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We investigate size effects in phononic energy transport in a system of two nanoparticles interconnected by a

molecule and attached to thermal contacts also by molecules. In the considered closed system, the nanoparticles

and contacts are described by ensembles of finite numbers of harmonic oscillators within the Drude-Ullersma

model. Macroscopic character of the contacts is simulated by a large value of the ratio ∆/∆B = n (n > 100)
of mode spacings ∆ and ∆B corresponding to the nanoparticles and contacts, respectively. Quasistatic energy

transport on the time scale ∆−1 is investigated. Equations describing the dynamics of the averaged eigenmode

energies that belong to the nanoparticles and contacts are derived and solved. The resulting expressions for

the energy current exiting (entering) the contacts as well as the energy current between the nanoparticles are

obtained and investigated. The latter current accounts for energy accumulation by (depletion from) the nanopar-

ticles. The finite size effects result in reversibility features and peculiarities at time moments t = 2πℓ∆−1 for

non-negative integers ℓ. They are qualitatively the same as in a previously studied system of two equal nanopar-

ticles mediated by a molecule, despite the presence of the macroscopic contacts. The thermal conductance of the

whole nanojunction is derived and explored. The energy currents and thermal conductance of the nanojunction

in a case when its parameters are known from the experiment are computed using the developed model.

PACS numbers: 05.70.Ln, 05.10.Gg, 65.80.-g

I. INTRODUCTION

Understanding mechanisms how energy (heat) transfers

through microscopic systems, such as molecules, nanoparti-

cles, or nanotubes, is one of the most important research direc-

tions in modern physics and technology. However, because of

the necessity to account for quantum properties and nonequi-

librium character of the problem [1–3], this research still en-

counters with many problems. In addition, due to miniatur-

ization of electronic devices and increasing density of binary

switches in computer systems, a fundamentally new approach

to manipulate heat flow becomes increasingly important [4–

6]. Indeed, the ultimate physical limit of integration in in-

tegrated circuitry is power dissipation [4, 5]. Research sug-

gests [7–13] that molecular and nanoscale systems may be

also good candidates for many technological advances, such

as thermoelectrics, molecular diodes, switches, rectifiers, and

quantum heat transfer in anharmonic junctions.

An important approach to deal with energy transport

through microscopic system is based on the quantum

Langevin equation [14, 15]. It was used, in particular, for

studying the thermalization of a quantum particle coupled har-

monically to a thermal reservoir [16, 17] and to explore the

steady-state heat current and temperature profiles in chains of

harmonic oscillators placed between two thermal baths [18–

21]. Closely related to the Langevin dynamics is a “quan-

tum thermal bath method” [22, 23] that was successfully used

for sampling quantum fluctuations within the framework of

molecular dynamics (MD) and for reproducing the quantum

Wigner distribution of a variety of model potentials. A sim-
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ilar approach was developed in [24] allowing to avoid di-

rect MD simulation. Based on classical MD, the method

employs a coarse-graining procedure adopting the statistical-

operator approach [25] and the classical linear response the-

ory [26]. Another frequently used approach is the nonequilib-

rium Green’s function (NEGF) method [27]. It was applied

to calculate electron transport and steady-state properties of a

finite system interconnecting reservoirs modeled by noninter-

acting Hamiltonians with infinite degrees of freedom [28–30]

and to phonon transport [31–36]. However, for systems rep-

resented by harmonic oscillators, the Langevin approach re-

produces the NEGF results exactly [2, 37]. Recently, a new

method for exactly solving of the Lindblad and Redfield mas-

ter equations, which can be considered as an alternative to the

quantum Langevin equation, was developed [38–40].

In the above-mentioned studies the thermal reservoirs were

considered in the thermodynamic limit, i.e. having infinitely

large number of modes. However, due to scaling down of

electronic devices, size effects related to finite numbers of

atoms in nanosize components of such devices become in-

creasingly important. For this reason, study of size effects in

nano-structured materials became an important part of mod-

ern research. While study of size and quantum effects in elec-

tromagnetic response of nanoparticles have a rather long his-

tory [41–45], exploration of the role of size effects in thermal

properties of small particles took part only recently. In par-

ticular, in [46–48], static thermodynamic properties of nanos-

tructures, such as the local structure of the grain boundary in

ultrananocrystals, phonon density of states in nanostructures,

and order-disorder transition in nanoparticles were investi-

gated. An idea of a possible recurrent behavior in a system

with quantum particle coupled to a harmonic quantum ther-

mal bath was mentioned in [17] (however, without any further

analysis). In [49], the authors found a recurrent phenomenon



in time evolution of the energy current in a finite linear chain

showing the critical role of the on-site pinning potential in

establishing quasi-steady-state condition. Finally, finite-size

effects on energy current in a system of two nanoparticles in-

terconnected by a molecule were explored in [50, 51].

In this work, we study phononic quasistatic energy trans-

port on the time scale t ∼ ∆−1 ≪ ∆−1
B between thermal

reservoirs (contacts) connected by molecules to the system

of two equal nanoparticles interconnected also by a molecule

(see Fig. 1). Here ∆ and ∆B are the mode spacing constants

for the nanoparticles and contacts, respectively. Our major

goal is to study finite size effects, related to small but non-zero

∆ (or finite number of atoms in the nanoparticles), on the en-

ergy current between the nanoparticles and on the energy cur-

rent that exits/enters the contacts. Unlike the nanoparticles,

the contacts are considered as macroscopic bodies and their

macroscopic nature is simulated by large ratio ∆/∆B. Our

previous work [50] revealed finite size effects, such as pecu-

liarities at time moments t = 2πℓ/∆ with integers ℓ ≥ 0 and

quasiperiodicity features, in a system of two equal nanopar-

ticles connected by a molecule. In this regards, this work is

a more realistic generalization of [50], because in any device

any nanostructered feature is connected to the device’s macro-

scopic part. Another goal is to derive the thermal conductance

of the nanojunction and compute it, together with the energy

currents, for a case when the nanojunction’s parameters are

known from an experiment.

The paper is organized as follows. The model is introduced

in Sec. II, where the eigenstates of the whole system are found

and solutions for the displacement operators of the molecules

are obtained. In Sec. III, equations governing the dynamics of

the eigenmode average energies together with the expressions

for the energy currents and thermal conductance of the chain

are derived. In Sec. IV, the derived equations are approxi-

mately solved and the energy currents together with the ther-

mal conductance of the nanojunction are computed. Finally,

Sec. V provides a summary to our research and discusses a

possible experimental realization for a system of this kind.

II. MODEL

The total Hamiltonian of the system under consideration,

illustrated in Fig. 1, is a generalization of that in Refs. [21,

50, 52, 53]:

Htot = HBL +HBR +Hn1 +Hn2 +HML +

HMR +HMC + V1M + V2M + VBL + VBR. (1)

Here

HMσ =
p2σ
2mσ

+
kσx

2
σ

2
, σ = C, L, R, (2)

are the Hamiltonians of the central, left, and right molecules,

HBµ =

Nµ
∑

i=1

[

p2µi
2mµi

+
mµiω

2
µix

2
µi

2

]

, µ = L, R, (3)

are the Hamiltonians of the thermal reservoirs having Nµ

quantum oscillators (modes),

Hnν =

Nν
∑

i=1

[

p2νi
2mνi

+
mνiω

2
νix

2
νi

2

]

, ν = 1, 2, (4)

are the Hamiltonians of the nanoparticles having Nν modes,

VBµ = −xµ
Nµ
∑

i=1

Cµixµi + x2µ

Nµ
∑

i=1

C2
µi

2mµiω2
µi

, (5)

where µ = L, R, describe interaction between the left and right

contacts and the corresponding molecules,

VνM = −
Nν
∑

i=1

Ĉνixνi +

Nν
∑

i=1

Ĉ2
νi

2mνiω2
νi

(6)

with Ĉ1i = C1ixC + C′

1ixL, when V1M describes interaction

between the first (left) nanoparticle and the central and left

molecules, and Ĉ2i = C2ixC + C′

2ixR, when V2M describes

interaction between the second (right) nanoparticle and the

central and right molecules. Quadratic terms in Eqs. (5) and

(6) are added in order to make Htot positively defined. In

Eq. (2), xσ and pσ are the displacement and momentum op-

erators and mσ and kσ are the masses and the spring con-

stants of the molecules. In Eqs. (3) and (5), xµi and pµi
are the displacement and momentum operators, whereas mµi

and ωµi are the masses and frequencies of the contacts’ os-

cillators in the absence of interaction with the molecules. In

(4) and (6), xνi, pνi, mνi, and ωνi are the similar quantities

for the nanoparticles. Finally, Cµ,νi and C′

νi are the coupling

coefficients that describe interaction between the contacts or

nanoparticles with the adjacent molecules. In order to make

our description quantitative, we employ the Drude-Ullersma

model [16, 17, 54, 55] that assumes that in the absence of in-

teraction with the molecules, each contact and nanoparticle

consist of uniformly spaced modes and introduces the follow-

ing frequency dependence for the coupling coefficients:

ωǫi = i∆ǫ, Cǫi =

√

2γǫmǫiω2
ǫi∆ǫD2

ǫ

π(ω2
ǫi +D2

ǫ )
. (7)

When ǫ = µ = L or R, i = 1, 2, ...Nµ and Dµ, ∆µ, and γµ
are the Debye cutoff frequencies for the left or right contacts,

the mode spacing constants for the contacts, and the coupling

constant between a given contact and the adjacent molecule,

respectively. When ǫ = ν = 1 or 2, i = 1, 2, ...Nν and Dν ,

∆ν are the similar quantities for the nanoparticles, whereas

γν is the coupling constant between a given nanoparticle and

the central molecule. The coupling coefficients C′

1i and C′

2i

describe interaction between the first (second) nanoparticle

and left (right) molecule. They are determined by relation

C′

νi = Cνi(γ → γ′) =
√

γ′ν/γνCνi.

Despite that analytical derivation shown below can be done

for any values of the chain parameters, in order to facilitate nu-

merical study we assume that (i) the left and right molecules

2
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FIG. 1: (Color online) Diagram representation of the nanojunction

under consideration. Macroscopic character of the contacts is ex-

pressed by dense eigenstate levels.

are identical, having the same masses ML = MR ≡ M and

fundamental frequencies ΩL = ΩR ≡ Ω; (ii) the nanoparti-

cles are made of the same material:

D1 = D2 ≡ D, γ1/m = γ2/m ≡ γ/m ≡ γ̂, (8)

where mC ≡ m and ωC ≡ ω are the mass and fundamental

frequency of the central molecule, respectively; (iii) the con-

tacts are made of the same material:

DL = DR ≡ DB, γL/M = γR/M ≡ γB/M ≡ γ̂B. (9)

In addition, we assume that the nanoparticles are equal:

∆1 = ∆2 ≡ ∆, N1 = N2 ≡ N = ωm/∆, (10)

where ωm is the maximum frequency in the nanoparticles’

spectrum. In order to simulate macroscopic nature of the con-

tacts, we assume that

∆L = ∆R ≡ ∆B ≪ ∆; NL = NR ≡ NB = ωBm/∆B, (11)

where NB ≫ N and ωBm is the maximum frequency in the

contacts’ spectrum. As one can suppose, there is no need to

distinguish between the mode numbers in the contacts, due

to NL, NR → ∞, and we introduce only one mode number

NB for both contacts. Also, due to a dense character of the

undisturbed contacts’ spectrum compared to the undisturbed

nanoparticles’ spectrum, we assume that each frequency in the

nanoparticle spectrum “hits” some frequency in the contact

spectrum: ∆/∆B = n, where n ≫ 1 is an integer. With

this simplifications, we can drop indexes µ and ν in Cµi, Cνi,

C′

νi, and rν denoting them as CBi, Ci, Cri, and r ≡
√

γ′/γ,

respectively.

Our major goal is to consider temporal variations of all vari-

ables on the time scale ∆−1 which is much longer than the

microscopic time

τ = max[γ̂−1, (γ̂′)−1, γ̂−1
B , ω−1,Ω−1, D−1, D−1

B ], (12)

determining transient processes. So, we have

τ ≪ ∆−1 . t≪ ∆−1
B . (13)

In the first step, we find eigenstates (eigenmodes) of our

chain (see Appendix A). As a result, our roots zk (eigenfre-

quencies of the chain) can be presented as the unification

{zk}Ntot

k=1 = {zBk}NB

k=1

⋃

{znk}Nk=1 (14)

of two subsets: first one is the roots associated with the con-

tacts and second one is the roots associated with the nanopar-

ticles. In both cases, each root can be presented as

zk = k∆B − φk∆B, k = 1, 2, ..., Ntot = NB +N, (15)

where |φk| . 1. Thus, the first and second subsets of the

roots are slightly but inhomogeneously shifted from the sets

of the uniformly spaced modes that belong to the contacts and

nanoparticles, respectively, before interconnecting them by

the molecules. It is worth mentioning that non of the nanopar-

ticles’ roots coincides with any contacts’ root despite of our

assumption written after Eq. (11). This makes it possible to

clearly distinguish between the dynamics of the eigenmode

average energies of the nanoparticles and contacts and derive

an unambiguous expressions for the energy currents that en-

ter/exit the contacts and between the nanoparticles.

In the second important step, we find temporal solutions for

all operators that encounter (1) (see Appendix A) and are used

to describe the dynamics of our system on the time scale ∆−1.

III. QUASISTATIC ENERGY BALANCE

Taking into account that our time dependent variables sat-

isfy the Heisenberg equations, one can find the rate of change

of the averaged energy Eµ of the µth contact:

NB
∑

i=1

〈

d

dt

(

p2µi
2mBi

+
mBiω

2
Bix

2
µi

2

)〉

=

NB
∑

i=1

CBi

2mBi

〈pµixµ + xµpµi〉 ≡ PBµ, µ = L, R, (16)

where the angular brackets denote the ensemble averaging

(see below) and PBµ is the work per unit of time performed

by the left (right) molecule over the left (right) contact (or

the corresponding power dissipated in the left or right con-

tacts [18]). In a similar way, one finds that the rate of change

of the energy Eν of the νth nanoparticle is

N
∑

i=1

〈

d

dt

(

p2νi
2mi

+
miω

2
i x

2
νi

2

)〉

≡ PCν + Pµ(ν)ν , (17)

where ν = 1, 2. Here

PCν =

N
∑

i=1

Ci

2mi

〈pνixC + xCpνi〉 (18)

is the work per unit of time performed by the central molecule

over the νth nanoparticle and

Pµ(ν)ν =
N
∑

i=1

C′

i

2mi

〈pνixµ(ν) + xµ(ν)pνi〉 (19)

is the work per unit of time performed by the left (right)

molecule over the 1st (2nd) nanoparticle.
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As was shown [17], after coupling of a quantum particle to

a thermal reservoir, the whole system comes to equilibrium af-

ter a microscopic time τ . Similar to [17] and [50], in our case

of two contacts and nanoparticles having different initial tem-

peratures, small energy currents, provided by “narrow” chan-

nels of the molecular bridges, will be established during the

time τ (12) after connecting of the chain. One can assume

that in each moment of time each nanoparticle and contact

have quasi-equilibrium density matrix with slowly changing

parameters. More accurately, after the diagonalization and in-

troducing the eigenmode creation and annihilation operators

a+ǫk and aǫk, where ǫ = µ = L, R or ǫ = ν = 1, 2, one can

present the density matrix of the whole system in the form

ρǫ ∼ exp[−
∑

k βǫkzk(a
+
ǫkaǫk + 1/2)] similar to [50] with

βǫk(t) = 1/kBTǫk(t). Here, instead of trying to determine the

eigenmode temperatures Tǫk(t), we will construct and solve

equations to determine the (slow) dynamics of eigenmode av-

erage energies Eǫk = Eǫk(t) and, eventually, energy currents

on the time scale (13) (see Appendix B).

In general, averaged energies Eν,µ of the νth nanoparticle

and the µth contact will consist of contributions from all the

eigenmodes. On the other hand, similar to [51], it is natural to

expect that shortly after interconnecting of the chain, Eν will

be presented mostly by contributionsEn
νk from the {znk}|Nk=1

subset of the eigenmodes. It will contain also small contri-

butions EB
νk from the {zBk}|NB

k=1 subset. In the same way,

Eµ will be presented mostly by contributions EB
µk from the

{zBk}|NB

k=1 subset having also small contributions En
µk from

the {znk}|Nk=1 subset. Because neither a nanoparticle nor a

contact temperatures cannot change noticeably over τ , one

can assume that at t = 0

En
νk(0) =

~znk
2

coth
~znk
2kBTν

and EB
νk(0) = 0, (20)

EB
µk(0) =

~zBk

2
coth

~zBk

2kBTµ
and En

µk(0) = 0, (21)

and Tν,µ are initial (equilibrium) temperatures of the nanopar-

ticles (ν = 1, 2) and contacts (µ = L, R), respectively. As fol-

lows from (20), (21), and (B10) - (B13) the only equations

that we need to solve are (see Appendix B)

d

dt
[EB

Lk(t)− EB
Rk(t)] = FBk[E

B
Lk(t)− EB

Rk(t)] (22)

if zk ∈ {zBk}NB

k=1, and

d

dt
[En

1k(t)− En
2k(t)] = (F ′

nk + F ′′

nk)[E
n
1k(t)− En

2k(t)] (23)

if zk ∈ {znk}Nk=1. The other energy differences vanish:

En
Lk(t)− En

Rk(t) = EB
1k(t)− EB

2k(t) ≡ 0 (24)

due to second relations in (20) and (21). These observations

lead us to the following expression for energy current flowing

between the nanoparticles (see Appendix B):

J (12)(t) = J
(12)
B (t) + J (12)

n (t), (25)

where

J
(12)
B (t) = −1

2

NB
∑

k=1

FBk[E
B
Lk(t)−EB

Rk(t)] = J
(LR)
B (t) (26)

is also the energy current exiting from the left contact or en-

tering the right contact, and

J (12)
n (t) = −1

2

N
∑

k=1

(F ′

nk + F ′′

nk)[E
n
1k(t)− En

2k(t)] (27)

is its modification due to energy absorbed by (or depleted

from) the left nanoparticle. Assuming continuity of the eigen-

mode average energies EB,n
µ,νk as functions of time (otherwise

d
dt
EB,n

µ,νk(t) will diverge at t = 2πℓ/∆, when ℓ = 0, 1, 2, ...)
and taking into account initial conditions (20) - (21), Eqs. (22)

- (23) can be solved and all currents can be computed. Finally,

for ∆T = TL − TR → 0, one finds the thermal conductance

K of the chain:

K =
J
(LR)
B

∆T
=

1

2

NB
∑

k=1

FBk

s2

sinh2(s)
, s ≡ ~zk

2kBTav
, (28)

and Tav = (TL+TR)/2; we assumed for clarity that TL > TR.

For just two equal nanoparticles connected by a molecule,

all coefficients F are zeros except F ′

nk, so the energy current

between the nanoparticles in this case is

J
(12)
0 (t) = −1

2

N
∑

k=1

F ′

nk[E
n
1k(t)− En

2k(t)], (29)

where only the nanoparticle eigenmodes {znk}Nk=1 must be

taken into account. They are found by solving equation h = 0,

where h is determined in (A1) with Cr = 0.

IV. RESULTS AND DISCUSSION

In numerical examples considered here, we assume, in ad-

dition to (8) - (11), that all the molecules in the chain are iden-

tical and the nanoparticles are made of the same material as

the contacts, resulting in γ̂B = γ̂′ = γ̂, m = M , and ω = Ω.

As in [50], we choose ωm = ωBm = 1.3D and N = 1300.

As follows from our numerical analysis, coefficients F can

be approximated by a sequence of step-functions with the

steps occur at t = ℓP , ℓ = 0, 1, 2, ... and the value of each

coefficient on an interval ℓP ≤ t ≤ (ℓ + 1)P is equal to its

time average on the interval (see Fig. 2 for FBk coefficient).

Accuracy of this approximation was checked by computing

ratios |Dk1| and |Dk2| to their largest values in the right hand

sides of (B15) and (B16), respectively, for each k and were

found to be about several percent, supporting this approxima-

tion for the F and R coefficients (Appendix B). It is also in

line with our goal to describe the dynamics on the time scale

∆−1 ≫ τ , i.e., disregarding details of transient processes.
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FIG. 2: (Color online) Time dependences of FBk when γ̂/ω = 0.1,

D/ω = 1, ∆/ω = 0.001, and k = 105. (a) accurate result and (b)

its approximation by a sequence of step-functions.

(d)
(c)
(b)
(a)

1
0
4
J
/
~
ω

2

∆t/2π 3210

3

2.4

1.8

1.2

0.6

0

FIG. 3: (Color online) Time dependences of (a) J
(LR)
B (t) and (b)

its approximation J
(LR)
B (0); (c) energy current J

(12)
n (t) and (d) total

energy current (25) between the nanoparticles; TL = 300K.

This allows analytical solutions of (22) - (23) on each interval

ℓP ≤ t ≤ (ℓ + 1)P . Due to the step-function approximation,

some curves in Figs. 3 - 8 possess “jumps” (sharp changes).

In Figs. 3 - 6, ∆/ω = 0.001, ∆B/ω = 7.8 · 10−6, NB =
1.7 · 105, α ≡ (TL − TR)/TL = 0.01, and we assumed that

T1 = TL(1 − α/3) and T2 = TL(1 − 2α/3). It is important,

however, to notice that our approach is valid even for α ∼ 1.

In Figs. 3 and 4, D/ω = 1 and γ̂/ω = 0.1.

Due to extensity of the contacts (NB ≫ N ), one can neglect

temporal variation of their eigenenergies, approximating

EB
Lk(t) ≈ EB

Lk(0) and EB
Rk(t) ≈ EB

Rk(0), (30)

where EB
L,Rk(0) are determined by (21). This approximation

is supported in Figs. 3 - 6, in which curves (b) show approxi-

mate (time independent) J
(LR)
B from (26) using (30).

Figures 5 and 6 predict this kind of time dependences when

all contacts and nanoparticles are made of silicon with D =
DB = 457cm−1 interconnected by SiO2 molecules having

ω = Ω = 460cm−1 [56], which corresponds to ∆−1 ∼ 100ps

and γ̂/ω ≈ 0.16. The latter quantity was estimated from the

FWHM of the corresponding absorption experiment [56].

An important consequence of the presented results is that

(d)
(c)
(b)
(a)

1
0
6
J
/
~
ω

2

∆t/2π 3210

8

6

4

2

FIG. 4: (Color online) Same as in Fig. 3 for TL = 100K.

(d)
(c)
(b)
(a)

1
0
4
J
/
~
ω

2

∆t/2π 3210

3

2

1

0

FIG. 5: (Color online) Same as in Fig. 3 for TL = 300K and γ̂/ω =
0.16.

the total energy currents J (12)(t) between the nanoparticles

essentially repeat the shapes of their partial contributions

J
(12)
n (t) shifting their values by the approximately constant

“background” currents J
(LR)
B (t) that exit (enter) the contacts.

Figures 7 and 8 show energy currents J
(12)
0 (t) between the

same nanoparticles in the absence of the contacts at the same

parameters ωm, N , ω, and γ̂ as in the “contact” case. As one

finds, currents J
(12)
n (t) shown in Figs. 3 - 6 are qualitatively

similar to the corresponding currents in Figs. 7 - 8, demon-

(d)
(c)
(b)
(a)

1
0
5
J
/
~
ω

2

∆t/2π 3210

1.25

1

0.75

0.5

0.25

FIG. 6: (Color online) Same as in Fig. 5 for TL = 100K.

5



(b)
(a)

1
0
4
J

t
o
t
/
~
ω

2

∆t/2π 3210

1

0.5

0

FIG. 7: (Color online) Energy currents J
(12)
0 (t) at TL = 300K. (a)

γ̂/ω = 0.1 and (b) γ̂/ω = 0.16.
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t
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FIG. 8: (Color online) Same curves as in Fig. 7 for TL = 100K.

strating same quasiperiodicity. It is important to remind that

presented in Figs. 3 - 6 temporal dependencies are valid only

for t ≪ ∆−1
B , when one can consider the contacts having es-

sentially infinite sizes.

Using Eq. (28), one can compute the thermal conductance

K for the total nanojunction chain and compare it to the cor-

responding thermal conductanceK0 obtained for a nanojunc-

tion that consists of only two macroscopic contacts intercon-

nected by a molecule [53] (no nanoparticles). In the experi-

mental case [56], when γ̂/ω = 0.16, results are the following:

if T = 300K, K/kBω = 1.1 · 10−2 and K0/kBω = 0.06;

if T = 100K,K/kBω = 1.1·10−3 andK0/kBω = 1.4·10−3;

if T = 50K,K/kBω = 8.4 · 10−5 andK0/kBω = 1.8 · 10−4.

Same calculations with NB = 1.7 · 106 modify the values

of K by less than one percent, showing convergence of our

results. Thus, for ω = 460cm−1, the total range of K is be-

tween 10−13W/K and 10−11W/K, depending on the temper-

ature. These very small values for the thermal conductance

are expected due to the narrow channels for thermal transport

provided by the molecules. As one can expect, any K in the

current case is smaller than the corresponding K0: phonons

traveling across the nanojunction suffer additional reflections

from the nanoparticles.

V. CONCLUSIONS

We investigated energy transport in a chain consisting of

two macroscopic contacts and two equal nanoparticles inter-

connected by molecules, shown in Fig. 1. The nanoparti-

cles and contacts are represented by ensembles of harmonic

oscillators and the interaction in the system is described by

the Drude-Ullersma model. The macroscopic nature of the

contacts in our closed system is simulated by a large ratio

∆/∆B = n with an integer n ≫ 1, where ∆ and ∆B are

the mode spacing constants for the nanoparticles and con-

tacts. As is shown, the eigenmode spectrum of our system

can be presented as a unification of two subsets. One sub-

set is associated with the contacts and the other one with

the nanoparticles. Equations that determine temporal varia-

tion of the eigenmode average energies of the contacts and

nanoparticles are derived and solved. This allows us to com-

pute the energy current J
(12)
B that exits (enters) the contacts

and the current J (12)(t) between the nanoparticles. The lat-

ter current takes into account energy accumulation by (de-

pletion from) the nanoparticles. As our numerical analysis

shows, on the time scale ∆−1 . t ≪ ∆−1
B , J

(12)
B is es-

sentially the same as if the contacts’ temperatures stay un-

changed and equal to their thermal equilibrium values before

interconnecting of the chain. On the other hand, despite of

the presence of the macroscopic contacts, J (12)(t) shows re-

versibility (or quasiperiodicity) features and peculiarities at

time moments 2πℓ/∆ with ℓ = 0, 1, 2, ..., representing the

finite size effects similar to those in [50]. This is illustrated in

Figs 3 - 6 including the case when the model parameters are

taken from the experiment [56]. Substitution of the quasiperi-

odicity for the true periodicity with period 2π/∆ is due to

interaction of the nanoparticles with the molecules that inho-

mogeneously shifts uniformly spaced modes (see (15)). As

one can expect, all energy currents increase with the increase

of the coupling constants and temperature. Expression for

the thermal conductance of the whole nanojunction is derived

and evaluated for different temperatures with the experimen-

tal parameters [56]. Small values for the thermal conductance

are due to the molecules providing narrow channels for the

currents and additional phonon reflections from the nanopar-

ticles. This is in a qualitative agreement with the experi-

ment [57], where it was proved that the thermal conductance

is not sensitive to the shape of the nanojunction but only to its

nanojunction/substrate contacts with the smallest crossection

(determined by the molecules in our case), decreasing with the

crossection area. A possible experimental study of this kind

of systems is not necessary to conduct in the nanojunction de-

scribed here. One can expect that a similar type of size effects

can be found also in a nanojunction with only one nanopar-

ticle connected to the contacts by molecules, which is more

amenable to experimental study. In this regards, our approach

can be easily extended to explore the energy currents and ther-

mal conductance in this kind of nanojunctions, as well as for

chains of more than two nanoparticles.
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Appendix A

The interaction matrix of Htot can be arranged in such a

way that, except its diagonal terms, the only nonzero matrix

elements occupies the first three lines and rows. The resulting

dispersion equation is factorized: h(z) ·H(z) = 0 where

h(z) = ω2 − z2 + 2CS(z)z2 − 2CrCB[S(z)z
2]

2

H(z)
(A1)

and H(z) = Ω2 − z2 + [CrS(z) + CBSB(z)]z
2. Here

C =
2γ̂D2

π
, Cr =

2γ̂′D2

π
, CB =

2γ̂BD
2
B

π
, γ̂′ =

γ′

M
, (A2)

S(z) =

N
∑

i=1

∆

(ω2
i +D2)(z2 − ω2

i )
, (A3)

and SB(z) can be found from S(z) by substitution

N, ∆, ωi, D → NB, ∆B, ωBi, DB. (A4)

Thus, we have two separate systems of eigenstates. The first

one comes from solving equation h(z) = 0 and the other one

comes from solving H(z) = 0. In the h(z) = 0 case, each

eigenfrequency zk is associated with the eigenvector

ek = e0k[1, −dk, −dk, Ei(zk)|Ni=1, Ei(zk)|Ni=1,

EBi(zk)|NB

i=1, EBi(zk)|NB

i=1], (A5)

where Ei(zk) = (rdk − 1)Ai/(z
2
k − ω2

i ), EBi(zk) =
dkABi/(z

2
k − ω2

Bi), and dk =
√
CCBS(zk)z

2
k/H(zk). In the

H(z) = 0 case, each zk is associated with the eigenvector

ekH = e1k[0, 1, −1, −E′

i(zk)|Ni=1, E
′

i(zk)|Ni=1,

−E′

Bi(zk)|NB

i=1, E
′

Bi(zk)|NB

i=1], (A6)

where E′

i(zk) = rAi/(z
2
k − ω2

i ) and E′

Bi(zk) = ABi/(z
2
k −

ω2
Bi). In (A5) and (A6),

Ai = ωi

√

C∆

(ω2
i +D2)

, ABi = ωBi

√

CB∆B

(ω2
Bi +D2

B)
, (A7)

and e0k, e1k are the normalization constants. First three com-

ponents of the eigenvectors eki and ekHi contribute to the eigen-

mode expansion for xC, xL, and xR, respectively (see (B1) in

Appendix B). Next 2N and last 2NB components of (A5) and

(A6) contribute to xνi (ν = 1 or 2) and xµi (µ = L or R), re-

spectively. As our study shows, antisymmetric structure of

the eigenvectors in the H(z) = 0 case can be interpreted in

a way when the central molecule stay motionless (xC = 0),

whereas symmetrically placed atoms in the nanoparticles and

contacts move in opposite directions. In such a case, study

of the whole system breaks into study of two separate identi-

cal problems. Each of them consists of energy transport be-

tween the left (right) contact and nanoparticle mediated by a

molecule (left or right). Here, we concentrate our attention

only on the first case corresponding to the eigenvectors (A5).

Roots of h(z) = 0 can be found numerically. In our study,

N ∼ 103 whereas NB > 105. In order to make the numerics

feasible we, first of all, present (A3) as

S(z) =
1

z2 +D2

[

N
∑

i=1

∆

z2 − ω2
i

+

N
∑

i=1

∆

ω2
i +D2

]

(A8)

and SB(z) by the same expression (A8) with substitution

(A4). Second sum in (A8) can be calculated accurately, (it

does not depend on z). Using an accurate relation [58]

N
∑

i=1

∆

z2 − ω2
i

=
1

2z
{ψ(−zN/zm)− ψ(zN/zm) +

N(1 + z/zm) + 1]− ψ[N(1− z/zm) + 1]} − zm
z2N

, (A9)

the following properties of the first derivative ψ(z) = Γ′(z)
of the Γ-function [58, 59]

ψ(z+1) = ψ(z)+
1

z
, ψ(1−z) = ψ(z)+πctg(πz), (A10)

and large |z| expansion of ψ(z) [59], one finds

z2S(z) ≈ πzctg(πNαz) + 2(P1 + P2)

2(D2 + z2)
, αz =

z

zm
, (A11)

P1(z) = z2
N
∑

i=1

∆

ω2
i +D2

+
z

2
ln

(

1 + αz

1− αz

)

−

− ∆

2az
+

zαz

6(Naz)
2

[

1− 1 + α2
z

5(Naz)
2

]

(A12)

with az = 1− α2
z , and

P2(z) =
z

480

[

20

21

(

1

N6
m

− 1

N6
p

)

+
1

N8
m

− 1

N8
p

]

, (A13)

where Np,m = N(1± αz), for the nanoparticles and the sim-

ilar expression for z2SB(z) with substitution (A4). Formula

(A11) works extremely well for all roots zk except few last

roots closest to zm (or to zBm). This approximation allows one

to decrease numerical complexity of the finding roots problem

by four orders in magnitude. Using the above approximation,
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one can express z2SB(z) from equation h(z) = 0 and, look-

ing for the roots in the form zk = ∆B(k − φk), present the

resulting equation for finding φk as

φk =
1

π
atan

{

πzk
2[FB(zk) + PB(zk)]

}

, (A14)

where

FB(z) =
FΩ(z)FB1(z) + CrFC(z)z

2S(z)

FB1(z)FB2(z)
, (A15)

FB1(z) = FC(z)+2Cz2S(z), and FB2(z) = CB/(D
2
B+ z2)

with FC(z) = ω2 − z2, FΩ(z) = Ω2 − z2, and PB can be ob-

tained fromP by substitution (A4) and zm → zBm. Eq. (A14)

can be solved iteratively on each interval (i − 1)∆B < z <
i∆B, where i = 1, 2, ..., NB, to find all NB roots zk ≡ zBk

that can be associated with the contacts. Convergence is fast

and stable. The roots of h(z) = 0 can be also found by the

bisection method on each interval (i − 1)∆B < z < i∆B,

i = 1, 2, ..., NB. In this way, one can reproduce exactly the

same NB roots {zBk}|NB

k=1 as above and find additional N
roots {zk}|Nk=1, each of them is different from any contact

root. One can also try to find these N roots by expressing

z2S(z) from h(z) = 0, looking for the roots in the form

zk = ∆(k − φk), and trying to find φk iteratively on each

interval (i − 1)∆ < z < i∆, where i = 1, 2, ..., N . In

most cases, indeed, a solution found iteratively in this way

coincides with the corresponding root found by the bisection

method. In some cases, however, there is no conversion or an

iterative solution converges to a wrong value. So, we adopted

a different way to find the nanoparticle’s roots. We find all

roots of h(z) = 0 using the bisection method on each interval

(i − 1)∆B < z < i∆B, where i = 1, 2, ..., NB. For most in-

tervals, there is only one (iterative) root. If there are two roots,

we distinguish the one coinciding with the iterative root previ-

ously found, so the other one is identified as a root associated

with the nanoparticles.

Formal solutions of the Heisenberg equations for the con-

tacts’ and nanoparticles’ operators are

xµi(t) = xµi(0) cos(ωBit) +
pµi(0)

mBiωBi

sin(ωBit) +

CBi

mBiωBi

∫ t

0

sin[ωBi(t− s)]xµ(s)ds (A16)

and pµi(t) = mBiẋµi(t), where µ = L or R;

xνi(t) = xνi(0) cos(ωit) +
pνi(0)

miωi

sin(ωit) +

Ci

miωi

∫ t

0

sin[ωi(t− s)]xC(s)ds+

Cri

miωi

∫ t

0

sin[ωi(t− s)]xµ(ν)(s)ds (A17)

and pνi(t) = miẋνi(t). Here and below ν = 1, 2, µ(1) = L,

and µ(2) = R. Excluding xµi and xνi from the corresponding

equations for xL,R,C, one obtains three equations that contain

only the displacement operators of the molecules. Solving

them using the Laplace transform and its inverse in a standard

way (see, for example, [17]), one arrives to the following so-

lution for the displacement operator of the central molecule:

xC(t) = xC0(t) +
1

m

∫ t

0

dsg0(t− s)[η1(s) + η2(s)]−

1

M

∫ t

0

dsg1(t− s){r[η1(s) + η2(s)] + ηL(s) + ηR(s)}.

Here a function g0(t) (solution kernel) is determined using the

Heaviside expansion theorem:

g0(t) =
1

2πi

∫ c+i∞

c−i∞

ezt

ĥ(z)
=
∑

k

eĥ(z̃k)

d
dz
ĥ(z)|z=z̃k

, (A18)

where z̃k is a root of ĥ(z) = 0 and ĥ(iz) = h(z) from (A1).

Taking into account that all the roots of the even function ĥ(z)
are on the imaginary axis of the z plane, z̃k = izk, one finds

g0(t) = −2

Ntot
∑

k=1

sin(zkt)

h′(zk)
, where h′(z) ≡ d

dz
h(z). (A19)

Analogously, one can find

g1(t) = −2

Ntot
∑

k=1

f(zk)sin(zkt)

h′(zk)
(A20)

with f(z) =
√

MCCr/mS(z)z
2/H(z). In a similar way,

xµ(t) = xµ0(t) +
1

M

∫ t

0

dsg3(t− s)[η1(s) + η2(s)]

+
1

M

∫ t

0

dsg2(t− s)[ηL(s) + ηR(s)] (A21)

for the left and right molecules, where

g2(t) = −2CCBR
−2

Ntot
∑

k=1

[f(zk)]
2sin(zkt)

h′(zk)
, (A22)

R2 =M/m, and g3(t) = rg2(t)− g1(t). Next,

ην(t) =
N
∑

i=1

Ci

[

xνi(0) cos(ωit) +
pνi(0)

miωi

sin(ωit)

]

and

ηµ(t) =

NB
∑

i=1

CBi

[

xµi(0) cos(ωBit) +
pµi(0)

mBiωBi

sin(ωBit)

]

are “random forces” or “noises” coming from νth nanoparticle

and µth contact. Finally, xC0(t) and xµ0(t) depend linearly

on the solution kernels and their time derivatives and can be

dropped from xC(t) and xµ(t) solutions. Indeed, as our nu-

merics shows, solution kernels gq(t), where q = 0, 1, 2,...,

differ noticeably from zero only on time intervals of the order

of τ ≪ ∆−1 in a vicinity of t = ℓP , where P = 2π/∆ and

ℓ = 0, 1, 2, ... . This is not unusual, because solution kernels

usually possess short (on the microscopic scale) memories.
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Appendix B

The dynamics of xǫi and pǫi is determined by [17, 50, 51]

xǫi(t) =
∑

k

√

~

2mǫizk
ekǫi(a

+
ǫke

izkt + aǫke
−izkt) (B1)

and pǫi(t) = mǫiẋǫi(t), where ǫi ≡ ǫ = C, L, or R correspond

to the central, left, or right molecule, respectively; ǫ = ν =

1 or 2 with i = 1, 2, ..., N correspond to the left or right

nanoparticles; ǫ = µ = L or R with i = 1, 2, ..., NB corre-

spond to the left or right contacts. Corresponding components

of ekǫi are determined by (A5)

After the diagonalization, the total system consists of in-

dependent modes, each of them carrying eigenenergy Eǫk ≡
~zknǫk/2, where nǫk = 〈a+ǫkaǫk + aǫka

+
ǫk〉 is the occupation

number of the corresponding state. Our goal is to derive equa-

tions to find all the (unknown)Eǫk. This can be done by sub-

stituting (B1) and pǫi(t) = mǫiẋǫi(t) into Eqs. (16) - (19).

In this derivation, one can drop contributions proportional

to a+ǫka
+
ǫk1

exp[i(zk + zk1
)t] and aǫkaǫk1

exp[−i(zk + zk1
)t]

yielding zero at time averaging due to their fast time depen-

dences. In fact, these terms must be also dropped for another

reason: due to absence of any nonlinear interaction in our sys-

tem, the number of the eigenmodes (phonons) cannot be in-

creased or decreased and is equal to NB+N (see (14)). Also,

due to the eigenmode independence, only k1 = k terms sur-

vive in the resulting double sum over k, k1, and

NB
∑

i=1

〈

p2µi
2mBi

+
mBiω

2
Bix

2
µi

2

〉

=
∑

k

fBkEµk (B2)

results. Expression for fBk follows from (A5):

fBk =

NB
∑

i=1

(

ekBi

)2
= CBd

2
ke

2
0kZBk with (B3)

ZBk =

NB
∑

i=1

∆Bω
2
Bi

(ω2
Bi +D2

B)(z
2
k − ω2

Bi)
2
≈

π2

4∆B(z2k +D2
B) sin

2(πzk/∆B)
(B4)

(see [58]), where sin2(πzk/∆B) = sin2(πφk). As our numer-

ics shows, the relative error of this approximation is . 10−5

for NB & 105. With the same accuracy,

NB
∑

i=1

(

ωBie
k
Bi

)2 ≈ z2k

NB
∑

i=1

(

ekBi

)2 ≈ z2kfBk. (B5)

Using a similar approach, one finds

N
∑

i=1

〈

p2νi
2mi

+
miω

2
i x

2
νi

2

〉

=
∑

k

fnkEνk with (B6)

fnk =

N
∑

i=1

(

ekni
)2

= C(rdk − 1)2e20kZnk. (B7)

Here Znk is determined by (B4) with substitution reverse to

(A4), i.e., NB, ∆B, ωBi, DB → N, ∆, ωi, D. Now N ∼
103 so the relative error of the produced expression for Znk

and the similar to (B5) relation is ∼ 10−3. This is still good

enough for our semi-phenomenological model.

Derivation of the right hand site in (16), as well as ensem-

ble averages PCν and Pµ(ν)ν in (17), follows similar ideas.

Employing (B1), one finds for the nanoparticles and contacts:

〈xǫi(0)xǫj(0) + xǫj(0)xǫi(0)〉 =
~

√
mǫimǫj

∑

k

nǫke
k
ǫie

k
ǫj

zk
=

2
√
mǫimǫj

∑

k

Eǫke
k
ǫie

k
ǫj

z2k
, (B8)

〈pǫi(0)pǫj(0) + pǫj(0)pǫi(0)〉 = ~
√
mǫimǫj ×

∑

k

nǫkzke
k
ǫie

k
ǫj = 2

√
mǫimǫj

∑

k

Eǫke
k
ǫie

k
ǫj , (B9)

and 〈xǫi(0)pǫi(0) + pǫi(0)xǫi(0)〉 = 0. Eventually,

the balance equations (16) and (17) can be presented as
∑

k fBkĖµk =
∑

k jµk and
∑

k fnkĖνk =
∑

k jνk , respec-

tively, where k = 1, 2, ..., NB + N . In order to satisfy them,

it is enough to solve Ėµk = jµkf
−1
Bk and Ėνk = jνkf

−1
nk for

each k, resulting in the following independent sets of 4 equa-

tions for each k:

ĖB,n
Lk ≡ dEB,n

Lk

dt
= PB,n

BLk = (FBk +RBk)E
B,n
Lk

+ Rnk(E
B,n
1k + EB,n

2k ) +RBkE
B,n
Rk (B10)

and ĖB,n
Rk = PB,n

BRk with PB,n
BRk produced from PB,n

BLk by ex-

change EB,n
Lk ↔ EB,n

Rk . For nanoparticles,

ĖB,n
1k = PB,n

C1k + PB,n
L1k and ĖB,n

2k = PB,n
C2k + PB,n

R2k, (B11)

where

PB,n
C1k = (F ′

nk +R′

nk)E
B,n
1k

+ R′

nkE
B,n
2k +R′

Bk(E
B,n
Lk + EB,n

Rk ), (B12)

PB,n
L1k = (F ′′

nk +R′′

nk)E
B,n
1k

+ R′′

nkE
B,n
2k +R′′

Bk(E
B,n
Lk + EB,n

Rk ), (B13)

and PB,n
C2k and PB,n

R2k are produced from PB,n
C1k and PB,n

L1k by

exchangeEB,n
1k ↔ EB,n

2k . Here the superscripts B and n mean

that zk ∈ {zBk}NB

k=1 and zk ∈ {znk}Nk=1, respectively. Finally,

considering ĖB,n
Lk − ĖB,n

Bk in (B10) and ĖB,n
1k − ĖB,n

2k in (B11),

one arrives at (22) - (24).

Coefficients F and R in (B10) - (B13) are not all indepen-

dent. Relations between them follow from the energy conser-

vation law for our closed system applied for each eigenstate:

PB,n
BLk + PB,n

BRk + PB,n
C1k + PB,n

L1k + PB,n
C2k + PB,n

R2k = 0. (B14)
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Using here the right hand sides of Eqs. (B10) - (B13) and

taking into account that (B14) must be correct for any initial

eigenstate average energy (for any initial temperatures), one

can derive the following relations:

Dk1 ≡ FBk + 2(RBk +R′

Bk +R′′

Bk) = 0 (B15)

and

Dk2 ≡ F ′

nk + F ′′

nk + 2(Rnk +R′

nk +R′′

nk) = 0. (B16)

Eqs. (B10) - (B13) assume that there is no energy accumula-

tion (depletion) by the molecules on the time scale ∆−1. We

were able to confirm this explicitly by computing the rate of

energy variation of the molecules as it was done in (16) and

(17) with substituting HBµ or Hnν by HMσ .

As one can notice, PB,n
LBk = −PB,n

BLk can be considered as

the kth eigenmode energy current flowing from the left con-

tact towards the left nanoparticle. Thus, kth contribution to

the energy current flowing between the nanoparticles is

J
(12)
k = PB,n

LBk − (PB,n
L1k + PB,n

C1k), (B17)

which takes into account that the current exiting from the

left contact is partially absorbed (or augmented) by the left

nanoparticle by the amount indicated inside the brackets be-

fore it reaches the central molecule. Similarly, kth energy cur-

rent that reaches the central molecule from the right is

J
(21)
k = PB,n

RBk − (PB,n
R2k + PB,n

C2k) = −J (12)
k , (B18)

where PB,n
RBk = −PB,n

BRk. The last relation in (B18) is due to

(B14). Using (B10) - (B17), one arrives at (25) - (27).

Expression for FBk appears after substitution the non-

integral part of pµi(t) = mBiẋµi(t) with xµi(t) from (A16)

and the integral part of xµ from (A21) into (16). The result is

PBµ =
1

2

∫ t

0

dsg2(t− s)[Sµa − Sµb], where (B19)

Sµa =

NB
∑

i=1

CBicos(ωBit)

MmBifBk

〈ηµ(s)pµi(0) + pµi(0)ηµ(s)〉

and

Sµb =

NB
∑

i=1

CBisin(ωBit)

MfBk

〈ηµ(s)xµi(0) + xµi(0)ηµ(s)〉.

Using expression for ηµ (end of Appendix A) and (B8) - (B9)

result in

〈ηµ(s)pµi(0) + pµi(0)ηµ(s)〉 = 2
√
mBi ×

NB
∑

j=1

CBjsin(ωBjs)√
mBjωBj

NB
∑

k=1

ekBie
k
BjEµk(s) and (B20)

〈ηµ(s)xµi(0) + xµi(0)ηµ(s)〉 =
2√
mBi

×

NB
∑

j=1

CBjcos(ωBjs)√
mBj

NB
∑

k=1

ekBie
k
Bjz

−2
k Eµk(s). (B21)

Substituting (B20) into Sµa and (B21) into Sµb, one finds

Sµa = 2CB

NB
∑

k=1

Eµk(s)Z
−1
Bk

NB
∑

i=1

bki ω
2
Bicos(ωBit)×

NB
∑

j=1

bkjωBjsin(ωBjs) and

Sµb = 2CB

NB
∑

k=1

Eµk(s)z
−2
k Z−1

Bk

NB
∑

i=1

bki ω
3
Bisin(ωBit)×

NB
∑

j=1

bkjω
2
Bjcos(ωBjs),

where bki = ∆B/[(ω
2
Bi +D2

B)(z
2
k − ω2

Bi)]. Defining

BBk(t) ≡
NB
∑

i=1

bki sin(ωBit), (B22)

ABk(t) = ḂBk(t), and ȦBk(t) = G(t) − z2kBBk(t) with

G(t) =

NB
∑

k=1

∆BωBisin(ωBit)

ω2
Bi +D2

B

, (B23)

one can write

PBµ = CB

NB
∑

i=1

Z−1
Bk

∫ t

0

dsg2(t− s)Eµk(s)×

[ABk(t)BBk(s)−BBk(t)ABk(s) +G(t)ABk(s)] . (B24)

Taking into account that g2(t) decays fast (see the observation

at the end of Appendix A) whereas EBk(s) varies on a much

longer time scale, EBk(s) can be taken out from the integral

at s = t and (B24) can be rewritten as

PBµ ≈
NB
∑

i=1

Eµk(t)FBk with (B25)

FBk(t) = CBZ
−1
Bk [S

F
AB(t)− SF

BA(t)], where (B26)

SF
AB(t) = ABk(t)

∫ t

0

dsg2(t− s)BBk(s), (B27)

and SF
BA can be produced from SF

AB by interchangingABk ↔
BBk. Here we also neglected G(t) term, because G(t) is fast

10



oscillating and quickly decaying function of time: as our nu-

merics shows, its contribution to FBk is less than 1%.

A possible way to compute FBk , is to present it as

FBk(t) = CBZ
−1
Bk

NB
∑

i,j=1

[fk
i ωBif

k
j I1ij(t)− fk

i f
k
j ωBjI2ij(t)]

using the definitions of ABk and BBk . Here fk
i = bki ωBi,

I1ij(t) = cos(ωBit)[sin(ωBjt)g2cj − cos(ωBjt)g2sj ], and

I2ij(t) = sin(ωBit)[cos(ωBjt)g2cj + sin(ωBjt)g2sj ]. In ac-

cordance to the observation at the end of Appendix A, each

time when t passes ℓP , integrals

g2cj ≡
∫ t

0

dsg2(s)cos(ωBjs), g2sj ≡
∫ t

0

dsg2(s)sin(ωBjs)

change their values and stay approximately unchanged until

next time moment (ℓ + 1)P , allowing the following approxi-

mation by step-functions θ(t) on the interval 0 < t ≤ ℓP :

g2c,sj(t) ≈ g2c,sj(1) +

(ℓ−1)
∑

n=1

δg2c,sj(n)θ(t− nP ) (B28)

with P = 2π/∆, δg2c,sj(n) ≡ g2c,sj(n+ 1)− g2c,sj(n), and

g2sj(n) =
1

P

∫ nP

(n−1)P

dt

∫ t

0

dsĝ2j(s) =

∫ (n−1)P

0

dsĝ2j(s) +

∫ nP

(n−1)P

ds(n− s/P )ĝ2j(s) (B29)

are the time averages on the interval (n − 1)P ≤ t ≤
nP . Here ĝ2j(s) = g2(s)sin(ωBjs) and g2cj(n) is deter-

mined by (B29) with substitution sin(ωBjs) → cos(ωBjs).
Finally, substituting the following products by the corre-

sponding time averages: sin(ωBit)cos(ωBjt) → 0 and

sin(ωBit)sin(ωBjt), cos(ωBit)cos(ωBjt) → δi,j/2, our

F approx
Bk ≡ FBk(n) on each periodicity interval is found as

FBk(n) = −CBZ
−1
Bk

NB
∑

i=1

∆2
Bω

3
Big2si(n)

(ω2
Bi +D2

B)
2(z2k − ω2

Bi)
2
. (B30)

Simplifying (B30) using a similar to (B4) approach, one finds

FBk(n) = −CB∆Bzkg2sk(n)

z2k +D2
B

, g2sk(n) = g2si(n)|ωBi→zk .

(B31)

As follows from comparison with its initial (accurate) value

(B26), illustrated in Fig. 2, accuracy of (B31) is good.

Similarly, initial F ′

nk(t) = CZ−1
nk [S

F′
AB(t)− SF′

BA(t)]. Here

SF′
AB(t) = Ank(t)

∫ t

0

dsg4(t− s)Bnk(s),

where g4(t) = g0(t)− rg1(t), Bnk is found fromBBk revers-

ing (A4), Ank(t) = Ḃnk(t), and F ′approx
nk ≡ F ′

nk(n), where

F ′

nk(n) = −CZ−1
nk

N
∑

i=1

∆2ω3
i g4si(n)

(ω2
i +D2)2(z2k − ω2

i )
2

(B32)

with g4si(n) is obtained from (B29) by substitution ĝ2i(s) →
ĝ4i(s) ≡ g4(s)sin(ωis).

Finally, initial F ′′

nk(t) = CrR−2Z−1
nk [S

F′′
AB(t) − SF′′

BA(t)] and

SF′′
AB is obtained from SF′

AB with g4 → g3. Thus, F ′′approx
nk is

F ′′

nk(t) = −Cr
R2

Z−1
nk

N
∑

i=1

∆2ω3
i g3si(n)

(ω2
i +D2)2(z2k − ω2

i )
2
, (B33)

where g3si(n) is obtained from (B29) by substitution

ĝ2i(s) → ĝ3i(s) ≡ g3(s)sin(ωis).

As one finds, computational complexities of the initial

forms for FBk(t) and F ′

nk(t) or F ′′

nk(t) are O(NBN
2
t ) and

O(NN2
t ), respectively. For comparison, complexities for

the step-function approximations of FBk(n) and F ′

nk(n) or

F ′′

nk(n) in (B31) and (B32) - (B33), are only O(NBNt) and

O(NNt), respectively. Here Nt is the number of mesh points

in computing time integrals and Nt . 105 in our case. Ex-

pressions for the R coefficients appear after substitution the

integral part of pµ,νi into the right hand sites of (16), (18),

or (19). Derivation of these coefficient follows exactly the

same ideas and approximations as those described above. In

fact, we do not need any R coefficients for computing the en-

ergy currents or thermal conductance. Taking into account

that N ≪ Nt . NB, the adopted approximation expedites

calculation of all F (or R) coefficients by factor Nt making

the total computational complexity just O(NBNt), which is

not a problem even for NB ∼ 106.
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