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Abstract6

Rogue waves are strong localizations of the wave field that can develop in different branches7

of physics and engineering such as water or electromagnetic waves. Here, we experimentally8

quantify the prediction potentials of a comprehensive rogue-wave reduced-order precursors tool9

that has been recently developed to predict extreme events due to spatially localized modulation10

instability. The laboratory tests have been conducted in two different water wave facilities11

and they involve unidirectional water waves; in both cases we show that the deterministic12

and spontaneous emergence of extreme events is well-predicted through the reported scheme.13

Due to the interdisciplinary character of the approach, similar studies may be motivated in14

other nonlinear dispersive media, such nonlinear optics, plasma and solids governed by similar15

equations allowing the early stage of extreme wave detection.16

1 Introduction17

Rogue waves, also known as freak waves, are abnormally large waves with crest-to-trough height18

exceeding two times the significant wave height [1, 2, 3, 4, 5]. Although rare (approximately 319

waves per day in a single point measurement, using linear theory and an average wave period of 1020

seconds) these waves can have dramatic effects on ships and other ocean structures [6, 7]. Therefore,21

predicting such extreme events is an important challenging topic in the field of ocean engineering,22

as well as other fields of wave physics including plasma [8], solids [9] and optics [10, 11, 12]. In23

addition, from a mathematical viewpoint the short-term prediction problem of extreme events in24

nonlinear waves presents particular interest due to the stochastic character of water waves but also25

the inherent complexity of the governing equations.26

Before discussing in details the emphasized prediction tool for rogue waves, we find relevant to27

make a general statement on the predictability of surface gravity waves. In [13] it has been shown28

numerically that 2D (i.e. in two horizontal dimensions) ocean waves are described by a chaotic29
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system; this implies that due to positive Lyapunov exponents, after some time (space) the system30

loses memory of the initial condition and any attempt to perform a deterministic forecast will31

generally fail. Annenkov and Shrira, [13], found that such time scale of predictability for typical32

steepnesses of the ocean waves is of the order of 1000 wave periods. For larger times, predictions33

including rogue wave forecast, can be made only on a statistical bases, i.e., given a wave spectrum34

and its evolution, the goal is to establish the probability distribution of wave height or wave crest for35

the given sea-state. This allows one to calculate the probability of encountering a wave whose height36

is larger than a certain threshold (usually two times the significant wave height), see for example37

[14]. On shorter time scales, a deterministic prediction of rogue waves is in general possible. In [15]38

a predictability time scale for rogue waves was estimated through extensive numerical simulations39

using a phase-resolved high-order spectral technique [16, 17]. It was demonstrated that a time scale40

for reliable prediction can be O(10Tp), where Tp is the peak period of the spectrum.41

For long-crested water waves, statistics are far from Gaussian with heavy tails [18, 19, 20, 21].42

In this case, the dominant mechanism for the formation of large waves is finite-time instabilities43

rising in the form of a spatially localized modulation instability [22, 23, 24]. For deep water waves,44

a manifestation of this focusing is the well-known modulation instability of a plane wave to small45

sideband perturbations [25, 26]. This instability, which has been demonstrated experimentally46

already in 1960s [27, 28] and its limiting case more recently [29, 30], generates significantly focused47

coherent structures by soaking up energy from the nearby field [31, 32, 33]. In this context it is48

possible and more advantageous to study the dynamics of wave groups (in contrast to individual49

waves) through reduced-order representations [34, 35, 24], alleviating the direct numerical treatment50

of the full equations. Depending on the typical dimensions (length, width, height) of the wave group,51

we may have subsequent modulation instability, which leads to further significant magnification of52

the wave group height. Such critical wave groups can be formed by the random superposition of53

different harmonics, see Figure 1. If a wave group has appropriate characteristics it will amplify due54

to modulation instability. Such nonlinear evolution can be foreseen using simple precursors that55

quantify the conditions for modulation instability of the wave group, as shown in Figure 1.56

A reduced-order precursor for the prediction of rogue waves, caused by spatially localized57

modulation instability, has been proposed for uni-directional [36, 37] as well as directional [38]58

surface gravity waves. The idea behind it comes from combining spectral information for the sea59

state and information involving the evolution of isolated wave groups to rogue waves. The derived60

precursors have the form of characteristic patterns that precede rogue waves O(10Tp) ahead. Using61

field information (i.e. wave measurements with spatial extend) for the region of interest, the predictive62

scheme quickly identifies locations where these patterns are present and provides the estimated63

magnitude of a rogue wave that will occur in the near future, close to this location. The developed64

scheme is particularly robust given that it relies on the detection of large scale features (having65

the size of the wave group) utilizing either temporal or spatial measurements. For this reason the66

scheme does not depend on small scale measurement errors. In addition, it is extremely fast due to67

the fact that there is no need to calculate any solution of any evolution equation involved in the68

prediction process. The method of precursors has been validated in numerically generated wave69

fields described by the Modified Nonlinear Schrodinger Equation [39] for i) unidirectional waves70

[37], and ii) directional waves [38]. In both cases, water waves that follow Gaussian and JONSWAP71

spectrum were considered. Note that another approach based on the spectral signatures of wave72

groups that evolve into rogue waves has been proposed in [40, 41]. The basic idea is to look at the73

spectrum over small, localized windows in order to detect universal triangular signatures associated74

with the early stages of doubly-localized extreme coherent structures.75
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Figure 1: In the typical regime the dominant mechanism for the wave group formation is the
superposition of linear waves. If a critical wave group is formed, i.e. one with sufficiently large
length and amplitude, the strongly nonlinear dynamics associated with modulation instability can
be foreseen through simple precursors.
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The primary significance of this work is the application of a data-driven predictive scheme to76

successfully predict the occurrence of extreme waves in a laboratory setting, caused by spatially77

localized modulation instability. This scheme is similar to the scheme developed in [36, 37]. Our78

starting point is the modified nonlinear Schrödinger Equation (MNLS) [39] formulated as an evolution79

equation in space rather than in time [42]. The analysis of this universal equation, that can be also80

applied to a wide range of physical media (for instance in optics [43]), allows for the characterization81

of wave groups or pulses as critical to become either rogue or not through single point measurements82

of the time-series of the surface elevation. We demonstrate the effectiveness of the developed scheme83

through experimental hydrodynamic data, in the form of time-series of water wave profiles. Using84

multiple realizations of rogue waves, we statistically quantify the accuracy of the developed scheme.85

The main distinction of the present work is that in prior work, the predictive scheme was only86

applied in the context of forecasting the propagation of a wave field through numerical simulations87

of the modified nonlinear Schrödinger Equation (MNLS). It is true that the laboratory experiments88

considered here are overly simplistic representations of realistic ocean dynamics. However, the work89

presented here represents a significant step forward in reduced-order forecasting of extreme events,90

demonstrating that this scheme can provide accurate spatiotemporal predictions in an experimental91

environment with noisy measurements.92

2 Precursors based on point measurements93

Our goal is to predict extreme waves in unidirectional wave fields on the surface of deep water, using94

time measurements at a single point with satisfactory high sampling frequency. The developed scheme95

consists of an offline, as well as an online, real-time component. For the offline component, we quantify96

the critical wave groups that evolve to rogue waves using direct numerical solutions of the MNLS97

equation. Here we employed the MNLS equation for demonstration purposes; the fully nonlinear98

water wave equations could also be used but the offline component would be computationally more99

expensive. In the online, real-time component, we identify the coherent wave groups in measurements100

of a physical, irregular wave time-series. We then use the results from the offline component to101

predict how the measured groups will evolve.102

The scheme we discuss here closely follows the ideas presented in [44]. In this case the prediction103

analysis was based on the availability of field measurements. The algorithm reported in this work104

predicts future extreme waves from time series measurements of the wave field at a single point.105

Such formulation yields a tremendous practical payoff, since it allows for the application of the106

algorithm to experimental data as well as it potential application to more realistic oceanic setups.107

2.1 Evolution of isolated, localized groups108

We begin by performing an analysis of localized wave groups using the space-time version of the109

MNLS [39]:110
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where u is the envelope of the wave train, ω is the dominant angular frequency, related to the wave
number k through the dispersion relation ω2/g = k, and H is the Hilbert transform, defined in
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Fourier space as:

F [H[f ]] (ω) = i sign(ω)F [f ](ω).

The above MNLS equation was derived from the fully nonlinear equations for potential flow on111

the surface of a deep fluid [42]. The wave field is assumed to be narrow-banded and the steepness112

small. To leading order, the surface elevation η(x, t) is given by113

η(x, t) = < [u(x, t) exp (i(kx− ωt)] ; (2)

higher order corrections may also be included, see for instance [45, 19].114

While the standard form of MNLS (time-space) can be used to understand how spatially defined115

wave groups will evolve in future times [36, 37], the above formulation allows us to predict how116

temporally defined wave groups (over a single point) will evolve in space. For this reason it is117

an appropriate advantageous formulation in the case where we aim to rely just on one point118

measurement (over time) in order to predict the occurrence of a rogue wave downstream of the119

wave propagation. We emphasize that the proposed time-domain analysis and prediction can be also120

applied to electromagnetic waves [46].121

To investigate the evolution of localized wave groups due to localized modulation instability, we
consider boundary data of the form

u(x = 0, t) = A0 sech(t/τ0). (3)

The choice of such function is not related to any special solution of the NLS equation, but rather122

by the fact that it has the shape of a wave group (a Gaussian shaped function would imply the123

same type of dynamics). Therefore, we numerically evolve such groups for different amplitudes A0124

and periods τ0. In fact, for each (A0, τ0) pair, in the case of group focusing, we record the value125

of the amplitude of the group at maximum focus [47]. We emphasise that the parameters here126

considered are not in the semi-classical regime, i.e. in the small dispersion limit, as considered127

in [48]. In Figure 2, we display the group amplification factor as a function of A0 and τ0 due to128

nonlinear (modulation instability) effects. Similar to [24], we can notice that indeed some groups129

focus and increase in amplitude, while others defocus and do not grow. These focusing groups may130

act as a trigger for the occurrence of extreme waves in unidirectional wave fields, and therefore,131

we may be able to predict extreme waves in advance by detecting such packets. We mention that132

a number of the cases pictured would yield breaking waves in a physical setting. Although the133

equation we consider does not include such effects, the wave breaking threshold is typically taken to134

be |u| = 0.4 [49] - the initial wave group parameters (A0, L0) that lead to wave groups that satisfy135

this threshold limit are marked with a white curve in Figure 2. A similar figure has been reported136

in [37] but obtained using the time-space version of the MNLS, while the results presented here137

refer to wavegroups in time evolved using the space-time version of MNLS, which is the appropriate138

setting for this experimental study. Note that the moment we predict wave breaking the steepness of139

the wave field is generally small and the equations are valid. This may not be the case in a later time140

instant when wave breaking can occur. However, this does not compromise our prediction capability.141

We also emphasize that the Peregrine soliton has similar physical features as multi-solitons [50]142

while the choice of carrier parameters allow the observation of the focusing stage of unstable wave143

packets within the limited length of the water wave flume [51, 29, 52].144
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Figure 2: Amplification factor for group evolution due to localized modulation instability. An
amplification factor of 1 indicates that the group defocuses and does not increase in amplitude. The
white line indicates which wavegroups exceed the wave breaking threshold of |u| = 0.4 during their
evolution. This figure was generated by evolution simulations of the nondimensionalized MNLS.
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2.2 Prediction Methodology145

In the proposed prediction scheme the validation will be based on time series data describing the146

evolution of waves in experimental water wave facilities. This data provides several measurements at147

different stages of waves evolution for the surface elevation η at different single spatial points. To148

make a future forecast at probe location x∗ at time t∗ we follow the steps as described below:149

1. Compute the envelope by Hilbert transform and apply a band pass filter in order to remove150

the higher harmonics, as suggested in [53, 54], using measurements of η(x∗, t), t ≤ t∗.151

2. Apply a scale selection algorithm, described in [37], to detect coherent wave groups and their152

amplitude A0 and wave group period τ0.153

3. For each group, we estimate the future elevation of the wave field by interpolating the results154

from the localized wave group numerical experiment, see Figure 2.155

Note that the above procedure can accurately predict the degree of subsequent magnification of the156

wave group due to localized modulation instability. However, apart of a rough estimate on the time157

required for the nonlinear growth to occur, it does not provide us with the exact location of the158

rogue wave focusing.159

3 Analysis of two sets of experimental data160

Hereafter, we will apply the scheme to two types of experiments performed in different water wave161

facilities. In the first experimental campaign, the idea is to embed a particular solution of the162

NLS equation that is known to focus, in an irregular and realistic sea state. For this purpose, we163

apply to the wave maker a NLS Peregrine-type solution, known to describe nonlinear rogue wave164

dynamics. In fact, breathers generally describe the nonlinear stage of modulation instability as165

well as wave focusing. Being the limiting case with an infinite modulation period, the Peregrine166

solution is a doubly-localized coherent structure that models extreme events on a regular background167

[55]. As such, its evolution in a chaotic wave field as well as the detection of its early stage of168

evolution through a finite window-length in such irregular conditions are not self-evident. In this169

case the Peregrine-type boundary conditions launched into the wave maker have been modeled to be170

embedded into a typical ocean JONSWAP spectrum. More details on the construction methodology171

can be found in [56]. In this study, the goal is to address the problem if it would be possible to172

detect Peregrine-type rogue wave solutions at early stage of wave focusing, once embedded in a173

random sea state.174

The second experimental study consists in generating a JONSWAP spectrum with random175

phases and observes the spontaneous formation of extreme oceanic waves. Here, the reported scheme176

is applied to the time series closest to the wave maker in order to establish an early stage of extreme177

wave event forecast, avoiding any computational effort in simulating their evolution, predicting the178

rogue wave formation in the water wave facility.179

3.1 Critical wave groups embedded in irregular sea configurations180

We recall that breathers are exact solutions of the nonlinear Schrödinger equation [3, 53]. Some of181

them describe the nonlinear stage of classical modulation instability process, namely of a periodically182

perturbed wave field [57, 58]. The case of infinite modulation period is known as the Peregrine183
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breather [55] that has been so far observed in three different physical systems: optics, hydrodynamics184

and plasma [59, 29, 8]. The relevance of the Peregrine solution in the rogue wave context is related185

to its significant amplitude amplification of three and to its double localization in both, time and186

space.187

3.1.1 Description of experiments188

The experimental stability analysis of the Peregrine solution is a substantial scientific issue to189

tackle, if connecting this basic simplified model to be relevant to ocean engineering applications. To190

achieve this, initial conditions for a hydrodynamic experiment have been constructed, embedding a191

Peregrine solution into JONSWAP sea states. The purpose of this experiment is to demonstrate that192

our method is robust and is able to capture a rogue for the case where smaller random waves are193

present. We recall that a uni-directional JONSWAP sea is defined, satisfying the following spectral194

distribution [60]:195

S(f) = α

f5 exp
[
−5

4

(
fp

f

)4
]
γ

exp

[
−

(f − fp)2

2σ2f2
p

]
; (4)

where fp corresponds to the peak frequency of the spectrum, σ = 0.07 if f ≤ fp and σ= 0.09 if196

f > fp, α is the so called Phillips parameter and γ is the enhancement, or peakedness parameter.197

Once the peak frequency of the spectrum is fixed, in experiments one usually chooses α and γ to198

select the significant height (defined as 4 times the square root of the area under the spectrum) and199

the spectral bandwidth. The surface displacement can be obtained from the spectrum by:200

ηJONSWAP(0, t) =
N∑

n=1

√
2S (fn) ∆fn cos (2πfnt− φn), (5)

with random phases φn ∈ [0, 2π), [61]. Details of the Fourier space construction methodology201

are described in [56]. In fact, the wave elevation at x = 0 (the location of the wave maker) has202

been constructed to satisfy a JONSWAP sea state configuration with a significant wave height of203

Hs = 0.025m.204

as well as a spectral peakedness parameter of γ = 6. The wave peak frequency, fp, is 1.7 Hz,205

thus, the characteristic steepness, defined as Hskp/2, with kp = (2πfp)2/g, is of 0.15, that is a206

realistic value for ocean waves [60]. This allows us to track the evolution of an unstable packet in207

time and space in irregular conditions while evolving for instance in a water wave facility, rather208

than assuming spontaneous emergence, as will be discussed in the next Section. The experiments209

have been conducted in a water wave facility with flap-type wave maker. Its length is of 15m with a210

width of 1.5m while the water depth is 1m as schematically depicted in Figure 3 and described in211

[62]. Capacitance wave gauges have been placed along the facility to measure the temporal variation212

of the water surface elevation.213

3.1.2 Assessment of the scheme214

In the following, we apply the prediction scheme to the wave tank measurements, related to the215

experiments of an embedded Peregrine model in uni-directional sea state conditions. The wave216

propagation of both, the Peregrine-type dynamics excited as well as an independent spontaneous217
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Figure 3: Water wave facility in which the Pergrine breather has been embedded in a JONSWAP
sea state configuration. Its dimensions are 15× 1.5× 1 m3.

focusing and the corresponding prediction scheme are shown in Figure 4. The blue lines indicate218

experimental measurements. Wave groups with predicted wave amplitude that exceeds the rogue219

wave threshold (twice the significant wave height) are noted with red color. Orange, yellow and220

green colors indicate wave groups with predicted amplitudes that have descending order and below221

the rogue wave threshold.222

First, we can clearly notice the focusing of the initially small in amplitude Peregrine wave packets223

to extreme waves. On the left hand side of Figure 4 the maximal wave height is 0.054m and indeed224

exceeds twice the significant wave height, satisfying the formal definition of ocean rogue waves,225

whereas in the case depicted on the right-hand side, which shows a case of spontaneous focusing in226

the wave train, the maximal wave measured is 0.045m and as such, this abnormality index of 1.8 is227

slightly below the latter threshold criteria. Here, we emphasize that the oceanographic definition of228

rogue waves is based on an ad-hoc approach [3]. Indeed, large waves having heights that correspond229

to 1.5 the significant wave height could be as dangerous as well.230

Note that due to discrete positioning of the wave gauges along the flume, it may be possible231

that higher amplitude waves have not been captured in the spacing between two wave gauges.232

Nevertheless, the prediction scheme was clearly successful in detecting the embedded pulsating233

Peregrine wave packet, see each of the red time windows in Figure 4, proving the applicability of the234

method to detect wave groups undergoing modulation instability in uni-directional seas. Note that235

the water wave dynamics in the wave flume is much more complex than described by the NLS and236

MNLS. In fact, breaking and higher-order nonlinear interactions are inevitable features. The success237

of the scheme in identifying the unstable wave packets at early stage of focusing proves, however,238

that the main dynamics can be indeed described by means of weakly nonlinear evolution equations.239

For reference we have included a prediction based on second-order theory, see Figure 5. A240

second-order expansion of the sea surface can capture the effects of wave steepness, with no241

approximations other than the truncation of the expansion at the second order, i.e. maintaining242

quadratic nonlinearities of the amplitudes in (5). For the case of the wave group that evolves into a243

rogue wave, shown in Figure 4 (left), we utilize the measurement at x = 0 and predict the wave244
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Figure 4: (a) Successful prediction of a rogue wave occurring through the embedding of a Peregrine
soliton into an irregular background for γ = 6. (b) A false positive prediction leading to a large
wave which does not overpass the rogue wave threshold (from a different time window of the same
experiment displayed on the left). The blue curves indicate the experimental measurements. The
colored boxes show the prediction and indicate whether the wave group will focus or not: red
color mark wave groups predicted to evolve into a rogue wave. Orange, yellow and green colors
indicate wave groups with predicted amplitudes that have descending order and below the rogue
wave threshold.

height at the following measurement stations using second-order theory [63]. The height of the245

Peregrine at x = 5 is indicated by the dashed line. The second order theory is not able to predict246

the near doubling of the surface elevation that we see in the experimental measurements of the247

embedded Peregrine breather dynamics. This is expected taking into account the important energy248

transfers between harmonics due to the severe focusing involved in the Peregrine breather-type249

rogue wave, which cannot be captured by the second-order theory.250

3.2 Spontaneous emergence of rogue waves from a JONSWAP spectrum251

A time series built from a JONSWAP spectrum is characterized by many wave packets whose252

amplitudes and widths depend on the total power of the spectrum and on its width, respectively. It253

has been established that if the spectrum is narrow, the wave packets will have larger correlation254

lengths and, if they are sufficiently large in amplitude, they can go through a modulation instability255

process [64], which eventually culminates in a rogue wave. Similarly, with the previous Section, the256

goal here is to establish a priori which of the initial packets will eventually go thorough this process.257

3.2.1 Description of the experiments258

The data we use here have been collected during an experimental campaign performed at Marintek in259

Trondheim (Norway) in one of the longest existing water wave flumes. The results of the experiments260

are collected in the following papers [65, 66, 51, 67]. Here, we report only the main features of the261
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Figure 5: Prediction of wave evolution based on second-order theory for the rogue wave presented in
Figure 4(a). The experimentally measured height of the embedded Peregrine at x = 5 is indicated by
the dashed line. As expected, second-order theory is not able to capture the observed near doubling
of the surface elevation.

experimental set-up: the length of the flume is 270m and its width is 10.5m. The depth of the262

tank is 10m for the first 85m, then 5m for the rest of the flume. We have employed waves of 1.5263

seconds of peak period; this implies that with some good approximations waves can be considered as264

propagating in infinite water depth, regardless of the mentioned bathymetry variation. A flap-type265

wave-maker and a sloping beach are located at the beginning and at the far end of the tank so that266

wave reflection is minimized. The wave surface elevation was measured simultaneously by 19 probes267

placed at different locations along the flume; conductance wave gauges were used.268

The data here presented consist of three different experiments with different values of the269

parameters in the JONSWAP spectrum. More specifically, we choose fp = 0.667 Hz for all experiments270

and γ = 1 and Hs=0.11 m for the first one, γ = 3.3 and Hs=0.14 m for the second one and γ = 6271

and Hs=0.16 m for the last one, see [51] for details.272

3.2.2 Assessment of the scheme for different parameters273

In Figure 6 we present two cases of successful prediction. The blue curves indicate the experimental274

measurements. The colored boxes indicate whether the wave group will focus or not. Specifically,275

wave groups marked with red color will under go modulation instability and will lead to a rogue276

wave. Orange, yellow and green colors indicate wave groups with predicted amplitudes that have277

descending order and below the rogue wave threshold. The moment we have measured through the278
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first probe the elevation of the wavegroup, we are able to predict how the height of the wave group279

will evolve and whether it will exceed the rogue wave threshold. This prediction is done by using the280

described algorithm in Section 2.2. The prediction is confirmed by measurements through a probe281

that is placed further in the wave tank. In Table 1 we summarize the statistics for the prediction282

scheme. We observe that in all cases of γ the prediction is accurate while we miss very few rogue283

waves. The prediction time, i.e. the duration from when we first predict a particular rogue wave to284

the time when it is first detected, has O(10Tp) length. This is consistent with the numerical studies285

in [15, 37].286

Figure 6: Successful prediction of a rogue wave occurring in an irregular wavefield characterized by
a JONSWAP spectrum with γ = 3.3 (a) and γ = 6 (b). The blue curves indicate the experimental
measurements. The colored boxes show the prediction and indicate whether the wave group will
focus or not: red color mark wave groups predicted to evolve into a rogue wave. Orange, yellow and
green colors indicate wave groups with predicted amplitudes that have descending order and below
the rogue wave threshold.

Table 1: Prediction statistics for rogue waves occurring in a JONSWAP spectrum with different
parameters. Prediction time is non-dimensionalized by the peak wave period, Tp.

Parameter γ Correct False Negative False Positive Prediction time (Tp)
γ = 1 80% (17/19) 10% (2/19) 34% (9) 14.9
γ = 3.3 100% (42/42) 0% (0/42) 40% (28) 17.3
γ = 6 95% (58/61) 5% (3/61) 34% (30) 15.3

All cases 96% (117/122) 5% (5/122) 36% (67) 16

Despite the good behavior of the algorithm in terms of not missing extreme events, it has a287

relatively large false-positive rate. We attribute this characteristic to the existence of noise or other288

imperfections of wave profiles, that are for instance a result of wave breaking, which are inevitable289

in this experimental setup and thus, may lead to overestimation of the height of the wavegroup.290
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Moreover, it is possible that the actual false positive rate is lower than 36%, since we only have291

measurements of the wave field at the location of the probes while a wave group may only exceed292

the extreme height threshold at a location where we have not been monitoring along the wave flume.293

This would be then subsequently classified as a false positive.294

Additionally, even if the wave dynamics were governed exactly by MNLS, the false positive rate295

would not be 0%. We studied this problem in [37] and observed a false positive rate of 20-25%.296

Part of the reason that the false positive rate is relatively high is due to the binary nature of these297

predictions. For example, if we predict that a rogue wave will occur, and a wave with height equal to298

99% percent of the rogue wave threshold occurs, then this prediction is recorded as a false positive.299

4 Conclusions300

To summarize, we have applied a reduced-order predictive scheme for extreme events caused by301

spatially localized modulation instability, based on the dynamics of MNLS, to two types of laboratory302

data: in the first the extreme events have been modeled to arise from seeded unstable deterministic303

breather dynamics, embedded in a JONSWAP sea state, while in the second the extreme events304

have emerged spontaneously from the JONSWAP wave field. This provides evidence that our305

reduced-order predictive scheme, previously only considered in the context of numerical simulations,306

can perform well even in an experimental settings, where the assumed physical model does not apply307

exactly and the wave field measurements contain noise.308

Considering the fact that during the laboratory experiments the wave profiles have been measured309

discretely along the flume, some of the false positive predictions may be still regarded as successful.310

Nevertheless, the experimental wave fields considered here are simpler than typical wave fields on311

the open ocean, and further studies are required to assess applicability of this scheme to directional312

seas [38]. Indeed, the uni-directional wave propagation can be related only to swell propagation,313

whereas, sea dynamics can be more complex in nature. Spatial measuring techniques using stereo314

camera are promising in capturing water surface distributions [68, 69].315

Additionally, applications to other nonlinear dispersive media are inevitable. Indeed, it is316

well-known that the uni-directional wave propagation in Kerr media follows NLS-type evolution317

equations with better accuracy as for the case for water waves. Since the degree of nonlinearity of318

electromagnetic waves propagating in nonlinear fiber optics can be accurately controlled by the Kerr319

medium [70, 71] while breaking thresholds are much higher [72] compared to water waves, a better320

accuracy of the scheme is expected.321
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