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In this paper, we apply machine learning methods to study phase transitions in certain statistical
mechanical models on the two dimensional lattices, whose transitions involve non-local or topological
properties, including site and bond percolations, the XY model and the generalized XY model. We
find that using just one hidden layer in a fully-connected neural network, the percolation transition
can be learned and the data collapse by using the average output layer gives correct estimate of the
critical exponent v. We also study the Berezinskii-Kosterlitz-Thouless transition, which involves
binding and unbinding of topological defects—vortices and anti-vortices, in the classical XY model.
The generalized XY model contains richer phases, such as the nematic phase, the paramagnetic and
the quasi-long-range ferromagnetic phases, and we also apply machine learning method to it. We
obtain a consistent phase diagram from the network trained with only data along the temperature
axis at two particular parameter A values, where A is the relative weight of pure XY coupling.
Besides using the spin configurations (either angles or spin components) as the input information
in a convolutional neural network, we devise a feature engineering approach using the histograms of
the spin orientations in order to train the network to learn the three phases in the generalized XY
model and demonstrate that it indeed works. The trained network by using system size L x L can
be used to the phase diagram for other sizes (L’ x L', where L' # L) without any further training.

I. INTRODUCTION

Recent advancement in computer science and technol-
ogy has enabled processing big data and artificial intel-
ligence. Machine learning (ML) has been successfully
and increasingly applied to everyday life, such as digital
recognition, computer vision, news feeds, and even au-
tonomous vehicles [1]. Besides that, ML methods have
also been recently adopted to various fields of science and
engineering, and, in particular, in the context of phases
of matter and phase transitions in physics [2-5]. The
main tools are roughly divided into (I) supervised ma-
chine learning (classification or regression with labeled
training data) and (II) unsupervised machine learning
(clustering of unlabeled data) [6].

Amongst the earliest development in this direction of
phases of matter, it was used in the study of the thermo-
dynamical phase transitions of the classical Ising model
and its gauge variant by supervised machine learning
methods [2]. In addition, unsupervised learning was also
applied to the Ising model and the XY model mainly
by the principal component analysis (PCA) method and
the autoencoder (an artificial neural network) [3-5, 7].
Other unsupervised methods, such as random trees em-
bedding and t-distributed stochastic neighboring ensem-
ble, have also been used; see e.g. [8]. Instead of just
learning the transition, a learning scheme called confu-
sion method was invented to predict the phase transi-
tions [9], and similarly a moving-window method was
also shown to be useful [10]. Beyond classical physics,
the quantum many-body problems have also been stud-
ied with artificial neural networks in the description of
equilibrium and dynamical properties [11]. For exam-
ple, the strongly correlated Fermi systems were studied

using e.g. connected networks [12], self-learning meth-
ods [13], and even with ML methods beyond limitation
of the sign problems [14]. Other systems have also been
studied successfully, such as topological phases [15-19],
disorder systems [20], quantum percolation model [21],
non-equilibrium models [22, 23] and many others [24-
31]. The machine learning has also been discussed in the
context of tensor networks [32, 33], and is helpful to ac-
celerate the Monte Carlo sampling and reduce the auto
correlation time [34-36]. Attempts have been made to
understand theoretically by mapping it to the renormal-
ization group [37].

Here we focus on using mostly supervised machine
learning methods to study two types of classical statisti-
cal models, whose transitions involve non-local or topo-
logical properties, including site and bond percolations,
the XY model and the generalized XY (GXY) models.
In order to apply supervised learning to calculate phase
boundaries, one needs to prepare Monte Carlo configura-
tions in three regimes [2]: (i) below the suspected T, (ii)
above the suspected T, and (iii) an intermediate regime
in a region containing 7. The first two regimes are used
for training, by applying the trained algorithm to con-
figurations in the vicinity of T¢, one can infer an accu-
rate T.. However, if the purpose is to learn (instead of
predicting) the phase transition, configurations from all
three regimes are used for both training and testing, with
the latter being used to verify that the network indeed
can learn the transition and the distinct phases with high
confidence [2].

When the model under study has a local order param-
eter (OP) such as the magnetization, the optimized fully-
connected network (FCN) actually can recognize phase
transitions by essentially averaging over local spins [2].



For the phase transition characterized by the non-local
order parameters, such as the topological phase of the
Ising gauge model [2] or the classical XY model [38], the
convolutional neural network (CNN) is a better tool than
the FCN as it encodes spatial information. It was demon-
strated in the classical 2d Ising gauge model that the op-
timized CNN essentially uses violation of local energetic
constraints to distinguish the low-temperature from the
high-temperature phase [2].

In percolation, non-local information such as the wrap-
ping or spanning of a cluster is needed to characterize the
phases and the transition in between. Percolation is one
of the simplest statistical physical models that exhibits
a continuous phase transition [39-41], and the system is
characterized by a single parameter, the occupation prob-
ability p of a site or bond, instead of temperature. If a
spanning cluster exists in a randomly occupied lattice,
then the configuration percolates [42]. Can the neural
network be trained to recognize such nonlocal informa-
tion and learn or even predict the correct critical point?
If so, can it be used to reveal other properties of the con-
tinuous transition, such as any of the critical exponents?
This motivates us to study percolation using machine
learning methods.

We first use the unsupervised t-SNE method to charac-
terize configurations randomly generated for various oc-
cupation probability p and find that it gives clear separa-
tion of configurations away from the percolation thresh-
old p.. This indicates that other machine learning meth-
ods such as supervised ones will likely work, which we also
employ. We find that both the FCN and the CNN works
for learning the percolation transition, and the networks
trained with configurations labeled with information of
whether they are generated with p > p. or p < p. can
result in a data collapse for different system sizes, giv-
ing the critical exponent of the correlation length. We
alternatively train the neural network to learn the exis-
tence of a spanning cluster and with this the percolation
transition can be identified (without supplying labels of
P> peor p < pe).

Our interest in the XY model originates from its topo-
logical properties—vortices and how ML methods can
be used to learn the BKT transition. The XY model
in the two- and three-dimensional lattices were stud-
ied by the unsupervised PCA method [4, 5] and gen-
erative model [43]. In Ref. [5], various choices of input
were considered, e.g. spin configurations (i.e. compo-
nents of spins), local vortices, and their square into the
PCA method. It was concluded that learning the vortex-
antivortex unbinding to predict the transition might be
difficult in the PCA. In a very recent work by Beach,
Golubeva and Melko [38], it was shown that the CNN
works better than FCN to learn the BKT transition. Fur-
thermore, the advantage of using vorticies rather than
spin configurations only shows upfor large system sizes,
e.g. L = 32, but for smaller sizes using spin configu-
rations may work better. Here, for small sizes we use
either spin orientations or their components as input to

a CNN and verify that both give successful learning of
the BKT transition in the XY model. Additionally, we
find that using the histograms of the spin orientations
also works for the XY model and can be applied effi-
ciently to larger system sizes Additionally, we find that
using the histograms of the spin orientations also works
for the XY model and the training can be done efficiently
for larger system sizes. To go beyond the XY model, we
find it interesting to apply the ML to the generalized XY
(GXY) model [44, 45] as it contains more complex config-
urations such as half-vortices linked by strings (domain
walls) and an additional nematic phase. We find the use
of spin configurations (either angles or spin components)
and histograms both works. The advantage of the latter
approach is that the training can be done for larger sys-
tem sizes and, moreover, trained network for one system
size can be applied to other system sizes.
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FIG. 1: (Color online) (a) A site percolation configuration on
the square lattice with periodic boundary condition. With
the periodic boundary condition, the dashed line connects
the opposite sides of the largest cluster and it demonstrates
the “wrapping”. (b) A bond percolation configuration on a
square lattice. (c) Configuration of the XY model on the
square lattice. (d) Configuration of the XY model on the
honeycomb lattice.

The outline of this work is as follows. In Sec. II, we in-
troduce models to be studied, i.e., site and bond percola-
tions, the XY model and the GXY models. In Sec. IIT A,
we show classifications via the t-SNE approach on the
high-dimensional configurations of site and bond perco-
lation on both square and triangular lattices. Then su-
pervised learning using the fully-connected neural net-
work is illustrated in Sec. III B. In Sec. III C, the CNN
structure is introduced and the learning results of perco-
lations by using the CNN are described, and a different
way of labeling the configuration (using the existence of
a spanning cluster) is used. No labeling regarding p > p.
or p < p. is used there, but the transition point can be
obtained. In Sec. IV we use the CNN to study the XY



model and its generalized versions. For the GXY model
containing a nematic phase, we construct the histograms
of the spin orientations and then use them as images for
the network to learn. This way of feature engineering can
result in better learning of the transitions. We conclude
in Sec. V.

II. MODELS

In this paper we study two types of classical statistical
physical models, include (I) site and bond percolations,
and (IT) the XY model and (IIT) the GXY models. Let
us introduce them as follows.

(Ta) Site percolation. The site percolation can be defined
by the partition function,

Z=> pir(1—p)Nm, (1)
{o}

where, e.g., on the square lattice with N = L x L sites, ps
is the probability of site occupation, n? is the numbers
of sites being occupied in the configuration labeled by o.
In order to obtain the critical phase transition points by
Monte-Carlo simulations, usually the wrapping probabil-
ity R is defined [42] in the case of the periodic bound-
ary condition. With open boundaries, a cluster growing
large enough could touch the two opposite boundaries
and hence it is referred to a spanning cluster. The wrap-
ping cluster is defined as a cluster that connects opposite
sides that would be in the otherwise open boundary con-
dition, as illustrated in Fig. 1 (a) and (b). A cluster
forming along either the x or y direction can contribute
to R. In ML method, we do not need to measure this
observable directly and a naive labeling of each configu-
ration is given according to how it is generated according
to the occupation probability p and p’s relation with the
critical value (the percolation threshold) p., i.e., whether
p > pe (say labeled as ‘17) or p < p. (say labeled as ‘0’).
This resembles the scenario in the Ising model whether
configurations are labeled according to whether they are
generated above or below the transition temperature 7.
But such a topological property of wrapping (or perco-
lating) can be used as an alternative labeling for training
the neural network (see Sec. IIT C 3).

(Ib) Bond percolation. The bond percolation partition
function can be defined as,

Z=> pr@-p)N ", (2)
{o}

where pp is the probability of occupying a bond on the
lattices, ny is the number of bonds being occupied in the
bond configuration o. The wrapping or spanning cluster
is defined in a similar way as in the site percolation.

(II) XY model. The Hamiltonian of the classical XY

model [46] is given by
H:—JZS}-S}z—JZCOS(Hi—Hj)a (3)
(i.4) (5.3)

where §; is unit vector with two real components and
(i, ) denotes a nearest-neighbor pair of sites ¢ and j, and
0; in (0, 27] is a classical variable defined at each site. The
sum in the Hamiltonian is over nearest-neighbor pairs or
bonds on the square lattice (L x L) with the periodic
boundary condition; other lattices can be also considered.

(IIT) Generalized XY model. The Hamiltonian of the clas-
sical GXY models is given by

H =~ "[A cos(; — 0;) + (1 — A)cos(qb; — )], (4)

where A is the the relative weight of the pure XY model,
and ¢ is another integer parameter that could drive the
system to form a nematic phase. For both A =0 and 1
the model reduces to the pure XY model (redefining ¢ as
0 in the first case), and hence the transition temperature
is identical to that of the pure XY model. However, such
a redefinition is not possible with A % 1. The phase
diagrams of the GXY models (4) depend on the integer
parameter ¢, and they have been explored extensively [44,
45].

III. PERCOLATIONS

Even though we mainly use supervised learning meth-
ods, we will begin the study of percolation using an un-
supervised method, the t-distributed stochastic neighbor
embedding (t-SNE). We shall see that it can characterize
configurations randomly generated in percolation to two
distinct groups with high and low probabilities p of oc-
cupation as well as a belt containing configurations gen-
erated close to the percolation threshold p = p.. This
gives us confidence to proceed with supervised methods
such as FCN and CNN.

A. Learning percolation by t-SNE

The t-SNE is an unsupervised machine learning al-
gorithm for dimensionality reduction via an iteration
procedure [47]. By using a nonlinear technique (unlike
the PCA), it projects high-dimensional data (e.g. M-
dimensional objects @1,...,2y) into a two-dimensional
space, which can then be visualized in a scatter plot,
where similar (or dissimilar) objects are modeled by
nearby (or distant) points. (Here, the bold symbols
means that each x is a M-component vector.) For ex-
ample, it has been successfully used to analyze the Ising
configurations and project the data into two-dimensional
scattering figures [2].

We show, in Fig. 2 (A), for site percolation on the
square lattice with size L = 32, such a scatter plot, pro-
duced by using M = 11000 site configurations in the
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FIG. 2: (Color online) The t-SNE distribution of site perco-
lation on the square lattice with L = 32 for (A) one step of
iteration, and (B) 2000 steps of iterations. (C) The result for
bond percolation on the square lattice with size L = 16 after
1100 iterations. The t-SNE distribution of site percolation on
the triangular lattice with L = 32 for (a) only one step of it-
eration and (b) 2000 steps of iteration. (c) The result for the
bond percolation on triangular lattice at L = 16 after 1100
iterations. Note that in (A), (a), (B) and (b), we only use
two colors pink and yellow, but in (C) and (c) the samples
are colored according to the probability p of occupation, from
pink to yellow.

t-SNE procedure, where each configuration & contains
32 x 32 = 1024 elements 0 or 1. Fig. 2 (A) is the dis-
tribution obtained after only one step of iteration in the
t-SNE method. Clearly, after the first iteration, the data
for both labels are still mixed together and there is no
separation into distinct groups. However, after 2000 it-
erations, as shown in Fig. 2 (B), the data converges into
three distinct groups, with two concentrated clusters and
a wide ‘belt’. The concentrated cluster with yellow solid
circles indicates data generated from non-percolating (or
subcritical) phase, i.e. p < p., while the purple clus-
ter indicates data from the percolating (or supercritical)
phase, i.e. p > p.. In addition to the two distinct clus-
ters, the belt contains the data around the percolation
transition point p. (roughly between 0.2 and 0.8). Simi-
lar behavior in the t-SNE analysis of the distribution is
also obtained in the percolation study on the triangular
lattice, as shown in Figs. 2 (a) & (b).

We remarked that, there are only two colors used in
Figs. 2 (A), (a), (B) & (b), indicating only above or below
Pe, but a continuous hue between purple and yellow was
used in Figs. 2(C) and (c) to denote the occupation prob-
ability p. In Fig. 2 (C) & (c), we show the embeddings
for occupation probability p of the bond percolation on

the square lattice and on the triangular lattice, respec-
tively, both with L = 16. The behavior is similar to that
of site percolation. The upshot is that the t-SNE method
can characterize percolation configurations into different
phases and near the transition. In order to obtain the
transition point p., one can probably divide the belt into
two halves and the probability value p at the cut can be
used as an estimation of the percolation threshold. But
we do not do that here, as we will use supervised learning
below to learn the transition more accurately.

B. Learning percolation by FCN
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FIG. 3: (Color online) Architecture of the fully connected
neural network used to obtain p. for the site percolation
model. The input is a set of = configurations in a two-
dimensional lattices with periodic lattice with size L = 4. A
percolating configuration is illustrated, where the blue squares
are the occupied sites while the empty squares are not occu-
pied.

In Fig. 3, we show the structure of the FCN (which we
implemented with the TensorFlow library [48]), which
consists of one input layer, one hidden layer and one out-
put layer of neurons. The network between two neighbor-
ing layers is fully-connected, i.e., each neuron in one layer
is connected to every neuron in the previous and next
layer. The layers are interconnected by sets of correla-
tion weights (usually denoted by a matrix W) and there
are biases (denoted by a vector b associated with neurons
at each layer (except the input one). The input layer ac-
cepts the data sets of images or configurations and then
the network processes the data according to the weights
and biases, as well as some activation function for each
neuron. The optimization is performed to minimize some
cost function, e.g., the cross entropy function in Eq. (8)
via the stochastic gradient decent method. The number
of neurons in the input layer should be equal to the total
number of lattice sites, i.e. L x L in the site percolation



(or the number of spins in the Ising model), or the total
number of bonds in the bond percolation. The values of
the neurons are denoted as the input vector .

The hidden layer is to transform the inputs into some-
thing that the output layer can use and one can employ
as many such hidden layers (but we will focus on just
one hidden layer in FCN). It determines the mapping
relationships. For example, as illustrated in Fig. 3, we
denote Wy as the weight matrix from the input to the
hidden layer and by the bias vector for the hidden layer.
The number of neurons in the hidden layers generally is
chosen to be approximately of the same order as the size
of the input layer or less. Assume the activation function
for the neurons in the hidden layer is f. Then the neu-
rons in the hidden layer will output yg = f(x- Wi +b1).
Denote Wa as the weight matrix from the hidden to the
output layer and b the bias vector for the output layer.
Assume the activation function for the neurons in the
hidden layer is g. Then the neurons in the output layer
will have states described by y = g(yrr - Wa + bz2). One
choice usually used as the activation is the so-called sig-
moid function,

1

o) = T

(5)

related to the Fermi-Dirac distribution in physics. An-
other is the so-called softmax function that, when applied
to a vector with components z;, gives another vector with
components.

e

S o

aj; =

and it is related to the Boltzmann weight in physics. Yet
another choice that has become popular recently is the
rectifier, defined as frec(z) = max(0,z), and one unit
that uses this activation function is called a rectified lin-
ear unit. In principle, one can employ as many hidden
layers in the network. It is the universality of the neural
network, i.e., it can approximate any given function, that
makes machine learning powerful.

These weights W’s and biases b’s need to be optimized
at the training stage. The inputs consist of pairs of {x :
yr}, where each configuration is represented by a vector
@ of L x L components of value being 1 (whether a site is
occupied) or 0 (not occupied) and a corresponding label
yr indicating whether the configuration x is generated
above or below the percolation threshold p.. This label
can be described by by one single binary number, e.g.
1 representing p > p. and 0 representing p < p.. The
cost function can be chosen as (i) the average two-norm
between the label vectors yr and the output layer vector
y (resulting from input @) over many such pairs,

b=y Clul@) - yr(e)l (7

or (ii) the average cross-entropy between such pairs,

1
Cg = N ;; (yTj logy,; + (1- yTj)log(l - y;))

(8)
An additional term called regularization, such as
A (2N) >, |W;|?, is introduced to the cost function in
order to prevent overfitting. The optimization is done
with stochastic gradient descent using the TensorFlow
library.

Once the network is optimized after the training stage,
we use as input different and independently generated
configurations with possibly different sets of p values, and
use the average values of the output layer y (sometimes
referred to as the average output layer) from the network
to estimate the transition. This is referred to as the test
stage. The two components in y are in the range [0, 1],
and the larger the value of the component (associated
with a neuron) gives the more probable prediction the
neuron makes. Usually we plot such average numbers
for both output neurons (one is associated label 0 and
the other 1). This results in two curves as a function of
the probability p, as illustrated in Fig. 4. The value of
p at which the two curves cross is used as an estimate
of the percolation threshold. Note that, as seen below
in Sec. IV, when we encounter three or more phases to
identify, then the number of neurons in the output layer
will be accordingly three or more.
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FIG. 4: (Color online) The two values y1 and y2 of the output
layer of site percolation on the square lattice (left columns)
and triangular lattice (right columns) with the system sizes
L =4,8,16,24, 32,48 using the fully connected network. The
second and last rows are, respectively, the average results of
the output layer (y1, y2), and the finite size scaling for ex-
tracting the critical point, the data collapse of y1 and ys.

In Fig. 4 (A), we show the two average values y;
and yo in the output layer, obtained by testing the net-
work with site percolation configurations in the range of
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FIG. 5: (Color online) The two values y1 and y2 of the out-
put layer of the machine learning for bond percolation on
the square lattice (left columns) and triangular lattice (right
columns) with the system sizes L = 4,8, 16, 24 using the fully
connected network. The first and the second rows show the
average results in the output layer y; and y2 and the finite
size scaling for the critical points, respectively.

0.562 < p < 0.625 for different system sizes. The FCN
was trained using data from 0 < p < 1 with 2500 sam-
ples of per value of p . To reduce the statistical errors,
20000 samples per p are used for the test data to obtain
two neurons y1(p) and y2(p), i.e. the average values of
the output layer. We find that the two corresponding
lines cross, and the crossing in Fig. 4(B) as function of
1/L is used to estimate the transition point in the ther-
modynamic limit L — oo. From this, p. is estimated to
be 0.594 4+ 0.002. This agrees with the phase transition
from the Monte-Carlo methods within error bars [49]. In
Fig. 4 (C), we show the data collapse of the two av-
erage output layers. Due to the finite size effects, the
intersects between different sizes L = 4,8, 16, 24, 32 and
48, are slightly shifted away from the exact p.. By tak-
ing into account of this and by rescaling the horizontal
axis with (p — p.)L'/¥, the data collapse very well to a
single curve for each neuron output, with the use of the
exponent v = 4/3 from percolation theory [50].

During the stage of training, the labeling yr gives the
information whether a configuration is generated at the
probability p greater or less than p.. The information
about whether the individual configuration is percolating
or not is not known. However, one would expect that
for the configurations generated sufficiently away from
P = p¢, the neural network is learning such a property.
But close to p. even if a configuration is generated at
p < pe it can still be percolating and vice versa even
if a configuration is generated at p > p. it may not be
percolating. There are a lot of fluctuations near p.; see
also Figs. 9 (e) and (f). In Sec. IIIC3, we will use the
alternative labeling by giving the information of whether
a configuration is percolating or not.

We also apply the FCN to site percolation on other
lattices. For example, on the triangular lattice, the per-
colation threshold p. = 0.5 is also exactly known [51].
Similar to the square lattices, we generate the configu-
ration with randomly occupied sites with a statistically
independent probability p and then label the configura-

tions according to whether p > p. or p < p.. After
training the FCN, we test FCN with different data sets,
the average values of the output layer cross at the phase
transition point p. = 0.5 [51]. The data collapse and
the finite size scaling are shown in Figs. 4 (b) and (c),
respectively.

Similarly, we use the FCN to study bond percolation,
and the results are shown in Figs. 5 (A) and (B) give the
average output layer for the square lattice (with sizes L =
8,16,24,32), and finite size scaling (yielding the critical
point at p. = 0.5), respectively. Figs. 5 (a) and (b) show
the results of bond percolation on the triangular lattices.
The bond percolation threshold [51] is at 2sin(7/18) =~
0.347 and our result agrees with it. We remark that in
the training, each input configuration has 2L x L bond
variables for the square lattice and 3L x L bond variables
for triangular lattices.

Site percolation on the Bethe lattice was studied an-
alytically and exact transition was known, and thus it
is interesting to apply the neural network. In Fig. 6 (a)
we illustrate the Bethe lattice with four shells, indicated
by the green dashed lines. Different from the square or
triangular lattices, the Bethe lattice with coordination
number z (here z = 3) has a topological tree structure
that expands from a central site out to infinity [52]. Each
site has one neighboring site pointing towards the central
site and z — 1 sites going away from it. The total number
of sites in K-th shell is N = z(z — 1)5~1. Checking
whether the configuration percolates or not by machine
learning is interesting because the path connecting any
two sites of different trees has to go through the central
site. The exact critical probability [52] is known to be at
pe = 0.5 and our learning results in Fig. 6 (b) show that
the FCN can recognize the phase transition after training
the network. The results are obtained using K = 3 and
5 and the total size is N = 1+ Z{{ N, ie., 22 and 94.

A

FIG. 6: (Color online) (a) Bethe lattice with coordination
number z = 3. The lattice sites are represented by solid
circles at different shells K = 0,1,2, ---. (b) The average
values y1 and y2 in the output layer of site percolation on the
Bethe lattice for K = 3 and K = 5.

C. Learning percolation by CNN

We have seen in the previous section that the FCN
works well in learning percolation transition. However
the information about the lattice structure is not explic-
itly used, but rather it might be inferred during opti-



mization. For problems that have such natural spatial
structure, the CNN is naturally suited and can yield bet-
ter results.

1. CNN structure

-

convolution pooling  fully connected layers
FIG. 7: (Color online) Architecture of the fully connected
neural network used to obtain p. for the site percolation
model. The input is the configurations in a two-dimensional
lattice with periodic boundary condition, illustrated with size
L = 4. The the colored or shaded squares are the occupied
sites while the white squares are not occupied.

We first begin by discussing the structure of the CNN
shown in Fig. 7, where the input is a two-dimensional
array or an image. There is a filter with a small size
such as 5 x 5 also called a local receptive field, that pro-
cesses information of a small region. This same local
receptive field moves along the lattice to give a coarse-
grained version of the original 2D array or image. We
can move the filter not one lattice site but a few (which
is usually called stride to the next region). We can also
pad the outer regions with columns or rows of zeros so
as to maintain the same size of the filtered array, which
is referred to as padding. This results in a filtered or
generally coarse-grained hidden layer. We can use many
different local receptive fields to obtain many such lay-
ers, usually referred to as kernels. Roughly speaking,
the original image is converted to small ones with differ-
ent features. For each kernel, a further processing called
max-pooling is done on non-overlapping small patches,
e.g., 2 X 2 regions, that further coarse grain the arrays.
Other pooling methods can be used. One can repeat such
convolution+pooling layers a few times, but we will use
one such combination layer in the percolation and two in
the later part of the XY and the GXY models. After this,
there is a fully connected layer of neurons, as in the FCN.
This can be repeated a few more layers, but we will only
use one such layer here. Finally, the fully connected layer
is connected to a final output layer, and the number of
neurons depends on the output type; for example, to dis-
tinguish digits 0 to 9, there are ten output neurons. For
distinguishing between two phases, there are two output
neurons. Our optimization of the CNN again takes the
advantage of the TensorFlow library.

2. Site and bond percolations

08 -5 08 (@)
o 10
205 %05 =
. 14 ‘ ‘
3 — 16 L
6. 065 °02="5  0m
( — 4 (b)
0.75 ' ™5 6 0.75F =
>(‘\‘ . 8
2 410 qe—
> 05 < 2 05— N
- 14
0.25 Al N
0.33 0347 0.397

FIG. 8: (Color online) The two values y1 and y2 of the output
layer, using the CNN for site [(A)&(a)] and bond percolation
[(B)&(b)] on the square (left) and triangular (right) lattices,
respectively.

We repeat the same study of percolation on square and
triangular lattices with CNN. In the CNN structure, we
use two combination layers (i.e., convolution+maxpool).
In Figs. 8 (A) and (B), we show the results of site perco-
lation and bond percolation results on the square lattice,
respectively. The critical point is converged to 0.593 and
0.5, respectively. During the training, for the site perco-
lation on e.g. the square lattice, the L x L site occupation
configuration is used as input. For the bond percolation,
the 2L x L bond configuration is used. As expected, the
CNN works well in learning the phase in percolation. For
the site and bond percolation on the triangular lattices,
the results are also shown in Figs. 8 (a) and (b). We note
that some slight improvement in the learning of the tran-
sition point can be made by careful choosing of p’s; see
App. C. We also comment that since the Bethe lattices is
not regular and we do not use CNN for the corresponding
percolation problem. But it should be possible in princi-
ple. Moreover, the FCN result of the percolation on the
Bethe lattices is good enough.

3. Labeling by cluster identifying algorithm

In this subsection, we would like to show a different
ways of training the data using the non-local property
of whether the configuration is percolating or not as the
label y. In the previous works for thermodynamic phase
transitions [2, 5, 9], for a configuration & at parameter
such as T, the corresponding label y is set to be 0 if
T < T., which means that the configuration is belonging
to one phase. If T' > T., the configurations belong to
another phase, and the label is set be 1. Because the
configurations around the percolation threshold p. have
fluctuations and the configurations at p < p. may also be
percolating and some configurations at p > p. may not
be percolating, as illustrated in Fig. 9 (e) and (f). There-
fore, it is interesting to label the configuration according
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FIG. 9: (Color online) The two values y; and y2 of the output
layer , using the cluster identifying method to label the config-
uration, with (a) the FCN and (b) the CNN. The respective
accuracy curves of (a) and (b) are shown in (¢) with FCN
and in (d) with CNN. Labels {0, 1} for percolation or not are
shown for randomly generated configurations with (e) L = 16
and (f) L = 12. Notice the fluctuations near the transition.

to whether or not the configuration has a spanning or
wrapping cluster, instead of the relationship between oc-
cupation probability p and p..

Using the new labeling scheme, we show the results
in Figs. 9 (a) and (c) with sizes L = 8,16, 32,48 by us-
ing FCN and (b) and (d) with sizes L = 8,12,20 by
using CNN. Here no information about whether p > p,
or p < p. is given to the network, and the labels of the
configurations are obtained by cluster-identifying algo-
rithm [53]. However, the crossing obtained from the av-
erage values of the two output neurons gives the predic-
tion of the percolation transition. They agree with the
known results very well.

IV. THE XY AND GXY MODELS

We now turn to the second type of models that we are
interested in, which includes the pure XY model and the
GXY models. As remarked in the Introduction, we shall
first use as input to the network either projections of the
spin vector onto x axis and y axis, i.e.,

x = (cosfy,sinby, ..., cosly, sinfy ), (9)
or the spin orientations {6;}. The vorticity are defined
as the winding numbers, i.e., a collection +1 for vortices
and anti-vortices, but we shall not use those as input, for
the reason remarked earlier due to the results in Ref. [38].

The results in Ref. [38] show that the detection of vortices
does not necessarily result in the best classification ac-
curacy, especially for lattices of less than approximately
1000 spins. The advantage may show up for larger sizes,
but the training becomes more costly. Here we limit our-
selves to smaller sizes for using spin orientations (or their
components) in the training, but later introduce a differ-
ent approach in feature engineering that can be efficiently
applied to larger systems. In term of the two-dimensional
image for the CNN, when we use the spin components,
the L x L sites need to be effectively doubled to L x 2L
that gives the same information of x.

In the following, we will focus on the pure XY model on
both the square and the honeycomb lattices and the GXY
model with ¢ = 2,3 and ¢ = 8 on the square lattices.

A. The pure XY model
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FIG. 10: (Color online) The two values y1 and y2 of the output
layer using the CNN for XY model by inputting (A){6;} with
sizes L = 6,8,12,14,16 and (a) {sin 60;, cos 0;} with sizes
L = 4,6,8,10 on the square lattices. (B) and (b) Finite-
size scaling of the critical points; the results obtained are
consistent with 7. = 0.8935 within error bars for both types
of the inputs.

The configurations of XY model on the square and hon-
eycomb lattices are obtained by the classical Monte-Carlo
method; see e.g. Refs [54, 55]. In the zero temperature
limit, the spin at each site will point to the same orien-
tation as the model is ferromagnetic. However at a finite
and small temperature T less than Tk, the spin orien-
tations of spins points almost to the same direction with
some fluctuation, but there are excitations in the form
of bound vortex-anitvortex pairs. Above the Tk, the
spin orientations will become disordered as the vortex-
anitvortex pairs unbind.

Since the phase transition points are already known
for the XY model on both lattices [46, 56, 57], i.e.,
TSavare — () 8935(1), and THoneveomb — \/2/9 respec-
tively, it is thus interesting to see whether or not ma-
chine learning could recognize the phase transition of XY
model. Although the BKT transition of the XY model

Boos
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FIG. 11: (Color online) The two values y1 and y2 of the output
layer using the CNN for XY model by inputting (A){6;} with
sizes L = 4,6,8,10 and (a) {sin 0;, cos 6;} with sizes L =
4,6,8,10,12 on the honeycomb lattices. (B) and (b) Finite-
size scaling of the critical points; the results obtained are
consistent with 7. = 0.707 using both types of the inputs.

has been studied by machine learning methods [38], it is
our motivation to go beyond and study the GXY model.

In Figs. 10 (A) and (a), we show the learning results
using the raw spin configurations (i.e. both spin direc-
tions {6;} and spin components {sinf;, cosf;}) on the
square lattices with sizes L = 4 to L = 16. The lines y;
& 19 correspond to the average values of the two output
neurons. Due to the fact that the performance of the
network is lowest near the critical points, we use 25000
Monte-Carlo samples of the training data and of test data
for each temperature 7. In this way, we obtain results
with low standard deviations around the critical point in
the range 0.75 < T < 1.

Figures 10 (B) and (b) show the dependence on the lat-
tice size L of the estimated critical points T,.. The green
symbols are obtained from the intersections. The red
curves are the fitted by the result from renormalization
group [59]:

b
(log(L))*’

where the coefficient b = 72 /4c and c is a parameter. In
the thermodynamic limit, the estimated transition tem-
peratures are T, = 0.89+0.01 and 7, = 0.891 4+ 0.008 for
the pure XY model by using as the input {6;} and {cosb;,
sinf; }, respectively. The results agree with the result of
T. = 0.8935. The CNN indeed works well in learning the
BKT transition for the XY model, as previously demon-
strated in Ref. [38] on the square lattice, so the success
here comes with no surprise.

Using the spin configurations on the honeycomb lat-
tices as the input to the CNN gives good learning results
as shown in Fig. 11. We note that the unit cell of the hon-
eycomb has two sites. Each configuration thus have N el-
ements, where N = 2L x L for using {0;} and N = 4L x L
for using {cosb;, sind;}. Our result agrees decently with
the theoretical value T, = v/2/2 ~ 0.707. (Some slight
improvement can be made by choosing training data gen-
erated at temperatures symmetric about 7T, and without

To(L) =Te+ (10)

including those at T,; see App. C and Fig. 20.) In the
next section we will study the GXY model to extend the
machine learning beyond the XY model.

B. The generalized XY models

1. ¢=2 and q=3
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FIG. 12: Phase diagrams of the GXY model for (a) ¢ = 2 and
(b) g = 3, the data are from Refs. [44, 45]. The symbols N, P
and F represent the nematic, ferromagnetic and paramagnetic
phases, respectively. The dashed lines show the parameter
paths to be scanned. (c) Histograms of the configurations 6;_;
for the nematic phase at ¢ = 3, A = 0 and T = 0.2, the
three independent peaks show three preferred orientations.
(d) Histogram for the spin orientations in the (quasi-long-
range) ferromagnetic phase at ¢ = 3, A = 1, T' = 0.2, where
the system prefers one spin angles with some fluctuations.
(e) & (f) Histogram for the paramagnetic phase at ¢ = 2,
A =0, T = 2 (e), and the paramagnetic phase at ¢ = 3,
A =0, T = 2 (f), respectively. Note that for illustrations,
these distributions are obtained by over 2000 samples. But
for the input to the neural network, we use histograms each
derived from a very small number of samples, such as 20.

The phase diagram of GXY models [44, 45] is rich and
two examples with ¢ = 2 and ¢ = 3 are shown, respec-
tively, in Figs. 12 (a) and (b). In the lower temperature
and A = 0 limit, the system is in the generalized nematic
phase that has ¢ preferred spin orientations. The sta-
tistical distribution for spin orientations in the nematic
phase displays ¢ peaks as shown in Fig. 12(c). In the



FIG. 13: (Color online) The two values y1 and y2 of the output
layer of learning of (A) {6;} and (a) {sin 6;, cos 0;} for (a) g =
2, A = 0 with various lattice sizes. (B) and (b) The estimated
critical points from the dependence on lattices sizes 1/L. In
the thermodynamical limit, Tc = 0.92(3) and T = 0.92(5)
are estimated.
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FIG. 14: (Color online) The two values y1 and y2 of the output
layer in the learning of histograms of {6; } for (a) ¢ = 2, A = 0;
M) g=2,A=1()g=3A=0(d)g=3 A=1 (e
The average results in the output layer and (f) the finite-size
scaling of the critical points by scanning the parameter A,
and critical point A, is estimated to be 0.2505(5).

A = 1 limit, the system is quasi-long-range ferromagnetic
(broken reflection symmetry) in low-temperature limit
and the distribution of the spin orientations is shown in
Fig. 12(d). In the higher temperature, the system be-
come disordered, and is in a paramagnetic phase. The
distribution for the paramagnetic phase are also shown in
Figs. 12(e) and (f) for ¢ = 2 and 3, respectively. Clearly,
the distributions spread through a very wide arrange of
angles due to strong thermal fluctuations.

We wuse the configuration of (1) {6;} and (2)
{cosb;,cos0;} as input to the CNN with two convolu-
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tional layers, and the network indeed can learn the tran-
sition. For both A =1 (pure XY model) and 0 (the GXY
model) the phase transition is located at T'/J = 0.8935.
As remarked earlier, this is because the A = 0 GXY
model isomorphic to the usual XY model [63] by chang-
ing the variable ¢f; as ;. For both A = 0 and A = 1, us-
ing either (1) or (2) as the input works well and the CNN
can distinguish, respectively, the quasi-long-range ferro-
magnetic phase and the nematic phase, from the high
temperature disordered paramagnetic phase. Fig. 13 (A)
displays the average values of the output layer and the
performance of learning by using { 6; } as input for ¢ = 2
at A =0, with L = 6,8,12, 14, 16, while that in (a) is ob-
tained from using {sin 6;, cosf;} as input. The resulting
two curves y; and yo from the two neurons in the output
layer can distinguish different phases and their crossing
gives the transition. In the thermodynamic limit, the
critical points are estimated to be T, = 0.92 4+ 0.03 and
T. = 0.92 4+ 0.05, respectively, using the two different
types of input.

Here in the network there are 32 and 64 kernels in the
first and second layers, respectively. We use the Wolff-
cluster algorithm to generate configurations for the GXY
model. To obtain enough equilibrated states, we throw
out the configurations during the first 10000 Monte-Carlo
steps. To avoid the correlations between configurations,
we pick up configurations with interval of 2-5 Monte
Carlo steps at each temperature.

Inspired by the main difference between the above
three phases being the shape of the histograms, we inves-
tigate whether using such feature engineering (i.e. his-
tograms) can help the learning better. In principle, spin
configurations from each sample in the Monte Carlo al-
gorithm generates a histogram. However, to make the
histogram smooth, we use multiple configurations to av-
erage (e.g. 20) for small system sizes. Employing wolff
cluster algorithm allows us to access larger lattices, we
can use just one single configuration to generate a his-
togram. After obtaining the histogram, we segment the
images into a 32 x 32 matrix of black and white pixels,
in which the white area is set to 0 and colorful area is set
to 1. These matrices of pixels are our engineered feature
and are used as the input to the CNN for training.

We directly recognize the histograms and obtain re-
sults as accurate as other kinds of inputs, using the two-
layer-convolution CNN as shown in Figs. 14 (a)-(d) along
the four red dashed lines in Figs. 12 (a)-(b). For both
A = 0 and 1, the GXY model has the phase transition
located at T'/J = 0.8935. The results of using histograms
as the engineered feature make the CNN able to recog-
nize different phases in the generalized XY model and the
associated transitions in these two limits of A. For com-
pleteness, we also scan a path in the phase diagram of
g = 3 model by first varying A at T'/J = 0.365 (for which
the A, = 0.25 [45]), and the results shown in Figs. 14
(e)-(f) demonstrate that the neural network, in partic-
ular, can also distinguish the nematic phase from the
ferromagnetic phase and learn the transition point. The



approach of using histograms helps us to access larger
lattices without any further training.

Armed with the success of learning two distinct phases,
we move on to test whether our method can be used
to distinguish three phases. In particular, we scan the
phase diagram in Fig. 12 (b) along the green dashed lines,
combining the previous horizontal path varying A (at
T/J = 0.365) and then the vertical path by varying 7'/ J
(at A = 1); this path cuts through the three phases: N,
F and P. To do this, we need to use three neurons in
the output layer. During the training of the network,
the configurations in the three phases are labeled as 0,
1 and 2 respectively. The sigmoid function maps the
output layer located between the range [0, 1]. In the test
stage, the first neuron in the output layer (representing
the N phase) is 1 for A < 0.25 and becomes zero at
other two phases (the F and P phases). The output of
the other two neurons shows converse behavior as shown
in Fig. 15 (a). There are three curves corresponding to
the three neurons in the output layer. The accuracy is
shown in Fig. 15 (b) and it equals to 100% at non-critical
regimes and decreases near the two critical points around
(A =0.25T =0.365) and (A = 1,7 = 0.89). In short,
we have demonstrated successful learning of three phases
(N, P and F) and the transitions.
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FIG. 15: (a) The results in averaging outcomes separately in
the three neurons of the output layer by scanning the green
dashed lines in Fig. 12(b). (b) The accuracy of the learning.

As a final test, we use a semi-supervised method to
retrieve the global phase diagram of GXY model with
q = 2 and ¢ = 3 on the square lattice of 12 x 12 sites.
What we mean by the semi-supervised method is that,
only the limited data that are not generic are used in the
training, for example, those along A = 0 and A = 1,
i.e., the two vertical paths in Fig. 14(a) and (b). These
are non-generic, as they only give very limited repre-
sentations in the phase diagram. Once the network is
trained and optimized, we use the neural network to pre-
dict the phases, using the configurations generated from
Monte Carlo in the whole phase diagram, with parame-
ters (A, T') covering the range A = 0,0.1,0.2,--- ,1 and
T =0.2,04,---,1.8,2. We use both the spin orientation
and the histogram as the input, and the phase diagrams
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FIG. 16: The phase diagram of the GXY model, which con-
tains, Nematic phase (N, blue), Ferromagnetic phase (F,
green), and paramagnetic phase (P, red), obtained by the
semi-supervised method discussed in the text. The neural
network is trained only for data from A = 0 and A = 1.(a)
The ¢ = 2 model: the input data for training is the histogram
of spin orientations { 6; }. (b) The ¢ = 2 model: the in-
put data for training is the spin orientations. (c¢) The ¢ = 3
model: the input data for training is the histogram of spin ori-
entations. (d) The ¢ = 3 model: the input data for training
is spin orientations 6;. These agree with those (from Monte
Carlo simulations) in Figs. 12(a)&(b). The phase boundaries
represented by white lines by Monte Carlo methods are also
shown.

thus obtained, as shown in Fig. 16, agrees well with those
in Figs. 12 (a)&(b).

2. q=8

For ¢ > 3, the results in Refs [61, 62] suggest the ex-
istence of new phases at intermediate values of A that
do not appear for either A = 0 or 1. Since the existence
and/or nature of some of those transitions are still dis-
puted, it would be interesting to see the outcome of the
neural networks in those cases.

Without loss of generality, a typical value ¢ = 8 is
chosen. In Fig. 17 (a), the phase diagram, containing N,
P, and F phases, is shown. The blue dashed lines are the
data from Refs [61, 62]. The color of the small squares
is the mapping of the average values in the output layer
YN, Yry, Yp, and yp of the two-layer CNN. The color is
mapped via z = yp + 20 x yn + 40 * yp, + 60 * yr and its
normalized expression z = [z —min(z)]/max(z). Besides
the previous phases of the ¢ = 3 model, a new phase Fb
phases emerges, consistent with Refs. [61, 62].

Here we comment on the way we train the CNN.
Firstly, the lattice size should be large enough such as
L = 100. By fixing the temperatures at T = 0.35 and
0.8, we scan the parameter A from 0 to 1 in the phase
diagram with an interval of 0.05. For each parameter
point, 2500 histogram samples for training are used and
25000 samples of histograms for testing, and four labels
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FIG. 17: (a) The phase diagram of the GXY model with
g = 8, containing N, P, F', and F5 phases from Ref. [61]. The
network is trained from the spin histograms of size L = 100.
(b) Hlustration of the distributions of spins directions in the
nematic phase show 8 peaks. (c) The distributions of spins
directions in F' phase. Using the trained network of (a), we
obtain the phase diagrams of systems with sizes L = 150 (e)
and L = 200 (f).

for the different phases are used. We can distinguish the
new emerged phase F5 by the non-zero labels. At the
same time, the boundaries between other phases are also
obtained, consistent with the known results (indicated by
the blue dotted lines).

In Figs. 17 (b)-(d), the distributions of spins direc-
tions P(0/m) for each phase are shown according to con-
figurations, generated by the Wolff-cluster Monte-Carlo
method. Different from the case of ¢ = 3, P(f/m) in the
g = 8 nematic phase has 8 peaks at T' = 0.35, A = 0.
In the Fb phase, as shown Fig.17 (c), some spin direc-
tions (peaks) dominate the configuration at 7' = 0.35,
A = 0.5. In the F phase, all of the directions for the
spins are restricted in a half plane 0 < § < 7.

In order to have efficient machine learning algorithms
with large data sets, the representation of the data (e.g.
configurations from Monte Carlo simulations) can affect
both efficiency and accuracy. In this paper, one new idea
is to use distribution of spin orientations as the input to
the neural network, instead of the complete spin config-
urations. In the usual machine learning, the size of the
latter (L x L spins) can be so large that the training
time can take too long. However, transforming the data
into distributions can reduce the cost of training, as the
distribution of the data is a much smaller set.

Furthermore, the neural network trained by histograms
of spin orientations from a system of size L x L can be
used to test the distributions from other system sizes
without further training. In Figs. 17 (e)-(f), the phase
diagrams, consistent with the previous one, are obtained
by inputting the test data from systems with sizes 150 x
150 and 200 x 200, respectively. The network used for
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the test is from that training using data from the 100 x
100 system size. We note that the size of our histogram
images was chosen and fixed more or less arbitrarily at,
e.g., 32 x 32, and that other (larger) sizes can be used
to increase accuracy. Using previously trained network
avoids training the network repeatedly for other system
sizes.

V. CONCLUSION

In summary, we have used machine learning methods
to study the percolation, the XY model and the GXY
model in the two dimensional lattices. For the percola-
tion phase transition, the unsupervised t-SNE can map
the high dimensional data-sets of configurations into an
two-dimensional image with classifiable data. Using the
FCN even without explicitly giving the two-dimensional
spatial structure, still allows to recognize the percolation
phase transition. By feeding the information about the
existence or not of the spanning cluster, the transition
can be predicted without any training information on
whether the configurations are generated with p > p. or
p < pe. The percolation exponent v was obtained cor-
rectly using results from the output neurons. We have
also demonstrated that the CNN method works well for
percolation, but there is no substantial advantage using
CNN. The advantage of the CNN against the FCN arises
in the study of the XY model and the generalized XY
models.

The pure XY model on the square and honeycomb lat-
tice in our study was learned by inputting the spin con-
figurations {cosf;, sinb; },{0; ;} and even with small sizes
such as L = 4,---,16, the critical point could be ob-
tained by performing the finite-size scaling. For the gen-
eralized XY model with ¢ = 2, 3 and 8, the global phase
diagrams were obtained by a semi-supervised method,
i.e., with a network trained by learning just some limited
set of the data. Specifically, for ¢ = 8, the new phase F»
in the range of 0 < A < 1 is also be confirmed through
the perspective of machine learning.

The use of spin configurations as the naive input works
for training the network to recognize phases in the XY
model. One key difference between the phases is the
probability distribution of the spin orientations. We have
devised a feature engineering using the histograms of the
spin orientations instead, and this has resulted in suc-
cessful learning of various phases in the generalized XY
model beyond the XY model. Moreover, the trained net-
work with system size L x L can also be used for testing
data from other system sizes (L’ x L', where L' # L),
saving additional training effort. The use of machine
learning in phases of matter in general may still need the
ingenuity of appropriate features for the neural network
to learn, but can become a useful tool.



Appendix A: t-SNE method

Here we summarize for convenience the t-Distributed
Stochastic Neighbor Embedding (t-SNE) method [47],
which is an improvement from the Stochastic Neibh-
gor Embedding (SNE) method [58]. The main idea
of these methods is to, from a set of high-dimensional
data, represented by high-dimensional vectors {x;}, ob-
tain a corresponding set of low-dimensional (e.g. 2- or
3-dimensional) data, represented by a set of vectors {y;}
such that the latter maintains key features of the former.
In the t-SNE method, the pairwise similarity ¢;;’s for a
pair of low-dimensional vectors y; and y; is defined as

SN () P
T e+ lye — w7
whereas that for the high-dimensional vectors is defined

as pij = (pjl; + pi|;)/(2n), where n is the total number
of vectors and
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The lower dimensional vectors y’s are obtained by us-
ing a gradient descent approach by minimizing the cost

function,
C=323 pijlog "
g
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(A3)

Qij’
where the gradient by varying y;’s is given by
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In the above, the standard deviation ¢;’s are obtained by

fixing the so-called perplexity (supplied by the user),

Perp(P;) = 27 24 Pili 1082 Pjii (A5)

which is typically chosen between 5 and 50, according to
the performance. Here we set it to be 20.

The initial low-dimensional vectors y;’s are generated
randomly. Iterating the gradient descent procedure will
yield an improved approximation consecutively, until the
gradient is very small.

Appendix B: activation functions of sigmoid and
softmax

There are many activation functions to be used in the
neural network, here we use the sigmoid function for the
FCN. Taking the site percolation as an example for test,
we output the results with 25000 samples per occupa-
tion probability. In Fig. 18 (a), the training accuracy of
the using sigmoid function reaches an equilibrated stage
faster than that by the softmax function. It is also found
that the results of using softmax and sigmoid function
are almost the same as shown in Fig. 18 (b). Therefore,
enough samples can avoid systematic error induced by
different activation functions.
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FIG. 18: (a)The training accuracy by using the sigmoid and
softmax activation, respectively. (b) For the site percolation
on the square lattices, we find the average output layers are
the same using enough samples (25000).

Appendix C: Choosing training data

(a) Bond percolation on the triangular lattices by CNN

05| e <5
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0 |
8.3%) 0.347 0.36 0.37
037 i
. T T T
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FIG. 19: The result of bond percolation on the triangular lat-
tice via training the CNN with configurations generated sym-
metrically w.r.t. p.. This is to be compared with Fig. 8(b),
and the results here show some improvement.

There are several factors that could affect the trained
network. In this appendix, we compare two choices of the
training data and the resultant learned transition points,
i.e. intersections of y; and yo. The first approach for the
training data is to use configurations corresponding to
probabilities p’s uniformly, as we have used in most of the
plots in the main text, such as the percolation in Fig. 8.
The second choice is to use configurations generated at
p’s symmetric with respect to p. (but not including those
at p.), which is demonstrated at Fig. 19.

We remark that the training data used in Fig. 8 were
obtained at p’s that are uniform. By judiciously making
the choice such that these p’s are symmetric with respect
to the transition point (excluding the transition point),
better learning of the transition can be made.

We also test this for the XY model on the honeycomb.
In Fig. 20 (a), y1 and ys for the two neurons in the output
layer are plotted and the result T, = 0.709(2) from finite-



size scaling in Fig. 20 (b) appears more accurate than
T. = 0.729(8) in Fig. 11 (b).

Y, Y2

UL

FIG. 20: (a) Averaged values of the two neurons in the out-
put layer, y1 and y2, for the XY model on the honeycomb
lattice by choosing the training data {cos6;, sin0;} below T,
and above T, symmetrically with respect to 1. but not in-
cluding it. (b) The finite-size scaling of 7. and the value in
the thermodynamic limit is estimated to be 0.709(2).
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Notes added. After we finished the manuscript, we
learned a very interesting paper on “Parameter diagnos-
tics of phases and phase transition learning by neural
networks” by Suchsland and Wessel [60]. Even though
it is beyond the scope of the current manuscript, but as
a future direction, it will be interesting to employ the
methods presented there in percolation and the general-
ized XY models. (They have already analyzed the XY
model.)
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