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We use Numerical Linked Cluster Expansions (NLCE) to study the site diluted transverse-field Ising model

on the square-lattice at T = 0. NLCE with a self-consistent mean-field on the boundary of the clusters is used

to obtain the ground state magnetization, susceptibility, and structure factor as a function of transverse field h
and exchange constant J . Adding site-dilution to the model turns NLCE into a series expansion in the dilution

parameter p. Studying the divergence of the structure factor allows us to establish the phase-diagram in the h/J
and p plane. By studying the magnetization of the system in a longitudinal field, we investigate the Griffiths-

McCoy (GM) singularities. We find that the magnetization develops non-linearities in the Griffiths phase with

exponents that vary continuously with h. Additionally, the probability distribution of the local susceptibility

develops long tails in the Griffith’s phase, which is studied in terms of its moments.

I. INTRODUCTION

Disorder occurs in physical systems for a plethora of rea-

sons. We considered the case of site dilution–the random

omission of lattice sites–in the transverse field Ising model

in two dimensions. This models magnetic substances with a

fixed concentration of non-magnetic impurities and alloys of

magnetic and non-magnetic substances. Among other proper-

ties, this model displays two noteworthy features: a disconti-

nuity in the critical value of the transverse field as a function

of the dilution parameter and Griffths-McCoy singularities.

The discontinuity in the transverse field as the dilution pa-

rameter varies below the percolation threshold was first shown

by Harris [1]. Below the percolation threshold the lattice is

composed of disconnected pieces, so no overall long range or-

der is possible. Once the lattice percolates, a cluster of spins

spanning the entire length of the lattice arises, permitting long

range order up to a critical field of at least that of the one-

dimensional pure system. This picture was later confirmed by

Stinchcombe using a real-space Renormalization Group cal-

culation [2].

Griffiths Singularities arise due to the low but nonzero prob-

ability of large non-dilute regions in an otherwise dilute lat-

tice. These regions tend to magnetize, locally entering a fer-

romagnetic phase despite the disordered behavior of the bulk

lattice, effectively behaving as embedded, finite-size copies of

the pure system [3]. These clusters lead to “Griffiths” singu-

larities everywhere where the pure system is ordered. In clas-

sical systems, these singularities are weak as the probability

of having a large ordered region falls off exponentially with

size and consequently they are barely visible experimentally

or numerically. However, in dynamical properties of quantum

systems, tunneling between the ground state and excited states

in the locally non-dilute regions gives the weight of singular-

ities an additional factor related to the inverse of energy gap

between these states, which is also exponentially small in the

region size. This can promote what were weak essential sin-

gularities in thermodynamic quantities into power-laws. As

a consequence, these quantum Griffiths-McCoy singularities

[4, 5] are important both for experiments [6] and numerical

calculations [7–9]. For a more comprehensive discussion on

Griffiths-McCoy singularities in a myriad of disordered mod-

els and on the role of disorder in general in quantum critical

behavior, see [10].

In this work, we study the critical behavior and Griffiths-

McCoy singularities in the dilute transverse-field Ising model

[9, 11] at T = 0 using numerical linked cluster expansions

(NLCE) [12–15]. We use NLCE to study the susceptibility,

magnetization, and structure factor and establish the phase di-

agram of the system. We pay special attention to the existence

of Griffiths-McCoy singularities, finding numerical evidence

for their existence in the behavior of the magnetization as a

function of longitudinal field and the probability distribution

of the local susceptibility.

II. OVERVIEW OF APPROACH

A. Model

We consider the zero temperature behavior of a site-diluted

transverse field Ising model on a two-dimensional square lat-

tice. The model is parametrized by three values {J, h, p},

where J is an exchange constant that controls the strength

of nearest-neighbor spin-spin interactions, h is the coupling

strength to a transverse field, and p is the dilution parameter.

The Hamiltonian of the model is:

H = J
∑

〈i,j〉

ǫiǫjσ
z
i σ

z
j + h

∑

i

ǫiσ
x
i , (1)

where 〈·, ·〉 denotes nearest-neighbor pairs of sites on the lat-

tice and σz and σx are the Pauli matrices. The ǫi terms are

site dilution variables: quenched random variables with bi-

modal distribution, taking values of 0 and 1 with probability p
and 1− p respectively.
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At zero temperature, thermal averages reduce to ground

state expectation values. We denote the ground state by |0〉.
We will take J < 0 to study the ferromagnetic problem. The

ground state only depends on the ratio h/J . Hence, we set

J = −1.

B. Method

Numerical Linked Cluster Expansions (NLCE) is a method

of approximating an extensive property of a thermodynamic

system as a series with terms computed by exact diagonaliza-

tion of small, finite size systems—‘clusters’—which embed

into the lattice of the full model. Specifically, given an exten-

sive property P , its per-site value in the thermodynamic limit

is given by the expression:

lim
N→∞

P

N
=

∑

c

L[c]W [c]. (2)

The lattice constant L[c] denotes the number of ways, per site,

the cluster c can embed into the lattice. W [c] is the weight of

the cluster in the lattice, determined recursively by:

W [c] = P [c]−
∑

c′⊂c

W [c′], (3)

where, c′ ⊂ c is a sub-cluster—a cluster which embeds into

the cluster c—and P [c] is the property computed on the clus-

ter.

For disordered models, one is typically interested in quan-

tities of the form [P/N ]av, where [...]av denotes the quenched

average. In our case, this is a sum over the site dilution vari-

ables ǫi. NLCE can be generalized to a quenched average in a

straightforward way by simply computing the quenched aver-

age of each cluster individually before summing up the total

value of the property [16–18]. In the case of the site diluted

model we study, this greatly simplifies the resulting series. For

any cluster, any configuration of the site dilution variables ǫi
in which any site is omitted will reduce the cluster to a col-

lection of its sub-clusters, resulting in zero weight after the

weights of sub-clusters are subtracted away. Only the single

configuration with no dilution survives the sub-graph subtrac-

tion. Consequently, the NLCE of the quenched average of a

property P reduces to simply the NLCE of P for the pure sys-

tem with an additional factor of pN [c], the probability of the

non-dilute configuration:

lim
N→∞

[

P

N

]

av

=
∑

c

L[c]W [c]pN [c] ≡

∞
∑

n=1

anp
n, (4)

where N [c] denotes the number of sites in c. As a conse-

quence, the NLCE becomes a power series in the dilution pa-

rameter p.

III. PURE SYSTEM ANALYSIS

We first considered the non-dilute Ising problem (the p = 1
limit). We calculate the susceptibility and structure factor, as

both of these quantities are known to diverge strongly near

the pure system’s critical point of hc ≃ 3.044. The structure

factor S is defined by:

S =
∑

i,j

〈σz
i σ

z
j 〉 − 〈σz

i 〉〈σ
z
j 〉, (5)

where we use the notation 〈σz
i 〉 = 〈0|σz

i |0〉. In order to com-

pute the susceptibility, we add an additional longitudinal field

term to the Hamiltonian:

H = J
∑

〈i,j〉

σz
i σ

z
j + h

∑

i

σx
i + hL

∑

i

σz
i . (6)

With this additional factor, letting E0 denote the ground state

energy, the susceptibility is given by:

χ = − lim
hL→0

∂2E0

∂hL
2 . (7)
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FIG. 1: (a) shows the structure factor S and (b), the susceptibility

χ. For both quantities, the NLCE produces a series expansion in the

number of bonds in clusters. Our analysis includes clusters up to

order 10. Curves of order 1-10 in the number of bonds are shown

simultaneously with increasing redness starting with blue at first or-

der. The NLCE converge well for h > hc and increase sharply close

to hc before saturating for small values of h. The point at which the

steep rise begins occurs closer and closer to hc the higher the order.

The ground state of a finite size system is straight forward

to compute numerically. Consequently, we are able to use

NLCE [12–15] to compute the ground state energy E0 and

structure factor S. By computingE0 for a range of hL, numer-

ically finding the second derivative via the central difference

method, and evaluating the result for small hL, we obtain a

reasonable estimate for the susceptibility χ. The results of the

computation are shown in fig. 1. Without help of an extrapo-

lation method it is difficult to locate the critical point in NLCE

as the structure factor and susceptibility keep on increasing as

h is reduced in each order. However, we can do better by in-

cluding an additional ‘mean-field’ term in the Hamiltonian at

the boundary of each cluster to account for the effects of the

rest of the lattice:

H = J
∑

〈i,j〉

σz
i σ

z
j + h

∑

i

σx
i +m(h)

∑

i

qi[c]σ
z
i . (8)
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This added term is a mean field acting on the boundary of the

cluster: the quantity qi[c] represents the number of neighbors

on the site i that are not in the cluster c and so are outside the

cluster. We expect the h-dependent value of m to satisfy the

self-consistency condition m = M , where M is the magneti-

zation per site of the lattice, defined by:

M =
1

N

∑

i

〈σz
i 〉. (9)

We implement this as a constraint numerically by computing

M for a small number of guessed, constant values of m for

each h, then interpolating to find the approximate value of

m satisfying the self-consistency constraint. Computed for a

range of h, this gives an approximation for the magnetization

M , and also regulates the convergence of the NLCE for both

S and χ. The result of this computation is shown in fig. 2.

This gives a qualitative picture of the phase transition but is

not accurate enough to calculate critical properties. In this

manuscript, we are not interested in a more complex extrap-

olation of the NLCE series, as our primary interest is in the

diluted system, which turns out to be much more straightfor-

ward to extrapolate.
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FIG. 2: In all three plots, orders 4-10 in the number of bonds are

shown, with higher orders shown in redder colors. (a) shows the

magnetization computed using the self-consistency constraint. Its

shape is qualitatively typical for the magnetization of a ferromag-

net, falling to zero near the critical point. (b) and (c) show curves

of the structure factor S and susceptibility χ plotted using the mag-

netization self-consistent mean field. Both quantities now converge

very well in both the ordered and disordered phases, peaking near the

critical point.

IV. DILUTION PROBLEM

A. Phase Diagram

We now turn our attention to the dilute Ising problem. In the

limit of h → 0, this becomes a percolation problem with two

phases controlled by the value of the percolation parameter p.

At low values of p, highly dilute configurations dominate, the

lattice becomes a collection of disconnected clusters, and no

long-range order develops. Above the percolation threshold

pc ≃ 0.59, the lattice percolates, with an infinite cluster span-

ning the full length of the lattice. This infinite cluster of spins

can develop long-range order. For small, nonzero values of

h, it has been shown [1, 2] that a flat phase boundary with pc
independent of h extends into the h − p plane to some value

hM with a lower bound of h = 1, the critical point of the

one-dimensional model. Near the critical point hc of the pure

system, the phase boundary is believed to extend smoothly

downward into the plane before meeting the flat boundary at

the multi-critical point hM . We used NLCE to confirm this

picture of the phase diagram, and get an estimate of hM , the

results of which can be visualized in fig. 4(a).

Due to the simplification of NLCE to a power series as

given by eq. (4), we are able to use the ratio method [19]

to extrapolate how the critical point pc varies as a function of

h. Specifically, for values of p near pc, we expect the structure

factor S to obey an asymptotic power law: S ∝ (p − pc)
−γ .

Consequently, we expect the coefficients of the power series

for S from eq. (4) to obey (up to corrections of order 1/n2):

an
an−1

=
1

pc

(

1 +
γ − 1

n

)

. (10)

This can be seen by matching powers of p in the series expan-

sions resulting from taking the derivative of eq. (4) and the

power law for S. A plot of these ratios is shown in fig. 3 for

a range of values of h. One can estimate pc at a given h from

the intercept of a regression of these ratios computed for that

h. We use this method to compute pc as a function of h. The

resulting phase diagram is shown in fig. 4(a).

In addition to this, the slope of the linear regression ratios

can be used to approximate the critical exponent γ. Note that

this is not the standard γ exponent as we are not calculating

the susceptibility. The susceptibility itself develops strong

Griffiths-McCoy singularities and hence cannot be used to

study the critical point by a series expansion method [20].

In the region where this method converges well and is phys-

ically meaningful, γ is approximately constant in the range

(0.5 to 0.6), within our limited accuracy, as shown in fig.

4(b). The susceptibility at this transition is known to have

an activated dynamical scaling behavior with a divergent dy-

namical critical exponent z [11, 21–23], however, the equal

time structure factor can still have a power-law behavior. The

strong-disorder fixed point studies by real-space renormaliza-

tion group [22] and Monte Carlo simulations [21, 23] do give

a power-law singularity for the structure factor, but with a very

small exponent γ < 0.1. Our results are clearly not in agree-

ment with them. This may mean that the series obtained is

too short to access the strong disorder fixed point and instead
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FIG. 3: Plots of ratios an/an−1 as a function of 1/n for a repre-

sentative range of h-values with n ranging from 4 to 10. For large

values of h, these plots are all relatively flat. For values of h <
∼

hc,

the intercept of a linear regression of the values shown here will yield

a value of 1/pc that is < 1. This implies an absence of any phase

transition in the physically relevant range of p-values in the system.

Subsequently, the h at which the computed pc becomes unity gives

an approximation of the pure system critical point hc. Additionally,

for sufficiently small values of h, the plots become very nonlinear

and irregular, indicating that the convergence of NLCE breaks down

below some hM . This is to be expected as at the multi-critical point

hM critical behavior switches from being governed by the value of h
to being controlled by the geometry of the lattice, and the singularity

is no longer a power-law for h below hM .

gives a conventional random fixed point relevant at intermedi-

ate length scales. We then compare our results with the dou-

ble epsilon expansion of Boyanovsky and Cardy [24]. They

considered the problem of impurities correlated along some

directions. Our quantum problem corresponds to the case of

two physical dimension plus one correlated dimension for a

total of three dimensions. Setting ǫd = 1 and ǫ = 4 − d = 1
into the expressions of Boyanovsky and Cardy [24], one ob-

tains the divergence of the structure factor exponent to be

γ = (2 − η − z)ν ≈ 0.73. Given the level of accuracy

of our calculations and that this is leading order in the ep-

silon expansions, the agreement is not unreasonable. As the

phase diagram flattens out the series loses convergence. This

is because the system no longer has a power-law singularity.

We estimate that the phase diagram is flat below hM ≈ 1.65.

Again, we are not aware of previous accurate estimates of hM ,

which is not easy to obtain in Quantum Monte Carlo Simula-

tions [9].

B. Griffiths-McCoy Singularities

Griffiths-McCoy (GM) singularities occur in disordered

quantum models where the pure system would be ordered.

Rare, ordered regions can locally mimic the ordered phase of

the pure system. Here we focus on the low p and h regime—

the Griffiths phase on the disordered side—as non-dilute re-

gions in an otherwise highly dilute lattice. This region is
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FIG. 4: (a) Phase diagram, showing distinct ferromagnetic (FM),

paramagnetic (PM), and Griffiths (GP) phases. Using linear regres-

sion on data like that shown in fig. 3 for many values of h, we es-

tablished the boundary shown by the full line. This line begins at

the approximate hc of the pure system, which we find to be 3.03,

close to the known value of 3.04. The flat continuation of the phase

boundary we expect after convergence of the NLCE breaks down for

h < hM is shown by the horizontal dashed line. This point begins at

hM ≃ 1.65. This line intersects the p axis at the percolation prob-

ability pc, which we find to be 0.58, also close to the known value

of 0.59. The dotted line marked with hd−1

c shows the value of the

one-dimensional critical point, a lower bound on hM . The vertical

dashed line indicates a separation between the ordinary paramagnetic

phase and the disordered Griffiths phase where we observe Griffiths-

McCoy singularities to be present. (b) shows the value of γ com-

puted from the slope of the same linear regression. This gives the

rough bounds 0.47 <
∼

γ <
∼

0.61.

shown in fig. 4(a) labeled GP. There are Griffiths singulari-

ties also on the ordered side, but we will not study them here

as in the absence of a mean-field the NLCE will not converge

there.

We expect GM singularities to manifest in the behavior of

the time-integrated or zero-frequency response of the system

as well as in the magnetizationM as a function of longitudinal
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external field hL:

H = J
∑

〈i,j〉

ǫiǫjσ
z
i σ

z
j + h

∑

i

ǫiσ
x
i + hL

∑

i

ǫiσ
z
i . (11)

The magnetization as a function of longitudinal field of a pure

ferromagnet in its paramagnetic phase is linear in the limit of

small hL. However, below the percolation threshold in the

diluted model, we expect the presence of GM singularities to

alter this power law behavior and produce a nonlinear rela-

tionship between M and hL. In agreement with this picture,

we find that the magnetization vs hL curve develops curvature

for values of h below hc as shown in fig. 5. Specifically, the

0 2 4
hL

0.0

0.2

0.4

M

(a)

h=2
h=2.5
h=3
h=3.5
h=4
h=4.5

−2 −1 0 1
log(hL)

−4

−3

−2

−1

lo
g(
M
)

(b)

FIG. 5: Both plots show computations for p = 0.5, well below the

percolation threshold pc = 0.59 and in the Griffiths phase for small

h. Computations were done to 10th order in the number of sites. (a)

shows magnetization M plotted as a function of longitudinal field

hL for a representative range of h-values. Below the critical point

hc = 3.04, curvature begins to develop in the small-hL limit. This

can be better visualized in (b), showing a log-log plot of the same

quantities. For h > hc, the slopes of the log-log plot are about 1,

while for values h < hc, they are noticeably less than 1.

magnetization obeys some nonlinear power law M ∼ hL
a.

To quantify how the exponent varies with h, we use a linear

fit of a log-log plot of M and hL to compute a for a range

of values of h. As shown in fig. 6, for h < hc, this varies

continuously as a function of h.

As an additional indication of the influence of GM singu-

larities, we consider the probability distribution of the local

susceptibility χloc =
∑

i χi, with the one-site susceptibility

defined by adding a one-site longitudinal term to the Hamilto-

nian:

H = J
∑

〈i,j〉

ǫiǫjσ
z
i σ

z
j + h

∑

i

ǫiσ
x
i + hLǫiσ

z
i . (12)

The one-site susceptibility is then given by:

χi = − lim
hL→0

∂2E0

∂hL
2 . (13)

We study this distribution by examining its moments χn
loc ≡

∑

i χ
n
i . For small values of n, the value of h at which the mo-

ments begin to diverge is typically much smaller than the pure

system critical point hc, but as n is increased, the point moves

2 3 4 5 6
h

0.2

0.4

0.6

0.8

1.0

a

hc

FIG. 6: Plot of the exponent a as a function of h for p = 0.5. For

h > hc, a ≃ 1 as is typical of the pure system. For h < hc, a
begins decreasing continuously with h, indicating the influence of

GM singularities.

closer to hc. Curves for the moments plotted over a range of

values of h and their points of divergence as a function of 1/n
are shown in fig. 7(a) and (b) respectively. This movement of

the divergence point is indicative of tails in the probability dis-

tribution of χloc induced by the presence of GM singularities.

Theoretically, the singularities set in as soon as one goes past

hc of the pure system. However, near hc they are weak and

consequently only some high moments may diverge. As one

goes deeper into the Griffiths phase, the singularities become

stronger and as a result, lower moments diverge as well.

V. CONCLUSION

In this work, we have used NLCE to compute the magneti-

zation, structure factor, and susceptibility of the zero tempera-

ture dilute quantum transverse-field Ising model. In analyzing

the pure system, we demonstrated the efficacy of the NLCE at

computing the magnetization as a function of transverse field

strength h by adding to the Hamiltonian a mean-field term

coupled to the boundary of each cluster and imposing a self-

consistency constraint on the strength of the coupling and the

magnetization. This regulates the convergence of the NLCE

in the ordered phase for the structure factor and susceptibil-

ity. It yields an approximation that converges reasonably in

both the low and high h regimes. Though, in the absence of

more sophisticated sequence extrapolations, it is not accurate

enough to study critical phenomena.

In the problem with dilution, NLCE turns into a series ex-

pansion in the dilution parameter. Hence, we used a series

extrapolation method to study the asymptotic behavior of the

structure factor to compute pc as a function of h, leading to the

phase boundary. This also gave us good estimate of the pure

system critical point at hc ≃ 3.03 and the percolation thresh-

old pc ≃ 0.58, in reasonable agreement with known results of

3.04 and 0.59 resp. Additionally, we found the multi-critical

point at which the phase boundary flattens to be at hM ≃ 1.65,



6

1.5 2.0 2.5 3.0
h

0

2

4

6

8

10

χn lo
c

(a)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
1/n

1.65

1.70

1.75

1.80

1.85

1.90

h

(b)

v=3
v=5
v=10

FIG. 7: (a) shows plots of the moments of the local susceptibility

χn

loc shown for p = 0.5 for n ranging from 1 to 10, with smaller n
values appearing in blue and larger n values in red. All values were

computed to 10th order in the number of sites. (b) shows a series of

points where each moment crosses a selection of values v (indicated

by horizontal lines in (a)), indicating roughly where each moment

begins to diverge, plotted as a function of 1/n. As n is increased,

these plots begin to curve up pushing them towards hc.

above the known lower bound of 1. For the random system

we found the structure factor to diverge with an exponent γ of

0.47 <
∼ γ <

∼ 0.61, whose accuracy is difficult to gauge. It is

quite far from the value of less than 0.1 found at the strong-

disorder fixed point [21–23] but is not far from a more con-

ventional random fixed-point studied by Boyanovsky-Cardy

who obtained [24] a γ value of 0.73.

For small values of p and h, we found numerical evidence

for Griffiths-McCoy singularities in the behavior of the mag-

netization as a function of longitudinal field and moments of

the local susceptibility. In low p regions of the paramagnetic

phase, the slope a of the magnetization as a function of small

hL remains roughly constant at 1 for all values of h. However,

at values below hc we found that a continuously diminished as

a function of h, implying that the magnetization becomes non-

linear. This behavior mirrors observation from experiments,

such as in [6]. Additionally, in this region, the moments of

the local susceptibility diverge at points h < hc, with higher

moments diverging for values of h closer to hc, indicating the

presence of tails in the probability distribution of the local sus-

ceptibility. Both of these effects evince a change in behavior

when crossing below hc in the low-p regime, demonstrating

the existence of the Griffiths phase dominated by Griffiths-

McCoy singularities.

The NLCE method has been applied successfully to

Heisenberg spin models as well as to t− J and other fermion

models [12–14], including diluted systems at high tempera-

tures. It can also be used to study GM singularities, when

these systems are diluted at T = 0 or at low temperatures.

This is left for future study.
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