90° protocol space. Protocols further away from
a resonant protocol in the («, 8,90°) protocol space in
Fig. (a) have periodic points closer to cutting lines. As
a periodic point approaches a cutting line, its associated
cell shrinks until the periodic point encounters a cutting
line and the cell is annihilated (i.e., the radius goes to
zero and the point is no longer a periodic point). Thus,
not only is there a protocol that maximizes the size of
the cell associated with each periodic itinerary, but there
is also a well defined region within the protocol space
where the cell exists (i.e., for protocols outside of this
region, the periodic itinerary between atoms defining the
periodic cell is not possible). An example cell with a
411 itinerary (i.e. the cell travels periodically through
the atoms P, — P, — P, — Py--+) is labeled C in
Fig. [ll(e) and the size of the cell is maximized at the
resonance shown in Fig. [f] when the angle between the
axes increases to 99.3°. The cell shrinks as the protocol
moves away from this resonance.

Resonances along a = § and a+ 8 = 180°, correspond-
ing to the red dashed diagonal lines in Fig. a), at the
intersection of Arnold tongues have exceptional sets that
are polygonal tilings, similar to E shown in Figs. a)
and [5) and, thus, have zero coverage [7]. The protocols
nearby in protocol space have nearly resonant structure
such that ®. y grows slowly with N. By using NV = 500,
these structures do not complete and thus resemble the
resonant protocols. When the protocol space is sampled,
hitting a resonant structure exactly is generally impossi-
ble [59], but using a low number of iterations effectively
fattens resonant regions of the protocol space allowing
them to be observed more easily. Changing the number
of iterations does not change the locations of resonances
in the protocol space.

B. Non-orthogonal axes

The fractional coverage of E for several values of
v > 90° is shown in Fig. §b-f) [60]. A previous study
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FIG. 8. Fractional coverage, ®.01,500, vs. rotation angles for v = 90° to 165° in 15° increments after 500 iterations. Increments
in @ and j are 0.33°. (a) For v = 90°, reflection symmetry lines are shown as red (a4 = 180° and o = 3) and blue (a = 90°
and B = 90°) dashed lines. Symmetry along the red dashed lines is maintained for non-orthogonal axes while the blue dashed
symmetries are lost. (a-f) Black dashed curves mark the locations of Arnold tongues originating at (60°,0,~) and (0,60°, 7).
Blue dashed curves mark Arnold tongues starting at (90°,180°,+) and (180°,90°,~). (c) The protocol (65.5°,65.5°,120°) is
labeled A and lies on a dark band between Arnold tongue intersections. (d) The protocol labeled B lies close to the intersection
of the Arnold tongues from (60°,0,7), (0,60°,~) and (135°,180°,7) , (180°,135°,~) (green dashed curves). The short-dashed
lines show the corresponding mirror Arnold tongues for long-dashed lines of the same color. The intersection of short-dashed
and long-dashed lines are often locally resonant.



[5], using PWI and a mixing metric based on the center
of mass of seeded particles in the HS, demonstrated sim-
ilar patterns for the quadrant 0 < «, 8 < 90°. Patterns
outside of 0 < a, 8 < 90° have not been previously exam-
ined. Due to symmetries in the system, the patterns for
angles between rotation axes of 180° —~ are equivalent to
those in Fig. [§] when reflected vertically or horizontally
about o = 90° or § = 90°, respectively. The protocol
spaces for v = 0 or 180° are not shown since they are de-
generate cases of rotation about a single axis and display
no interesting features.

Obvious features of the coverage, ®¢.01,500, in protocol
space for orthogonal axes in Fig. [§[a) are the lines of
symmetry, shown as red and blue dashed lines. The red
dashed lines represent symmetry between (o, 3,7) and
(8, a,7) (Eq. and between (a, 8,7) and (7 — a, 7 —
B,7) (Eq.[Ad)). For non-orthogonal axes (y # 90°) these
symmetries extend as reflection planes along o + 8 =
180° and o = . The blue dashed lines in Fig. a)
represent a symmetry between («, 5,7) and (71—, 8, m—
v) (Eq. |A6) and between (a, §8,7) and (o, ® — 5,7 — 7)
(Egs. and . When v = 90°, these symmetries
are reflection symmetries across the blue lines, since v =
—v mod 180° when v = 90°. However, this reflection
does not extend to protocols with non-orthogonal axes,
which is evident in Figs. b—f). A full exposition on the
symmetries of the PWI can be found in Supplemental
Material Section S-II1.

The Arnold tongues along which resonances are lo-
cated and which originate from rational fractions of w
along o = 0 and § = 0 for orthogonal rotation axes in
Fig. a) are maintained for non-orthogonal axes, but as
v increases, these tongues “tilt” (to the right for those
originating from 8 = 0 and upward for those originat-
ing from @ = 0), eventually approaching straight lines
as v — 180°. An example pair of tongues starting
at (60°,0,v) and (0,60° ) is highlighted with dashed
black curves in Fig. a—f ). Another pair originating from
(90°,180°,~) and (180°,90°,) is marked with dashed
blue curves. When 7 is decreased from 90° (not shown),
the Arnold tongues tilt in the opposite direction and sim-
ilarly approach straight lines.

As v increases, the tilting of the Arnold tongues means
that the resonant structures (dark regions) that lie within
the « = f and a + 8 = 180° symmetry planes move
along the symmetry planes, following the intersections
of Arnold tongues as they tilt. An example is the
resonance associated with the polygonal tiling for the
(57°,57°,99.3°) protocol in Fig. [5} The Arnold tongues
starting at (60°,0,90°) and (0,60°,90°) in Fig. [§[a) tilt
as 7y increases, so that their intersection (the cusp at the
intersection of the black dashed curves) moves to the
right along the a = B symmetry line. When this in-
tersection passes through the (57°,57°,99.3°) protocol
between Fig. [§|(a) and [§|b), the resonance occurs.

In addition, as the tongues tilt, new intersections with
other tongues originating from « = 180° or § = 180°
are created, resulting in additional resonant structures.
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These additional resonances spread out symmetrically
from the a = [ symmetry plane as ~ is increased.
This can be seen between v = 105° and v = 120° in
Figs.[§(b,c). At exactly v = 108° (not shown), the black
and blue dashed lines intersect at their cusp and increas-
ing v further introduces two intersection points on either
side of @ = 5. When v = 120° a dark band of low cov-
erage protocols between these intersections, highlighted
with a green dashed line in Fig. c), is evident. The pro-
tocol A, (65.5°,65.5°,120°), lies along this dark band be-
tween Arnold tongue intersections (blue and black inter-
secting), and will be discussed in more detail later. This
band is defined by the pair of Arnold tongues starting
at (60°,0°,120°) and (0°,60°,120°) labeled with black
dashed curves, and the pair of Arnold tongues starting at
(90°,180°,120°) and (180°,90°,120°), labeled with blue
dashed curves. More of these dark bands appear between
the intersections of two pairs of Arnold tongues as +y is
varied, and many more are evident when v = 120° along
the length of the o = 8 symmetry plane.

Tongues from (0,90°,+) and (90°,0,~) [highlighted
with long-dashed blue lines in Fig. d)] intersect
their symmetric counterparts [highlighted with short-
dashed blue lines in Figs. [§(b-f)] from (180°,90°,~) and
(90°,180°, ) as ~y is increased from 90° creating new reso-
nances along a+ 3 = 180° at their intersection. Likewise,
the tongues originating from (60°,0,v) and (0,60°,~)
labeled with dashed black curves also create new reso-
nances along o + f = 180° when they intersect their
mirror images [highlighted with short-dashed black lines
Fig. [§[(d)] from (120°,180°,~) and (180°,120°,7) as v in-
creases from v = 120° [Fig. [§[c)] to v = 135° [Fig. [§[(d)].
The rate at which new intersections occur (and create
dark band between them) as 7 increases grows such that
by v = 165° many of these spreading resonances and
their connecting dark bands have blended together to
form nested curves of low coverage in the protocol space

in Fig. B(f).

C. Polygonal tilings in the a = 8 symmetry plane

The intersections of symmetrical pairs of Arnold
tongues, e.g. the two sets of black dashed curves in
Fig. (d), occur exclusively on the diagonal symmetry
planes o + 8 = 180° and a = 3. The fractional cov-
erage of E, ®. 01,500 along the o = 3 diagonal symme-
try plane is shown in Fig. [0] for varying v. For context,
the dark region at the center of Fig. a), (90°,90°,90°),
matches the dark region at the center of Fig. [9f(a), also
(90°,90°,90°).

The most obvious features of the a = [ symme-
try plane shown in Fig. |§| are the dark branches [61]
of resonant structures sprouting from odd divisors of 7
[i.e. /(2§ + 1) where j > 0 is an integer] at v = 0
and their complements coming from 7 — [7/(2j + 1)],
both of which are highlighted with dashed blue lines in
Fig. |§|(b) These branches follow the intersections of pairs
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FIG. 9. (a) Fractional coverage, ®o.01,500, for protocols along the & = 3 symmetry plane and varying axes angle, . The upper
half, v > 90°, corresponds with behavior along the & = 8 line in Fig. [§] and the lower half, v < 90°, corresponds with the
a + B = 180° line in Fig. [8] due to the symmetries in Egs. and @l (b) The same symmetry plane with resonant curves
defined by Eqgs. |§| and for j = 1,2,3,7. The boxed region is shown in Fig. The protocol labeled A, (65.5%,65.5°,120°),
corresponds with Fig. [8(c). The protocol labeled B near the intersection of the branches from (7 /5,7/5,0) and (67/7,67/7,0)

corresponds with B in Fig. [§[d).

of Arnold tongues; for example, the branch originating
from (27/3,2m/3,0) in Fig. [9b) follows the cusp inter-
section of the Arnold tongues labeled with blue short-
dashed lines in Fig.[8] As mentioned earlier, for orthogo-
nal rotation axes, these intersections mark the locations
of polygonal exceptional set structures [7].

The curves defining these resonant branches in the
symmetry plane originating from © — [7/(25 + 1)] and
highlighted with blue dashed curves in Fig. El(b) are level
curves of cos(a/2) cos(y/2) (verification is given in Sup-
plementary Material Section S-V at [URL will be inserted
by publisher]), specifically

cos () cos (3) =sin | 5777 |

The curves defining the branches originating from
m/(2j + 1) are the mirror images across the a« = 8 = 7/2

line,
in(5) o0 (3) =sin |
sin{—=)cos(=)=sin|———|.
2 2 2(2j+1)

For example, the branch originating from (27 /3, 27/3,0)
in Fig. [9b) [(2j + 1) 3 in Eq. [9] lies along the
curve sin (%) cos (%) = sin (%) and follows the inter-
section of the blue dashed curves in Fig. [§| within the
« = [ plane. Likewise, the intersection of the highlighted
Arnold tongues starting at (60°,0,0) and (0,60°,0) in
Fig.[8|(the intersection of black dashed curves) follows the
curve originating at (w/5,7/5,0), such that 2j +1 = 5,
in Fig. |§|(b) These curves appear to be integral to most
of the structure in the symmetry plane.

9)

(10)

One of the features of the polygonal tilings found pre-
viously along a = § for orthogonal axes, v = 90°, is the
presence of (2j 4+ 1)-gons [7]. These polygons are cells
that rotate internally by 2j7/(2j + 1) each time they
complete their period-(j 4+ 1) itinerary through the HS.
The branches defined by Eqgs. [9]and [L0]shown in Fig. [9|b)
contain polygonal resonant structures from v = 0 to their
first intersection with another branch which is always the
/3 or 27 /3 branch corresponding to 25 +1 = 3. To
better illustrate this, Fig. [I0] includes some example ex-
ceptional sets along two of the prominent branches from
the boxed region in Fig. El(b) focusing on the 2j +1 =5
branch originating from the left and the 2j+1 = 3 branch
originating from the right. Polygonal tilings occur for all
v < 108° along these two branches. A detailed analy-
sis showing that rational internal rotation of cells occurs
along these curves to create (25 + 1)-gons is presented
in Supplementary Material Section S-V at [URL will be
inserted by publisher].

These two branches intersect at v = 108°. Along the
2j + 1 = 5 branch originating from the left in Fig. [I0]
period-3 pentagons are present in the exceptional set.
Along the 25 + 1 = 3 branch originating from the right
in Fig. period-2 triangles are present in the excep-
tional set. The intersection of these two branches at
(63.435...°,63.435...°,108°) has an exceptional set that
is a polygonal tiling composed entirely of period-3 pen-
tagons and period-5 triangles [62], i.e. it is half of an
icosidodecahedron. The PWI for this protocol recon-
structs the initial HS after only 15 iterations which is
the least common multiple of 5 and 3, the periods of



polygonal cells. The shortest-period cells present in the
exceptional set for protocols near these branch intersec-
tions have periods equal to the sum of the integer labels
for the branches (jz, from the left in Eq. [L0[and jg from
the right in Eq. [0). Since (63.4°,63.4°,108°) occurs at
the intersection of the jr = 2 (left) and jr = 1 (right)
branches, the shortest period cells, the pentagons, are
period jp + jr = 3. Similarly, a tiling composed of only
period-2 triangles occurs at the intersections of j;, = 1
and jr = 1, (90°,90°,90°) in Fig. with nearby proto-
cols having large period-2 cells. Note that either j;, =1
or jgr = 1 for any polygonal tiling since polygonal tilings
do not exist along these branches past the 5 = 1 intersec-
tions, but this is valid for other protocols. For example,
the protocol labeled B in Figs.[8[d) and[9|(d), at the inter-
section of Arnold tongues labeled with green and black
lines, has circular period-5 cells for its shortest period
cells due to its proximity to the intersection of j;, = 2 and
jr = 3 branches. The (63.4°,63.4°,108°) protocol, the
(90°,90°,90°) protocol, and the (70.5°,70.5°,60°) proto-
col are the only protocols related to regular solids repre-
senting the projection onto the HS of an icosidodecahe-
dron, an octahedron, and a cuboctahedron, respectively.
It is likely that these are the only such solids that can be
created using this form of PWI, since they are the only
solids with projections onto the HS that are constructed
exclusively with great-circles.

The branches originating from 7 /3 and 27/3 in Fig. |§|
are unique in that they intersect each other, their own
complements, before other branches as v increases. Fur-
thermore, they continue on as polygonal tilings until their
intersection with the branches corresponding to 47 /5 and
/5, respectively (see Fig. [10| for the intersection of the
/5 branch with the 27/3 branch). Approaching this
intersection, the shortest-period cells, the period-2 trian-
gles (the large triangles for v = 90° and the four trian-
gles at 2, 5, 8, and 10 o’clock positions at v = 100° in
Fig. [10), are annihilated [7] and transition to period-5
triangles at v = 104.478...°, but remain polygonal tilings
up to v = 108°. Continuing along the 27 /3 branch, after
the intersection with the 7/5 branch at v = 108°, the
period-5 triangles are retained as polygonal cells but not
as a polygonal tiling (see for example the E structure at
v = 109° along the 27 /3 branch in Fig. [10). Similarly,
moving upward from v = 90° along the 7/5 branch by
increasing -y, polygonal tilings with period-3 pentagons
are retained until the intersection with the 27 /3 branch,
after which the tiling disappears but the pentagons re-
main. These pentagons are retained until v = 123.988...°
after which they disappear. Thus, (25 4+ 1)-gons persist
for a short distance past their intersection with the /3
and 27 /3 branches before disappearing along each branch
even though the polygonal tilings do not (with the excep-
tion of the 7/3 and 27/3 branches themselves before they
intersect the 47 /5 and 7/5 branches, respectively).
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D. Other features in the symmetry plane

The cathedral-like structure at the lower center of
Fig. @(a), i.e. v < 90° and o = 3 close to 90, is filled with
the resonance curves that result when Arnold tongues in-
tersect one of their symmetric mirror images (mirrored
across a + 8 = 180°). For example, the intersections
of short-dashed lines with long-dashed lines of the same
color (blue with blue or black with black) in Fig. [§(d) lie
on the same cathedral-like region in the a + g = 180°
symmetry plane. Two symmetries of the system, specif-
ically Eqs. and [AG] reveal the symmetric equality of
the a + 8 = 180° and o = [ symmetry planes. This
allows us to connect the o + 8 = 180° plane shown for
v > 90° in Fig. 8] which is where these particular tongue
intersections occur, with the v < 90° region in Fig. [9}

As noted earlier, 500 iterations is not sufficient to fully
complete most of the structures of E. This relatively low
value is used to widen the resonant curves in this pro-
tocol space by not giving nearly resonant protocols the
necessary iterations to fill in. This has the side-effect of
creating the dark corners at the top of Fig. [J] that con-
tain protocols for which ®. n grows slowly but would
approach ® = 1 if N were large enough due to small
atom sizes. Other regions in the protocol space have
dark specks [most easily visible at the lower left corner
and lower right corner of Fig. @(a)], which is also a result
of protocols with at least one region of slowly growing
coverage. These anomalies disappear at higher iteration
counts, but using more iterations obscures the dark re-
gions around resonances. Thus, apart from these specks
and the dark corners, the overall structure of the patterns
in the protocol space are not affected by the low number
of iterations used in constructing Fig. [0

The remainder of the protocol space in Fig. [0} along
the a = 8 symmetry plane but outside of the resonant
curves, has complex structure that is not yet understood.
For example, a set of prominent features in Fig. [9are the
dark fingers reaching up from branch intersections which
correspond with the dark bands between Arnold tongue
intersections mentioned earlier and which are prominent
in Fig. c). The protocol (65.5°,65.5°,120°) labeled A
lies on one of these fingers. An analysis similar to that
performed by Smith et al. [7] shows that these dark fin-
gers are the result of periodic points for large cells lying
equidistant from two size-limiting cutting lines.

Although the focus here has been on the a = 5 symme-
try plane, there are many curves of resonant structures
throughout the protocol space (i.e., for a # 3). However,
this is beyond the scope of this study.

E. Changing v to increase average coverage

There is an overall increase in coverage (lighter col-
ors) as v is increased or decreased from 90°. Figure
shows ®( 01 2x104 averaged across 0 < o, 8 < 180° as v
is varied. There is a clear minimum at v = 90°, and &
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Some of the E structures along these branches after N = 2 x 10? iterations are shown on the right with their locations in the
protocol space marked by x for the 7/5 branch (25 + 1 = 5) and o for the 27w /3 branch (25 + 1 = 3). The protocol labeled A,
(65.5°,65.5°,120°), corresponds with Figs. c) and Ekb) e =0.01 for v < 108° and € =5 x 10~* for v > 109°.

generally grows away from v = 90°. A sudden decrease
near v = 0 and 7 = 180° where PWIs become rotations
about a single axis is an artifact of sampling ® on a reg-
ular grid and using finite iterations. ® = 1 for almost
every protocol when v = 0 and v = 180° and the ex-
pected trend is shown with a dotted line. The overall
trend agrees with the qualitative results in Fig. [4] where,
even though ® does not increase strictly monotonically
(due to the existence of a polygonal tiling with zero cov-
erage shown in Fig. , the general trend of increasing
coverage as <y is increased from 90° holds. Noting the
scale on the ® axis, most protocols produce exceptional
sets with fairly high coverage. This trend is apparent
when comparing the average intensity as <y is increased
in Fig. [§] One should note that this trend does not hold
for the a = 8 plane, Fig. El(a), in isolation. The local
maxima around v = 71° and v = 109° are not well un-
derstood but may have a connection to the intersection
of polygonal resonant branches that occurs at v = 72°
and v = 108°.

F. Atom size and shape determine Arnold tongue
locations

At a more fundamental level, when the areas of atoms
(Eqgs. 2Hd)) are compared, the corresponding curves along
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FIG. 11. ®g1,2x104 averaged across 0 < o, 8 < 180° vs.
~v. ® increases on average for axis arrangements further from
orthogonal.

which two atoms are of equal area match the locations
of the Arnold tongues originating from (90°,0,v) and
(0,90°,v) [short-dashed blue curves in Fig. [§[(b-f)] or
(90°,180°,~) and (180°,90°,) [long-dashed blue curves
in Fig. [§(d)] exactly. Furthermore, these equal area
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FIG. 12. Curves of equal atom size (Egs. [2H5]) for Ma s+
where v = 120°. The smallest atom, P;, is labeled inside of
each region between curves.

curves match the blue dashed lines in Fig. a) when
v = 90°. For example, for v = 120°, these curves of
equal atom size are shown in Fig. Atoms P; and Py
are only of equal size when o + 8 = 7. Likewise, atoms
P, and P; are only of equal size when « = 8. The other
lines correspond to As = A; (@ = ') and As = Ay
(B=m—79") in blue and A3 = A; (8 =1+') and A3 = A4
(o = 7—7') in red. The smallest atom for each protocol,
which often limits the mixing [7], is labeled in each sub
region of Fig. For orthogonal axes, there are no re-
gions where P, or P3 are the smallest atoms. This raises
the question as to how much influence diversity in atom
size has on mixing and how much information about mix-
ing can be gained simply by examining the size and shape
of the PWI atoms, which is a topic for future work.

VI. CONCLUSIONS

Introducing non-orthogonal axes to the PWI on a
hemispherical shell adds a new dimension to the pa-
rameter space that greatly expands possible cutting-
and-shuffling behaviors. To explore this vast domain,
a method for rapid generation of an approximation of
the exceptional set was developed. The approach de-
scribed here is computationally efficient for use with par-
allel computing. Non-orthogonal axes expand the regions
in parameter space where certain periodic points (respon-
sible for non-mixing islands) can exist while allowing for
new periodic points that are not possible in the orthogo-
nal axes case. Some of the protocols with non-orthogonal
axes have more coverage than their corresponding orthog-
onal axes protocols while others have less. On average,
coverage of the hemispherical shell by the exceptional set
is increased by using non-orthogonal axes.

When examining the protocol space for the fractional
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coverage of E, various branches of locally resonant pro-
tocols traverse the protocol space. The most prominent
appear along symmetry planes, one of which, a = 3,
is investigated thoroughly and contains many proto-
cols with polygonal cells, including protocols whose cells
form a polygonal tiling of the entire hemispherical shell.
Arnold tongues in the protocol space identify low cov-
erage protocol regions. Intersections of symmetric pairs
of Arnold tongues (along symmetry planes) indicate loca-
tions of the polygonal exceptional sets. Some symmetries
found exclusively in the orthogonal axes case are broken
when considering non-orthogonal axes allowing increased
transport and a wide variety of unique PWIs.

This paper only just hints at the possible behaviors
for non-orthogonal axes. For example, an investigation
of the relationship between atom size and shape follow-
ing up on the cursory results shown in Fig. [12| could shed
more light on the cause of low coverage resonances. An
extension of this PWI to the entire unit sphere, elimi-
nating periodic boundaries (outlined in Supplementary
Material Section S-I at [URL will be inserted by pub-
lisher]) could also be a fruitful topic for future study.
Additionally, the observation that coverage of the excep-
tional set ® does not always correlate well with mixing,
such as in Fig. [f] leads to questions about barriers to mix-
ing within the exceptional set itself. Similar barriers to
transport within the exceptional set have been observed
by Ashwin et al. [50]. However, their occurrence and
dynamics have not been fully explained yet.
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Appendix A: Symmetries in the hemispherical PWI

The following symmetries are present in the protocol
space of the hemispherical PWI and are explained in de-
tail in Supplemental Material Section S-IIT at [URL will
be inserted by publisher].

Ma,ﬂ,"/ = (Rrnyyz)Mﬁ_,i;y(RZ{/Syz)a (Al)
= SyzM_q,—8,—Syz, (A2)
= SeyMao,p,—Sey (A3)
=RYM_, _p,RY, (A4)
= Mo —p e, (A5)
= RIM_q =R, (A6)

where Ry is a rotation about a by 6 and S;; is a reflection
across the ij-plane. An additional symmetry between the
forward and inverse map exists,

M2n

_ —2n+1
apy = LMy g Lo,

By

(A7)



where operations L; and Lo are defined as

Ly = (RYS,.)(RYMZS.y).
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See the Supplementary Material at [URL will be inserted
by publisher] for a video sequence of coverage maps as 7y
is varied from 0.5° to 179.5° in 0.5° increments.

To differentiate between the Arnold tongues shown in
Fig. [ for fixed v and the tongues in the a = j plane, we
refer to tongues in the o = 8 plane as branches.

There is a point along the 7 = 1 branches at which tri-
angular cells are annihilated and return with a different
periodicity.
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