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The Ornstein-Zernike (OZ) integral equation theory is a powerful approach to simple liquids
due to its low computational cost and the fact that, when combined with an appropriate closure
equation, the theory is thermodynamically complete. However, approximate closures proposed to
date exhibit pressure or free energy inconsistencies that produce inaccurate or ambiguous results,
limiting the usefulness of the Ornstein-Zernike approach. To address this problem, we combine
methods to enforce both pressure and free energy consistency to create a new closure approximation
and test it for a single-component Lennard-Jones fluid. The closure is a simple power series in the
direct and total correlation functions, for which we have derived analytical formulas for the excess
Helmholtz free energy and chemical potential. These expressions contain a partial molar volume-like
term, similar to excess chemical potential correction terms recently developed. Using our new bridge
approximation, we have calculated the pressure, Helmholtz free energy, and chemical potential for
the Lennard-Jones fluid using the Kirkwood charging, thermodynamic integration techniques, and
analytic expressions. These results are compared with those from the hypernetted chain equation and
the Verlet-modified closure against Monte Carlo and equations-of-state data for reduced densities
of ρ∗ < 1 and temperatures of T ∗ = 1.5, 2.74, and 5. Our new closure shows consistency among
all thermodynamic paths, except for one expression of the Gibbs-Duhem relation, whereas the
hypernetted chain equation and Verlet-modified closure only exhibit consistency between a few
relations. Accuracy of the new closure is comparable to Verlet-modified closure and a significant
improvement to results obtained from the hypernetted chain equation.

I. INTRODUCTION

Integral equation and classical density functional
theories of the statistical mechanics of liquids
are frequently used in the study of biological,
condensed matter and plasma systems due to their
low computational cost and the physical insights they
provide. Over the years, fundamental theories, such
as the Ornstein-Zernike (OZ) equation [1] and classical
density functional theory (CDFT) [2], have been
developed to deal with complex solutes and molecular
solvents; e.g., reference interaction site model (RISM)
theories [3–7], molecular OZ[8, 9], and molecular CDFT
[10]. Common to all these theories is the requirement
of a closure relation. Unfortunately, approximations
to the closure equation have invariably produce
inconsistent state variables that depend on the physical
or mathematical path taken – i.e., thermodynamic
inconsistencies – that should not exist. Importantly,
quantitatively different pressures or free energies are
calculated when different thermodynamic routes are
employed. Such inconsistencies limit physical insights
and affect the accuracy of the theory. Despite an
immense amount of work on the subject, no closure
approximation has been developed that incorporates
both free energy and pressure consistency.
Pressure consistency may been enforced by introducing

free parameters into a closure approximation, which are
adjusted to ensure density derivatives of the pressure

∗
tluchko@csun.edu

calculated from the virial and compressibility paths
agree. Many closure approximations of this type have
been developed and improved the accuracy of calculated
pressures [11–19]. However, these closures have failed
to provide path independent free energies, limiting their
usefulness.

Free energy consistency can be guaranteed by
satisfying conditions derived by Kast [20], which only
a small number of closely related closures have been
shown to satisfy [7, 21, 22]. However, these closures
do not display pressure consistency and both pressure
and free energy estimates are inaccurate [23]. In fact,
to compensate for the large errors, a number of partial
molar volume (PMV) corrections have been developed
that are applied to just the chemical potential [24–27].

In this work, we show how these two approaches can be
combined by proposing a simple closure approximation
compatible with both. We show that this closure
not only satisfies both pressure and free energy
consistency relations but also internal energy-pressure,
free energy-pressure, and Gibbs-Duhem consistency.
Furthermore, we derived analytic, closed-form formulas
for both the chemical potential and Helmholtz free
energy. The formula for the chemical potential is
functionally similar to that of the hypernetted chain
equation (HNC) [21] with the Universal Correction (UC)
[24] applied. We then apply this closure to a simple
Lennard-Jones fluid at densities ρσ3 = 0.1 to 1.1, and
temperatures T ∗ = 1.5, 2.74 and 5 in reduced units
and compare it to the HNC and Verlet-modified (VM)
[28], which exhibit free energy and pressure consistency
respectively. Several consistency relations are checked for
all three approximations and results for the excess free
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energy and excess chemical potential are compared with
available simulation and equation of state data [29–31].
The paper is organized as follows. In Section II we

discuss theoretical foundations for developing a closure
with thermodynamic consistency and introduce our
closure approximation. We also provide an overview of
the consistency tests we will use. Numerical procedures
used to calculate thermodynamic quantities are described
in Section III. In Section IV we present our results and in
Section V we discuss the implications for thermodynamic
consistency and the relationship to PMV corrections.
This is followed by concluding remarks.

II. THEORY

Ornstein-Zernike equation

Many excellent descriptions of the OZ equation can be
found in the literature such as [32, 33]. Briefly, the OZ
equation divides the contributions to equilibrium liquid
structure into direct and indirect contributions. For a
homogeneous, single component system at temperature
T and number density ρ, it may be written in the form

h(r) = c(r) + ρ

∫
c(|r − r

′)h(r′)dr′ (1)

where h(r) and c(r) are the total and the direct
correlation functions, respectively. With these functions,
one can define the indirect correlation, γ ≡ h(r) − c(r),
and radial distribution functions, g(r) = h(r) + 1.
To solve Eq. (1), one needs a second equation, called a

closure relation, that relates the correlation functions to
a spherically symmetric pair potential u(r) between the
liquid particles. This closure equation is defined as

h(r) = exp[−βu(r) + γ(r) +B(r)] − 1, (2)

where B(r) is the bridge function, β = 1/kBT , and
kB is the Boltzmann constant. B(r) can be expressed
as a power series in ρ of irreducible diagrams [34]
but, in practice, is approximated as some combination
of u (r), h (r), and c (r). By solving Eqs. (1) and
(2) self-consistently, both correlation functions may be
obtained. Commonly used closures include the HNC,

BHNC(r) = 0, (3)

and a VM approximation [28],

BVM(r) = −
1

2

φγ2
a

1 + αγa
, (4)

where φ and α are free parameters to be optimized. Here
γa ≡ γ − βua and ua(r) is the attractive part of the pair
potential [35].

Thermodynamic consistency and the bridge function

As a closed form expression for the bridge function is
not known, one must attempt to build an approximate
bridge function, B(r), either theoretically or empirically.
For the former approach, one needs to compute a series
expansion for B(r) in powers of the density, in which
each term may represent the sum of diagrams computed
in terms of the multidimensional integrals, and so cannot
be completely utilized in practice [34, 36, 37].
The empirical approach is technically easier. However,

when constructing B(r), one should take care to preserve
the thermodynamic consistency, which is the property
that state variables do not depend on the path taken
in the physical or mathematical sense. There are
several types of thermodynamic consistency conditions,
for example [38–40]: virial and compressibility pressure,

pv = pc, (5)

internal energy and pressure,

ρ2
(
∂βE/N

∂ρ

)

T

= −T

(
∂βp

∂T

)

ρ

, (6)

pressure and free energy,

βµe =
βAe

N
+

βp

ρ
− 1, (7)

and Gibbs-Duhem (
dµ

dp

)

T

=
1

ρ
. (8)

These conditions can either be directly tested for or
explicitly enforced; e.g., through the introduction free
parameters in the closure relation that can be tuned. In
this work, we enforce Eq. (5) and test the other three
relations.
In addition, we require path independence for the

chemical potential and Helmholtz free energy. For
example, the results of the Kirkwood charging formulas
for chemical potential and free energy, Eqs. (C1) and
(B1), should not depend on how the coupling parameter
is included. To handle this path-dependence issue, Kast
[20] has shown that path independence is implied if the
variational parameter

q =

∂B
∂γ

− ∂B
∂c

+ 1
∂B
∂u

− β
(9)

is independent of the spatial coordinates and λ (see
also Appendix B). Therefore, any function B(γ − βu),
B(c + βu), B(h, γ − βu), B(h, c + βu) and B(h) has
guaranteed path independence in RISM theory and,
therefore, OZ theory. Importantly, renormalized bridge
functions, where only the long-range or short-range part
of the potential is used, do not satisfy this condition. Nor
do functions that are a function of γ, B (γ). Such bridge
functions may be path-independent but this is difficult
to prove and must be done on an individual basis.
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A free energy and pressure path-independent closure

In this work we employ virial and compressibility
pressure consistency, commonly known as “pressure
consistency”, and free energy consistency. As we are
not aware of a bridge approximation that has both
properties, we propose a new approximation which
satisfies the Kast conditions and has free parameters, a
and b, to enforce pressure consistency,

B(r) = ac(r) +
∑

i

bih
i(r). i = 1, 2, 3, . . . (10)

Although this proposed equation explicitly includes the
direct correlation function, it satisfies the requirements
for path-independence since Eq. (9) is constant
and independent of spatial coordinates and coupling
parameters. Details are given in Appendix B. For
simplicity, in the numerical part of this work we employ
only the first order expansion of the proposed bridge
function,

B = ac(r) + b1h(r). (11)

In order to simplify the computational work required,
it is advantageous to have an analytical, closed-form
expression to evaluate the excess free energy or chemical
potential. Using the Kirkwood charging formula, we can
obtain an analytic formula for evaluation of the excess
Helmholtz free energy (see Appendix C):

βAe

N
=

βAHNC

N
+

ρ

2

∫
drgB

−
a

16π3

∫
dk

[
ĥ−

1

ρ
ln
∣∣∣1 + ρĥ

∣∣∣
]

−
ρ

2

∫ ∑

i

bi
i+ 1

hi+1dr. (12)

Here, βAHNC

N
is the excess Helmholtz free energy

expression for the HNC closure is given by [34, 41],

βAHNC

N
=

ρ

2

∫
dr
(1
2
h2 − c

)

+
1

2

1

8π3

∫
dk
[
ĉ+

1

ρ
ln |1− ρĉ|

]
. (13)

Using similar approach (see Appendix C) we can obtain
a semi-analytical expression for the VM closure

βAe

N
=

βAHNC

N
+

ρ

2

∫
drgB +

ρ

4

1

8π3

∫
dkĥ

×

∫ 1

0

dν



φ
(
ρν2ĥ2/

(
1 + ρνĥ

))2

1 + αρν2ĥ2/
(
1 + ρνĥ

)


 . (14)

where numerical integration over a coupling parameter,
ν, is still required.

For excess chemical potential we have derived
a formula with the proposed bridge function (see
Appendices B and C):

βµe = βµHNC + ρ

∫
drgB

− ρ

∫
dr

[
1

2
ahc+

(
∑

i=1

bi
i+ 1

hi+1

)]
, (15)

where βµHNC is the HNC-type expression for the excess
chemical potential with appropriate bridge function B(r)
[34, 41],

βµHNC = ρ

∫
dr
(1
2
h2 − c−

1

2
hc
)
. (16)

The VM closure has no known closed-form, analytic
expression for the excess chemical potential. Instead,
we will employ a commonly used approximate closed
expression [42–46],

βµe ≈ βµHNC + ρ

∫
dr
(
B +

2h

3
B
)
. (17)

With Eqs. (12) to (17) the excess Helmholtz free energy
and chemical potential can be computed using only a
single state at the given temperature and density. As one
would expect, setting B = 0 in the derived expressions
for the HFE and chemical potential leads directly to
expressions in the HNC approximation, Eq. (13). We
note that for the excess free energy, expressions similar
to formula Eq. (14) have been given by Kiselyov and
Martynov [42], but for other closure approximations.

Evaluating thermodynamic consistency

To check if a closure approximation satisfies
Eqs. (5)-(7), we must compute pressure, internal energy,
free energy and chemical potential using different paths.
These different paths may involve numerical integration
and differentiation or different analytic expressions for
the same quantity.

Virial and compressibility pressure

Pressure consistency is most commonly calculated
along the viral and compressibility paths, Eq. (5). The
pressure from the virial equation of state, pv, [32] is
computed as,

βpv

ρ
= 1−

ρ

6

∫
drr

∂βu(r)

∂r
g(r), (18)

where β = 1/kbT , kb is Boltzmann’s constant and T
is temperature. The isothermal compressibility, χT , is
computed through the compressibility route [32],
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β(ρχT )
−1 = β

(
∂pc

∂ρ

)

T

= 1− ρ

∫
c(r)dr, (19)

where pc is the pressure from the compressibility route
and the pressure can be computed as

βpc

ρ
=

β

ρ

∫ ρ

0

dρ′ρ′−1χ−1
T . (20)

Internal energy and pressure

To check the consistency of the internal energy and
pressure, Eq. (6), the temperature derivatives of the
internal energy and pressure are required. The internal
energy may be directly computed as [32]

E = Ei + Ee

=
3

2
kbT +

ρ

2

∫
g (r) u (r) dr (21)

where Ee is the excess internal energy and Ei is the
internal energy of the ideal gas. Temperature and density
derivatives of Eq. (20) and Eq. (21) are straightforward
to compute.

Pressure and free energy

Pressure and free energy consistency, Eq.(7), may
be tested by comparing chemical potentials calculated
along different paths. Analytical expressions for chemical
potential, Eqs. (15) and (16), are guaranteed to be path
independent. In addition, the virial and compressibility
pressure equations may be combined with the Helmholtz
free energy using Eq. (7). The excess Helmholtz
free energy may be computed from the Kirkwood
charging formula, such as the analytic and semi-analytic
expressions already presented, Eqs. (12), (13), and (14),
or by integrating along the density path [30, 47]

βAe

N
=

∫ ρ

0

dρ′
1

ρ′

(βp
ρ′

− 1
)
. (22)

When this is evaluated numerically, the pressure is
calculated at each intermediate density using either the
virial or compressibility expressions.
Combining the various expressions for the free energy

and pressure, we can calculate the excess chemical
potential along different paths: density-compressibility,
Eqs. (22) with (19),

βµe =

∫ ρ

0

1

ρ′

(βp
ρ′

− 1
)
dρ′ −

1

ρ

∫ ρ

0

ρ′dρ′
∫

c(r, ρ′)dr,

(23)

density-virial, Eqs. (22) with (18),

βµe =

∫ ρ

0

1

ρ′

(βp
ρ′

− 1
)
dρ′ −

ρ

6

∫
drr

∂βu(r)

∂r
g(r) (24)

Kirkwood-compressibility, Eqs. (C1) with (19),

βµe =
ρ

2

∫ 1

0

dλ

∫
dr

∂βu(r, λ)

∂λ
g(r, λ)

−
1

ρ

∫ ρ

0

ρ′dρ′
∫

c(r, ρ′)dr′ (25)

or Kirkwood-virial, Eqs. (C1) with (18),

βµe =
ρ

2

∫ 1

0

dλ

∫
dr

∂βu(r, λ)

∂λ
g(r, λ)

−
ρ

6

∫
drr

∂βu(r)

∂r
g(r). (26)

Gibbs-Duhem

As with the Helmholtz free energy, a density dependent
path of the chemical potential can be derived. This
results in expressions using the virial,

βµe = −

∫ ρ

0

dρ′
[1
3

∫
drr

∂βu(r)

∂r
g(r)

+
ρ′

6

∫
drr

∂βu(r)

∂r

∂g(r)

∂ρ′

]
, (27)

and compressibility paths,

βµe = −kT

∫ ρ

0

dρ′
∫

c(r, ρ′)dr, (28)

which are equivalent to the Gibbs-Duhem consistency
equation, Eq. (8), (see Appendix A). However, if(

dpv

dρ

)
T

=
(

dpc

dρ

)
T

is not satisfied, then Eqs. (27) and

(28) are not equivalent and may not agree with other
expressions for the chemical potential. For example,
HNC exhibits Gibbs-Duhem consistency when the viral
pressure is used, Eq. (27), but not if the compressibility
is used, Eq. (28).

III. NUMERICAL PROCEDURE

In this work we consider a single-component fluid
whose an interparticle potential is give by the
Lennard-Jones potential

u(r) = 4ǫ

((σ
r

)12
−
(σ
r

)6)
, (29)

where σ and ǫ are the size and energy parameters of
the LJ potential, respectively. For all calculations we
use reduced units, in which σ and ǫ are the base units
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for length and energy. This gives the reduced number
density, ρ∗ = ρσ3, temperature T ∗ = kBT/ǫ, and
pressure, p∗ = pσ3/ǫ.

Even when the free energy should be a
path-independent property, the details of how the
coupling constant is included in the potential energy
are numerically important, as a simple linear coupling,
u (r, λ) = λu (r), leads to large numerical errors. For
this reason, a shifted and scaled LJ potential may be
used [48]

u(r, λ) = 4λǫ
[( σ2

r2 + (1− λ)s

)6
−
( σ2

r2 + (1 − λ)s

)3]

(30)
where s > 0 is an arbitrary constant. In this approach,
for each different value of λ from 0 to 1, a new g(r, λ) is
computed. Numerically computing the Kirkwood excess
free energy charging formula, Eq. (C1), then requires
solving the OZ equation at different λ. Depending on
the precision required, this can be computation onerous.

An in-house MATLAB [49] code was developed to
solve the OZ equation, Eq. (1), using HNC, VM, and
Eq. (11) bridge approximations to obtain thermodynamic
properties of the LJ fluid using the theoretical
formulations described in the preceding sections. A
simple Picard iterative method was applied and the
numerical tolerance for the root mean squared residual
of the direct correlation functions during successive
iterations was set at 10−10. All calculations were
performed with the same number of grid points, N =
8192, and length parameter, L = 32σ. Thermodynamic
quantities were computed for T ∗ = 1.5, 2.74, and 5 and
ρσ3 = 0.1 to 1.1 in increments of 0.1.

At each temperature and pressure reported, pressure
consistency was enforced by optimizing coefficients (a, b1)
in Eq. (10) and (φ, α) in Eq. (4) to satisfy the consistency
condition. The pressure consistency equation was
converged to |pv − pc| ≤ 10−6 using the ‘fminsearch’
multidimensional unconstrained nonlinear minimization
routine of MATLAB. This required calculating the
pressure from the virial and compressibility routes for
each set of coefficients proposed by the minimizer. For
the virial pressure, Eq. (18) was use directly. To
calculated the compressibility pressure, Eq. (20) was
employed where the trial coefficients were fixed for all
intermediate densities, ρ′, in the integral. HNC was
excluded from pressure consistency enforcement since it
has no adjustable parameters.

Numerical calculations of the pressure, free energy,
and chemical potential used the mid-point integration
with step sizes dλ = 0.005 and dρ′ = 0.025 for
the Kirkwood charging and thermodynamic integration
formulas, respectively. Bridge function coefficients were
held constant for each of these calculations. For Eq. (30),
s = 0.5 was used.
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FIG. 1. Absolute pressure, pσ3/ǫ, as a function of density,
ρσ3. Green, black and blue lines are from the HNC, VM and
Eq. (11) bridge corrections respectively. Red crosses are from
the equations of state in [31]. Cyan crosses are available MC
data from [29] and [30] for T ∗ = 2.74 and 5.

IV. RESULTS

Pressure consistency

In Table I we compare pressures obtained from
HNC, VM, and Eq. (11) bridge approximations for
the LJ potential at ρσ3 = 0.9 and T ∗ = 1.5, 2.74
and 5. As expected, both VM and Eq. (11) show
virial-compressibility consistency while HNC does not.
Furthermore, while both VM and (11) are within a few
percent of MC and EOS data [29–31] and each other
at T ∗ = 2.74 and 5, HNC values differ considerably
at all temperatures. At T ∗ = 1.5, Eq. (11) is still an
improvement over HNC but has increased relative error.

We note that if we use dpv = dpc consistency
instead, the obtained numerical values for both pressures
would be close, but inconsistent. For example, for the
LJ potential at T ∗ = 2.74 and ρ∗ = 0.9, the VM
approximation gives pvσ3/ǫ = 12.70 and pcσ3/ǫ = 13.05
while our closure gives pvσ3/ǫ = 12.94 and pcσ3/ǫ =
13.92. Therefore, we did not employ dpv = dpc

consistency in this work.

As seen in Figure 1, the pressure for all three models
is in good agreement with EOS data at low densities,
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TABLE I. The pressure, pσ3/ǫ, from virial and compressibility routes for the LJ potential at ρσ3 = 0.9.

T ∗ = 1.5 T ∗ = 2.74 T ∗ = 5
HNC Eq. (11) VM HNC Eq. (11) VM HNC Eq. (11) VM

Virial 9.104 7.688 6.421 15.99 13.15 12.64 26.12 22.32 21.92
Compressibility 3.781 7.688 6.421 9.415 13.15 12.64 18.12 22.32 21.92

MC 12.68[29]
EOS 6.365[31] 12.72[31] 22.19[31]

ρσ
3
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e
ff
ic
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n
ts
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-0.5

0

0.5

1

FIG. 2. Coefficients a (red, filled) and b1 (blue, unfilled) for
Eq. (11) vs ρσ3 at T ∗ = 1.5 (diamonds), 2.74 (squares) and 5
(circles).

regardless of temperature. HNC, however, diverges from
the EOS as the density increases, always overestimating
the pressure, while VM stays within a few percent.
Eq. (11) also behaves like VM for T ∗ = 2.74 and
5, tracking the EOS pressure within a few percent.
However, at T ∗ = 1.5, Eq. (11) predicts excessively high
pressures at high densities.

Figure 2 shows optimized values of coefficients (a, b1)
of Eq. (10) vs ρσ3, which are obtained by enforcing viral
and compressibility pressure consistency, Eq. (5). As
seen here, the coefficients have both a temperature and
pressure dependence though it appears to be diminished
as density increases.

As with other closure approximations that enforce
pressure consistency in this manner, including VM, there
is no guarantee of uniqueness in the parameters found
by minimization since the function is nonlinear. This
is particularly true at low densities, where more than
one pair of values (a, b1) may be found to satisfy the
consistency criterion. However, at low densities, the
effect of the bridge correction is small. For high densities,
the range of (a, b1) pairs is much smaller. The result is
that small variations can be found that depend on the
initial guess but they are insignificant in practice.

TABLE II. Internal energy-pressure consistency for the LJ
potential at ρσ3 = 0.9.

T∗ = 2.74 T∗ = 5

HNC Eq. (11) VM HNC Eq. (11) VM

ρ2

(

∂βE/N
∂ρ

)

T
0.910 0.550 0.120 1.267 0.949 0.563

−T
(

∂βp
∂T

)

ρ
0.910 0.550 0.099 1.267 0.949 0.675

Energy-pressure consistency

Table II shows the consistency of pressure and internal
energy through density and temperature derivatives, as
given in Eq. (6). As the virial pressure is used, both HNC
and Eq. (11) show consistency while VM does not. If the
pressure was calculated from the compressibility route,
the results for Eq. (11) would be unaffected but HNC
would fail to show consistency.

Chemical potential and Helmholtz free energy

To test the path independence of our new closure,
we calculated the excess Helmholtz free energy Ae/ǫ
using the Kirkwood charging formula Eq. (C1), density
integration Eq. (22) and the respective analytical
formulas, Eqs. (12), (13), and (14). In Table III we
show the values for Ae/ǫ at T ∗ = 1.5, 2.74 and 5
for ρσ3 = 0.9. As expected, results from HNC and
Eq. (11) show no path dependence. The VM results,
however, are path-dependent, with the Kirkwood and
density integration formulas giving different, but close,
values. The semi-analytical expression for VM is not
consistent with the Kirkwood values, as it has a different
coupling parameter, though it gives reasonable values. In
contrast to the calculated pressure, Eq. (11) has the best
agreement with EOS at the values at low temperatures
while VM performs better at high temperatures. HNC
over estimates the Helmholtz free energy in all cases and
has the largest relative error.
Results for the excess Helmholtz free energy over a

range of densities are shown in Figure 3 for temperatures
T ∗ = 1.5, 2.74 and 5. HNC overestimates the free
energy while the new bridge approximation tends to
underestimate the free energy at higher densities. This
is most apparent at T ∗ = 2.74 but the same behavior
is also observed at T ∗ = 5. Only values for the
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TABLE III. The excess Helmholtz free energy, Ae/ǫ, per particle for the LJ potential at ρσ3 = 0.9.

T ∗ = 1.5 T ∗ = 2.74 T ∗ = 5
HNC Eq. (11) VM HNC Eq. (11) VM HNC Eq. (11) VM

Kirkwood (Eq. (C1)) 0.115 -0.752 -0.600 3.904 2.251 2.630 9.570 7.315 8.009
TI density (Eq. (22)) 0.115 -0.752 -0.951 3.904 2.251 2.700 9.570 7.315 8.127

Analytic (Eqs. (13), (12), (14)) 0.115 -0.752 -0.493 3.904 2.251 2.961 9.570 7.315 8.194
MC 2.850[29]
EOS -0.720[31] 2.850[31] 8.248[31]
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FIG. 3. Helmholtz free energy per particle, Ae/ǫ, as a function
of density, ρσ3. Green, black and blue lines are from the HNC,
VM and Eq. (11) bridge corrections respectively. Red crosses
are from the equations of state in [31]. Cyan crosses are MC
simulation data taken from [29] and [30] for T ∗ = 2.74 and 5.

analytical expression for the VM free energy are shown,
but these are in good agreement with simulation at all
temperatures and densities.
Several paths for the excess chemical potential

are compared in Table IV for all three closure
approximations. We can see that for all closures the
agreement of the various numerical approaches with the
analytic expression depends on which path was used.
All closures display inconsistency between the virial and
compressibility expressions for Gibbs-Duhem, Eqs. (27)
and Eq. (28). This is due to inconsistency in the
density derivative of the pressure, which all of these
closures exhibit. We note that the virial expression for
Gibbs-Duhem is consistent with the analytic expression

0
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e
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FIG. 4. Excess chemical potential, µe/ǫ, as a function of
density, ρσ3. Green, black and blue lines are from the HNC,
VM and Eq. (11) bridge corrections respectively. Red crosses
are from the equations of state in [31].

for both HNC and Eq. (11).
Consistency for different thermodynamic routes for the

free energy-pressure equation, Eq. (7), naturally depends
on the consistency of the free energy and pressure of the
respective closures. HNC has free energy consistency
but not pressure consistency – as long as the virial
path is used Gibbs-Duhem, free energy and pressure,
and the analytic expressions all agree. Conversely, VM
has pressure consistency but not free energy consistency,
so Kirkwood and density paths to the free energy and
chemical potential do not agree. However, density
integration is consistent with the virial Gibbs-Duhem
expression. Because Eq. (11) exhibits both free energy
and pressure consistency, all routes agree, except for the
compressibility Gibbs-Duhem expression.
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TABLE IV. The excess chemical potential µe/ǫ for the LJ potential at ρσ3 = 0.9.

T ∗ = 1.5 T ∗ = 2.74 T ∗ = 5
HNC Eq. (11) VM HNC Eq. (11) VM HNC Eq. (11) VM

Gibbs-Duhem
Compressibility (Eq. (28)) 1.479 6.693 5.505 9.811 13.77 14.52 22.32 27.33 27.80

Virial (Eq. (27)) 8.726 6.292 4.680 18.93 14.13 14.00 33.59 27.12 27.49
Kirkwood-compressibility (Eq. (25)) 2.816 6.291 5.035 11.62 14.13 13.93 24.70 27.12 27.38

Kirkwood-virial (Eq. (26)) 8.730 6.292 5.035 18.93 14.13 13.93 33.59 27.12 27.37
Free energy and pressure

TI density-compressibility (Eq. (23)) 2.816 6.291 4.684 11.62 14.13 14.00 24.70 27.12 27.50
TI density virial (Eq. (24)) 8.730 6.292 4.684 18.93 14.13 14.00 33.59 27.12 27.49

Analytic (Eqs. (16), (17), (15))
8.730 6.293 5.517 18.93 14.13 14.65 33.59 27.12 27.60

EOS [31] 4.852 14.24 27.90

VM and Eq. (11) have similar accuracy for the
chemical potential over a range of temperatures and
compare well to the EOS, as shown in Figure 4. Again,
HNC over-estimates the MC data and is significantly
higher than VM and Eq. (11). Analytic expressions were
used for all three closures. Overall, Eq. (11) has better
agreement with the excess chemical potential than it does
with the Helmholtz free energy (Figure 3) especially at
high temperatures and is similar to that observed for the
pressure (Figure 1).

V. DISCUSSION

Thermodynamically consistent behavior is an essential
property for a successful theory of liquids. The primary
result of this work is the development of a closure
for the OZ equation that has both pressure and free
energy consistency. While pressure consistent and free
energy path independent closures have been developed
before, this is the first time that a single closure has
demonstrated both.

A. Thermodynamic Consistency

To examine how satisfying both types of
thermodynamic consistency can improve the predictive
power of the OZ equation, we compared our results
against VM and HNC closures. These alternately satisfy
virial-compressibility pressure consistency (VM) or path
independence for the free energy respectively (HNC)
but not both. All other closures that we are aware of
either satisfy only virial-compressibility pressure or free
energy consistency. As expected, enforcing pressure
consistency improves predictions of the pressure from
VM and Eq. (11) compared to HNC, particularly at high
temperature and density.
We have more routes to the free energy and chemical

potential, which allows us to examine in greater detail
the implications of thermodynamic consistency or lack

thereof. Because Eq. (11) satisfies the Kast criteria [20]
and pressure consistency is enforced, all routes to the
free energy and chemical potential provide consistent
results, except for the Gibbs-Duhem expression using
the compressibility, Eq. (28), which we discuss below.
HNC does have internal energy-virial consistency but
not pressure consistency, so any expression that uses
the compressibility route is inconsistent but viral and
Kirkwood results are consistent, which includes the
analytic expressions. The VM closure only exhibits
pressure consistency, so analytic expressions are simply
approximations. Numeric results may agree with each
other but only when the only difference is whether the
pressure is calculated from the viral or compressibility
route.

To achieve consistency for all routes to the chemical
potential tested here it is necessary to have consistency of

the density derivative of the pressure,
(

dpv

dρ

)
T
=
(

dpc

dρ

)
T
,

while satisfying pressure consistency. None of the three
closures satisfy this, as is demonstrated by the results for
the Gibbs-Duhem expression for the chemical potential,
Table IV. For this additional consistency, it is necessary
that the free parameters in the bridge be independent of
density. We see this at T ∗ = 5, where the coefficients for
Eq. (11) change very little with density (Figure 2) and
Gibbs-Duhem consistency is nearly achieved (Table IV).

An additional consequence of free energy path
independence is that we were able to derive analytical,
closed form formulas for the excess free energy and excess
chemical potential for our new closure. This allows the
excess free energy and excess chemical potential to be
computed without the Kirkwood charging or any other
numerical form of thermodynamic integration. Indeed,
we find that these formulas are completely consistent
with the various numerical paths we have tested for
Eq. (12). This is in contrast to the approximate formulas
for VM, which are in poor agreement with various
numerical results.
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B. Partial molar volume correction

Some physical insight to can be gained by comparing
our new closure to the various partial molar volume based
corrections that have been proposed for 3D-RISM theory
and molecular density functional theory (MDFT) [24–
27]. These are modifications to the usual closure specific
expressions for the chemical potential and are not bridge
corrections. These all have a similar form to UC applied
to HNC,

βµUC = β
{
µHNC + a′ρv + b′

}
,

where a′ and b′ are parameters fit to experiment and
v is the PMV of the solute, may be interpreted as
by compensating for mechanical work (pressure-volume)
required to introduce a solute. From this interpretation,
we have a′ = Pcontact/ρ. Due to pressure inconsistencies
in HNC, Pcontact is not equal to the virial or
compressibility pressure but is the contact pressure
between the solute and solvent [27, 50, 51]. Like the
virial and compressibility pressures, the contact pressure
for HNC is too high and corrections like UC are employed
to compensate for this.
Comparing our expression for the chemical potential,

Eq. (15), to UC, we find that the coefficients are related
as a ≈ −βa′ and b1 ≈ βa′ and, by analogy, a ≈ −b1 ≈
−βPcontact/ρ (see Appendix D). In agreement with this,
Figure 2 shows that a ≈ −b1. This observation suggests
it may be possible to replace the b1 coefficient with −a.
PMV corrections have been used successfully for water

( e.g., [25–27, 52–54]) and other solvents (e.g., [55–58]).
Because room temperature and atmospheric pressure are
typical physical conditions for solvated biological and
non-biological systems, we anticipate that this closure
will work well where PMV corrections have been used
before. For example, simulations of water are commonly
performed at T = [298.15K and ρ = 997 kg/m3 or
T ∗ = 3.82 and ρ∗ = 1.06 using the SPC/E model [59].
These conditions correspond to the highest temperatures
and densities we tested, where we observed pressures and
chemical potentials in good agreement with the equation
of state. Non-polar solvents, such as cyclohexane, have
similar reduced temperatures but lower densities than
water for similar calculations. Indeed, we expect that
this closure will perform well for typical solvation free
energy calculations for which PMV corrections have been
used in the past.

VI. CONCLUSION

In this work we have proposed a new closure equation,
Eq. (10), for the Ornstein-Zernike equation that satisfies
both virial-compressibility pressure consistency and path
independence for the chemical potential and free energy.
As a consequence, this closure also exhibits internal
energy-pressure, free energy-pressure, and Gibbs-Duhem

consistency. Consistency was demonstrated by
calculating solutions to the Ornstein-Zernike equation
with our new closure truncated at the first term of the
summation, Eq. (11), for the Lennard-Jones potential
at thermodynamic parameters T ∗ = 1.5, 2.74 and 5,
and ρσ3 = 0.1 to 1.1. In addition, we were able to
derive closed form expressions for the free energy and
chemical potential. We anticipate that this closure will
be particularly useful for calculations of common solvents
in 3D-RISM and molecular CDFT calculations where
PMV corrections are currently used.
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Appendix A: Density derivative path to the

chemical potential

Following [60], when we hold the temperature
constant, starting from the thermodynamic identity

dG = V dp− SdT,

we have

(
∂G

∂p

)

T

= V

(
∂µ

∂p

)

T

= ρ−1

(
∂µ

∂ρ

)

T

(
∂ρ

∂p

)

T

= ρ−1

(
∂µe

∂ρ

)

T

+

(
∂µi

∂ρ

)

T

= ρ−1

[(
∂pe

∂ρ

)

T

+

(
∂P i

∂ρ

)

T

]
.

In the second step we have the Gibbs-Duhem relation
and in the last step we have split the chemical potential
into excess, e, and ideal, i, contributions. For the ideal
contribution on the right hand side we have

(
∂pi

∂ρ

)

T

=
∂

∂ρ
ρkT = kT

where we have used the ideal gas law. For the excess
chemical potential, we then have

(
∂µe

∂ρ

)

T

= ρ−1

[(
∂p

∂ρ

)

T

− kT

]

µe =

∫ ρ

0

dρ′
1

ρ′

[(
∂p

∂ρ′

)

T

− kT

]
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We may use either Eq. (18) or Eq. (19) for the derivative
of the pressure. Using Eq. (18), we have

µe =

∫ ρ

0

dρ′
1

ρ′

[
kT
(
1− 2

ρ′

6

∫
drr

∂βu(r)

∂r
g(r)

−
ρ′2

6

∫
drr

∂βu(r)

∂r

∂g(r)

∂ρ′

)
− kT

]

= −

∫ ρ

0

dρ′
[1
3

∫
drr

∂βu(r)

∂r
g(r)

+
ρ′

6

∫
drr

∂βu(r)

∂r

∂g(r)

∂ρ′

]
.

Using Eq. (19) we have

µe =

∫ ρ

0

dρ′
1

ρ′

[
kT

(
1− ρ′

∫
c(r, ρ′)dr

)
− kT

]

= −kT

∫ ρ

0

dρ′
∫

c(r, ρ′)dr

which is the result obtained by [60].

Appendix B: Free energy path independence and

closed-form chemical potential

The most common approach to calculating the
chemical potential, µe, (i.e., the Gibbs free energy
per particle) is through the Kirkwood charging formula
[61, 62],

βµ = βµid + βµe

= βµid + ρ

∫ 1

0

dλ

∫
dr

∂βuUV(r, λ)

∂λ
gUV(r, λ), (B1)

where βµid and βµe are the ideal and excess chemical
potentials. In the language of charging technique, one
may add one (marked) solute particle, U, from infinity
to a given point into the N − 1 particle solvent system
solvent, V, and the intermolecular interactions between
them scales until the added particle is not distinguished
from the others. For the Kirkwood approach, λ scales
interactions of one (marked) particle with others, that is,
when λ = 0, the particle is removed and when λ = 1, the
particle is fully coupled to the system. The integral may
be computed analytically if βµe is independent of how λ
scales the interaction; i.e., it is path independent.

To ensure path independence in Eq. (B1), Kast [20]
uses a variational approach to obtain a constrained
formula for the excess chemical potential

µe =

∫ 1

0

∫
ρ(h+ 1)

∂u

∂λ
+ pP + vV dr dλ

+
q

(2π)3

∫ 1

0

∫
Qdk (B2)

where, in the general case,

P = exp(−βu+ γ +B)− h− 1,

V = h− c− γ,

Q = ρĉ
∂ĉ

∂λ

(
1 +

ρĉ

1− ρĉ

)
−

∂ĉ

∂λ
ρĥ

and p, v, and q are variational parameters to be solved
for. For path-independence to be satisfied, the functional
derivatives of Eq. (B2) with respect to h, c, γ, and umust
be zero:

∂µe

∂h
= ρ

∂u

∂λ
+ p

[
∂B

∂h
(h+ 1)− 1

]
− qρ

∂c

∂λ
+ v = 0,

(B3)

∂µe

∂c
= p

∂B

∂c
(h+ 1) + qρ

∂h

∂λ
− v = 0, (B4)

∂µe

∂γ
= p

(
∂B

∂γ
+ 1

)
(h+ 1)− v = 0, (B5)

∂µe

∂u
= p

(
∂B

∂u
− β

)
(h+ 1)− ρ

∂h

∂λ
= 0. (B6)

This system of equations is then solved for p, v and q,
giving

p = ρ
∂h

∂λ

1(
∂B
∂u

− β
)
(h+ 1)

, (B7)

v = ρ
∂h

∂λ

∂B
∂γ

+ 1

∂B
∂u

− β
, (B8)

q =

∂B
∂γ

− ∂B
∂c

+ 1

∂B
∂u

− β
. (B9)

For a closure with bridge approximation given by Eq. (10)
we may obtain

p = −β−1(h+ 1)−1 ∂h

∂λ
v = −β−1ρ

∂h

∂λ
,

q = −β−1(1 − a). (B10)

From the equation for q in Eq. (B10) it is seen that the
proposed bridge approximation Eq. (10) has satisfied this
path independence condition.
Combining Eqs. (B3) with (B1) and p, v and q we have

µe = µHNC − ρ

∫ 1

0

∫
dr dλ

1(
∂B
∂u

− β
)

{
∂h

∂λ
(h+ 1)

[
∂B

∂h
+

∂B

∂γ

]

−
∂c

∂λ
(h+ 1)

(
∂B

∂t
−

∂B

∂c

)}
. (B11)

It is straightforward to extend this to multicomponent
1D- or 3D-RISM cases.
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For the specific case of Eq. (10) we have

∂B

∂u
= 0,

∂B

∂γ
= 0,

∂B

∂c
= a,

∂B

∂h
=
∑

i=1

ibih
i−1,

and Eq. (B11) reduces to

µe = µHNC −
ρ

β

∫
dr

{
b1h+

∑

i=2

(
bi + bi−1

(
1−

1

i

))
hi

−
1

2
ahc+ ac

}
(B12)

Appendix C: Closed form expressions for free

energy and chemical potential

As with the chemical potential, the Helmholtz free
energy can also be computed with the Kirkwood charging
technique [61, 62], in which the free energy difference
between two different states is calculated by gradually
“switched between” the two different Hamiltonians using
the coupling parameter λ. When λ = 0, the system is
represented by a Hamiltonian corresponding to the initial
state, and for λ = 1 by a Hamiltonian corresponding to
the final state. Then the excess Helmholtz free energy,
Ae, is obtained in terms of thermodynamic integration
with the Kirkwood charging formula,

βAe

N
=

ρ

2

∫ 1

0

dλ

∫
dr

∂βu(r, λ)

∂λ
g(r, λ). (C1)

The manner in which λ is coupled to u(r, λ) determines
the computational path. To eliminate a derivative of
∂u/∂λ in the Kirkwood charging formulas, Eqs. (C1)
and (B1), we begin with the exact expression

(1 + h(r, λ)) = e−βu(r,λ)+h(r,λ)−c(r,λ)+B(r,λ). (C2)

Taking the derivative of both sides we arrive at

β(1 + h)
∂u

∂λ
=

∂

∂λ

(1
2
h2 − c+B

)
− h

∂c

∂λ
+ h

∂B

∂λ
. (C3)

Inserting Eq. (C3) into the Kirkwood charging formula
for the excess free energy, Eq. (C1), we have

βAe

N
=

ρ

2

∫
dr
(1
2
h2 − c+B

)
−

ρ

2

∫ 1

0

dλ

∫
drh

∂c

∂λ

+
ρ

2

∫ 1

0

dλ

∫
drh

∂B

∂λ
(C4)

In the second integral we need to express h in terms of c
in order to integrate over λ, that is,

∫ 1

0

dλ

∫
drh

∂c

∂λ
=

∫ 1

0

dν

∫
drhc

=
1

8π3

∫ 1

0

dν

∫
dk ĥ(νc) ĉ

=
1

8π3

∫ 1

0

dν

∫
dk

νĉ

1− ρνĉ
ĉ

=
1

8π3

∫
dkĉ2

∫ 1

0

dν
ν

1− ρνĉ

= −
1

8π3

1

ρ

∫
dk
[
ĉ+

1

ρ
ln |1− ρĉ|

]
.

(C5)

Here we used (∂c/∂λ)dλ = cdν and ν̂c = νĉ and

Parseval’s Theorem
∫
a(r)b(r)dr = (1/8π3)

∫
âb̂dk [42].

For the third integral, we can write

∫ ∫ 1

0

h
∂B

∂h
dλdr =

∫
hBdr −

∫ ∫ 1

0

B
∂h

∂λ
dλdr. (C6)

If we assume that h(r, λ) ≈ λh(r) and use expression
Eq. (10) forB(r), the second integral of Eq. (C6) becomes

∫ ∫ 1

0

ac
∂h

∂λ
dλdr +

∑

i

bi

∫ ∫ 1

0

hi ∂h

∂λ
dλdr

=
1

8π3

a

ρ

∫
dk
[
ĥ−

1

ρ
ln |1 + ρĥ|

]

+

∫
dr
∑

i

bi
i+ 1

hi+1. (C7)

Combining Eqs. (C6)-(C7), we have

βAe

N
=

ρ

2

∫
dr
(1
2
h2 − c

)

+
1

2

1

8π3

∫
dk
[
ĉ+

1

ρ
ln |1− ρĉ|

]

+
ρ

2

∫
drgB

−
a

2

1

8π3

∫
dk
[
ĥ−

1

ρ
ln |1 + ρĥ|

]

−
ρ

2

∫ ∑

i

bi
i+ 1

hi+1dr. (C8)

For the VM closure, we may follow the same procedure
with the observation that that a particular coupling is
selected. Proceeding with this understanding, the second
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integral of Eq.(C6) becomes
∫ 1

0

dλ

∫
B
∂h

∂λ
dr =

∫ 1

0

dν

∫
Bhdr

=
1

8π3

∫ 1

0

dν

∫
dk B̂(νh) ĥ

= −
1

2

1

8π3

∫
dkĥ

∫ 1

0

dν

×
φ
(
ρν2ĥ2/(1 + ρνĥ)

)2

1 + αν2ĥ2/(1 + ρνĥ)
. (C9)

Then combining Eqs. (C6) and (C9) we have

βAe

N
=

ρ

2

∫
dr
(1
2
h2 − c

)

+
1

2

1

8π3

∫
dk
[
ĉ+

1

ρ
ln |1− ρĉ|

]

+
ρ

2

∫
drgB

+
ρ

4

1

8π3

∫
dkĥ

∫ 1

0

dν
φ(ρν2ĥ2/(1 + ρνĥ))2

(1 + αν2ĥ2/(1 + ρνĥ))
.

(C10)

For the excess chemical potential βµe, from Eqs. (B1)
and (C3), we can write

βµe = ρ

∫
dr
(1
2
h2
UV − cUV +BUV

)

− ρ

∫ 1

0

dλ

∫
drhUV

∂cUV

∂λ

+ ρ

∫ 1

0

dλ

∫
drhUV

∂BUV

∂λ
. (C11)

Where UV denotes correlation functions between a
marked solute particle, U, and the bulk solvent liquid,
V. While this looks almost identical to Eq. (C4), in this
case λ scales the interaction between the single marked
particle and the liquid rather than all of the interactions
in the liquid. The OZ equation for the solute particle is
then [63]

hUV(r) = cUV(r) + ρ

∫
cUV(|r − r

′)hVV(r
′)dr′.

Because hVV(r) does not depend on λ, we may choose
that c(r, λ) = λc(r), which leads to

βµe = ρ

∫
dr
(1
2
h2 − c−

1

2
hc
)
+ ρ

∫
drgB

− ρ

∫
dr
[1
2
ahc+ (

∑

i

bi
i+ 1

hi+1)
]

(C12)

In evaluation of the excess chemical potential βµe for
the VM approximation, the second integral of Eq. (C6)
becomes

∫
B
∂h

∂λ
dλdr =

∫
B′hdr ≈

∫
B

3
hdr. (C13)

Here B′ denotes the series of integrated bridge diagrams
with the h bond removed [42]. Combining Eqs. (C6) and
(C13), and inserting them in Eq. (C11), we have

βµe = ρ

∫
dr
(1
2
h2−c−

1

2
hc
)
+ρ

∫
dr(B+

2h

3
B). (C14)

Appendix D: Connection to PMV corrections

The analytic expression for the excess chemical
potential, Eq. (15), bears a strong resemblance to PMV
corrections that have been used with 3D-RISM theory
and molecular density functional theory [24–27]. To see
the connection, we first expand Eq. (15) to the form

βµe = βµHNC + aρ

∫
drc(r) +

1

2
aρ

∫
drc(r)h(r)

+
∑

i

biρ

∫
dr

[
hi(r) +

(
i

i+ 1

)
hi+1(r)

]
(D1)

In the case that we truncate the summation at b1, this
becomes

βµe = βµHNC + aρ

∫
drc(r) + b1ρ

∫
drh(r)

+
1

2
aρ

∫
drc(r)h(r) + b1

ρ

2

∫
drh2(r). (D2)

The most general of the PMV corrections is the Universal
Correction [24], which can be applied to the HNC
expression as

βµUC = β
{
µHNC + a′ρv + b′

}
, (D3)

where a′ and b′ are parameters fit to experiment and v
is the PMV,

v = kBTχT

(
1− ρ

∫
c (r) dr

)
. (D4)

It is useful to expand v using an alternate expression for
the isothermal compressibility [32, 33, 64],

χT =
β

ρ
+ β

∫
h dr. (D5)

Combining (D3), (D4), and (D5), we have

βµUC = β

{
µHNC − a′ρ

∫
drc(r) + a′ρ

∫
drh(r)

−a′ρ2
(∫

drh(r)

)(∫
drc(r)

)
+ a′ + b′

}
(D6)

The similarity is most easily seen between Eqs. (D2) and
(D6), were we can say that a ≈ −βa′ , b1 ≈ βa′, and
a′+ b′ ≈ b1

ρ
2

∫
drh2(r). For the general case of Eq. (D1),

we have instead

a′ + b′ ≈ b1
ρ

2

∫
drh2(r)

+
∑

i=2

biρ

∫
dr

[
hi(r) +

(
i

i+ 1

)
hi+1(r)

]
.
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