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Abstract
A gyrokinetic linearized exact (not model) Landau collision operator is derived by transform-

ing the symmetric and conservative Landau form. The formulation obtains the velocity-space flux

density and preserves the operator’s conservative form as the divergence of this flux density. The

operator contains both test-particle and field-particle contributions, and finite Larmor radius effects

are evaluated in either Bessel function series or gyrophase integrals. While equivalent to the gy-

rokinetic Fokker–Planck form with Rosenbluth potentials [B. Li and D. R. Ernst, Phys. Rev. Lett.

106, 195002 (2011)], the gyrokinetic conservative Landau form explicitly preserves the symmetry

between test-particle and field-particle contributions, which underlies the conservation laws and

the H-theorem, and enables discretization with a finite-volume or spectral method to preserve the

conservation properties numerically, independent of resolution. The form of the exact linearized

field-particle terms differ from those of widely used model operators. We show the finite Larmor

radius corrections to the field-particle terms in the exact linearized operator involve Bessel functions

of all orders, while present model field-particle terms involve only the first two Bessel functions.

This new symmetric and conservative formulation enables the gyrokinetic exact linearized Landau

operator to be implemented in gyrokinetic turbulence codes for comparison with present model

operators using similar numerical methods.
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I. INTRODUCTION

Collisions are common and fundamentally important in laboratory and natural plasmas.

They play an essential role in the classical and neoclassical transport in magnetic fusion

confinement experiments, and irreversibly dissipate kinetic energy into thermal energy in ki-

netic turbulence. Considering the statistics of small-angle Coulomb collisions within a Debye

sphere, which typically account for 90% of scattering events, using the Boltzmann collision

operator results in the well-known Landau operator (or Fokker–Planck operator) accurate

to O (1/ ln Λ), with ln Λ the Coulomb logarithm [1, 2]. Both Landau and Fokker–Planck

operators describe the collision effect as a divergence of a velocity-space flux density,

Cab (fa, fb) = −∇ · Jab, (1)

where fs = fs (v) (s = a, b) are distribution functions in the a − b type of collisions, and

∇ = ∂/∂v. The flux density for the Landau operator is written in an integral form as

Jab = Γab

ˆ
U ·

(
fa
mb

∇′f ′b −
f ′b
ma

∇fa
)
d3v′, (2)

where ms is the particle mass, Γab = 2πe2ae
2
b lnΛ/ma, with es the particle charge, f ′ = f (v′),

∇′ = ∂/∂v′, and the Landau tensor is U = S/u, with u = v − v′ the relative velocity,

u = |u|, and S = I − uu/u2 the orthogonal projection onto the plane perpendicular to u.

Physically, v and v′ can be understood as the particle velocities prior to the elastic collision

in the coarse-grained model of long-range Coulomb interactions. The flux density for the

Fokker–Planck operator can be expressed as differentiations of the Rosenbluth potentials,

Jab = Γab

(
2

mb

fa∇H −
1

ma

∇∇G · ∇fa
)
, (3)

with the Rosenbluth potentials defined as G (v) =
´
f ′bud

3v′ and H (v) =
´
f ′b/ud

3v′. These

two operators are equivalent [3]. For clarity, hereafter they are referred as the Landau form

and the Fokker–Planck form. While the Rosenbluth potentials satisfy Poisson-like equations

and many analytical and numerical methods can be used to solve them in O(N lnN) opera-

tions [4–7], previous studies suggest that the symmetric Landau form is useful in numerical

simulations to preserve the conservation laws and the H-theorem inherent in the operator

[8–12], which are important for the physical fidelity of numerical solutions, especially for

simulations with low to moderate velocity-space resolutions.
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The Landau operator Cab (fa, fb) for unlike-species collisions is bilinear in fa and fb, and

Caa (fa, fa) for like-species collisions is nonlinear in fa. In situations such as the tokamak

core, where the turbulence fluctuation amplitude is much smaller than the near-equilibrium

background (|f − f0| � f0), the fluctuation frequency is much less than the gyrofrequency

(ω � Ω), and the gyroradius is much smaller than the scales of the background magnetic

field, density, and temperature variations (ρ� L), the fast-scale gyration about the mag-

netic field can be averaged over, and the Fokker–Planck equation for the six-dimensional

particle distribution function can be transformed to the gyrokinetic equation describing

evolution of the perturbed five-dimensional guiding-center distribution function [13–16]. For

cases where departures from a Maxwellian distribution are relatively small, such as micro-

turbulence in the core of magnetically confined fusion plasmas, a linearized collision operator

is appropriate and consistent with the standard gyrokinetic ordering described in the fore-

going references. To include finite Larmor radius (FLR) effects in the collision operator,

the linearized collision operator is gyrokinetically transformed as follows. For convenience,

the spatial coordinates are transformed to a Fourier representation in wavenumber k. The

non-Maxwellian, nonadiabatic part of the fluctuating guiding center distribution h is trans-

formed to particle coordinates via the phase factor e−ik·ρ, where ρ is the gyroradius defined

below. The collision operator then acts on the distributions in particle coordinates, and the

result is transformed back to guiding center coordinates via the phase factor e+ik·ρ. Finally

the result is averaged over the gyrophase [13, 17, 18]:

Cgk
ab (ha, hb) =

〈
eik·ρaCL

ab

(
hae

−ik·ρa , hbe
−ik·ρb

)〉
. (4)

The distribution function is expanded as fs = fs0 + fs1 + O (ε2), where the zeroth-order

distribution is assumed a Maxwellian fs0 = fsM = ns(2πTs/ms)
−3/2 exp [−msv

2/ (2Ts)], and

the first-order distribution fs1 = −esϕfsM/Ts + hs consists of an adiabatic part associated

with the electrostatic potential ϕ and a nonadiabatic part written in guiding-center coordi-

nates hs = hs
(
t,R, v⊥, v‖

)
. Here R = r − ρs is the guiding-center position, ρs = b× v/Ωs

is the gyroradius vector, b = B/B is a unit vector in the direction of the magnetic field,

Ωs = esB/msc is the gyro-frequency, ε ∼ f1/fM ∼ eϕ/T ∼ ω/Ω ∼ ρ/L is the expansion

parameter in the gyrokinetic ordering. Note that CL
ab is a linear collision operator that acts

on the particle distribution function, and 〈· · · 〉 =
¸
dφ/2π represents averaging over the

gyrophase while holding R fixed. It is understood that Eq. (4) is valid for each Fourier
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component in wavenumber k and hs = hsk is implied.

The Fokker–Planck form linearized about a Maxwellian background is a natural choice

for the collision operator. It inherits the conservation properties and the H-theorem of the

original nonlinear collision operator and is comprised of test-particle contributions and field-

particle contributions, CL
ab (fa1, fb1) = CT

ab (fa1, fb0) + CF
ab (fa0, fb1) [3, 19]. The test-particle

part consists of pitch-angle scattering and energy diffusion and can be written as [20]

CT
ab (fa1, fbM) =

νabD (v)

2

∂

∂v
·
(
v2I − vv

)
· ∂fa1
∂v

+
1

v2
∂

∂v

[
νab‖ (v)

2
v4faM

∂

∂v

(
fa1
faM

)]

+
ma

Tb

(
1− Tb

Ta

)
1

v2
∂

∂v

[
νab‖ (v)

2
v5fa1

]
, (5)

with the collision frequencies for pitch-angle scattering and energy diffusion given by

νabD (v) ≡ 4πe2ae
2
b ln Λ

m2
a

dG0 (v)

v3dv
= ν̂ab

Φ (xb)−Ψ (xb)

x3a
, (6)

and

νab‖ (v) ≡ 4πe2ae
2
b ln Λ

m2
a

d2G0 (v)

v2dv2
= 2ν̂ab

Ψ (xb)

x3a
, (7)

respectively. Here G0 (v) =
´
f ′b0ud

3v′ is the Rosenbluth potential for the background,

ν̂ab ≡ 4πnbe
2
ae

2
b ln Λ/ (m2

av
3
Ta) defines a basic collision frequency, vTs =

√
2Ts/ms, Φ (x) ≡

2π−1/2
´ x
0

exp (−y2) dy is the error function, Ψ (x) ≡ [Φ (x)− xΦ′ (x)] / (2x2) is the so-called

Chandrasekhar function, and xs ≡ v/vTs. The field-particle part involves the Rosenbluth

potentials of the perturbed field-particle distribution function and was generally considered

intractable. Significant efforts have been made to construct various model operators to sim-

plify the linearized operator [13, 17, 19, 21]. Recently, Abel et al. [18] and Catto and Ernst

[22] proposed a model operator for like-species collisions, which consists of CT
aa (fa1, faM)

and two additional terms restoring the momentum and energy conservation. The model op-

erator includes both pitch-angle scattering and energy diffusion, preferentially damps small

structures, and satisfies the conservation laws and the H-theorem. As described in Ref. [18],

the two correcting terms are the standard momentum and energy restoring expressions for

the pitch-angle scattering and energy diffusion that had appeared in Eqs. (21)-(22) of the

seminal work by Hirshman and Sigmar [19], and incidentally, Abel’s operator in drift-kinetic

limit (i.e. kρ = 0) had been used for ion–ion collisions in earlier numerical studies of neo-

classical transport [23, 24]. Later this model operator was extended to treat collisions of
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multiple ion species with unequal temperatures and comparable masses while preserving the

conservation laws and the H-theorem [20].

Using Eq. (4), Li and Ernst [25] obtained the gyrokinetic version of the exact linearized

field-particle operator for the first time. It involves a single two-dimensional velocity inte-

gral over the guiding-center distribution, and the gyrophase integral accounting for the FLR

effects can be pre-computed for a given velocity grid; thus the gyrokinetic linearized exact

operator may be computationally affordable in large scale gyrokinetic simulations of plasma

turbulence. A notable feature of the gyrokinetic exact field-particle operator is that the

gyrophase integral is logarithmically singular at u = 0, namely when the colliding particles

have the same velocity. In contrast, the collision frequencies νabD (v) and νab‖ (v) in the test-

particle operator diverge as v → 0. In fact, both types of singularities originate from the

Landau tensor, as will be shown in Appendix (B). In numerical implementations, if the sin-

gularities are not treated similarly, so that errors due to the singular behavior do not cancel,

the conservation properties could be affected since the integral kernel near the singularity of

the field-particle operator makes the dominant contribution. In this paper, we reformulate

the operator to overcome this obstacle. The key idea is linearizing and gyroaveraging the

Landau form instead of the Fokker–Planck form while preserving the symmetry and the

conservative structure, so that potential numerical errors associated with the singularity

in the field-particle contribution can be canceled by the test-particle contribution, and the

conservation laws are preserved regardless of velocity-space resolution.

The remainder of the paper is organized as follows. In Sec. (II), properties of the linearized

Landau operator such as the conservation laws and the H-theorem are demonstrated based

on the symmetry and the conservative structure inherited from the nonlinear operator. The

gyrokinetic version of the linearized Landau operator as a divergence of a velocity-space flux

density is derived in Sec. (III). The flux density can be expressed as Bessel function series

or equivalently in integral form. Sec. (IV) describes numerical methods, either finite-volume

or spectral, to preserve the conservation properties. Conclusions and a discussion of future

work are presented in Sec. (V).
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II. PROPERTIES OF THE LINEARIZED LANDAU OPERATOR

To derive the gyrokinetic version of linearized Landau collision operator, we begin by

substituting fs = fs0 + fs1 +O (ε2) into the nonlinear Landau form Eqs. (1)-(2) to obtain

Cab = Cab (fa0, fb0) + CL
ab (fa1, fb1) +O

(
ε2
)
, (8)

where

Cab (fa0, fb0) = −Γab∇ ·
ˆ
U ·

(
fa0
mb

∇′f ′b0 −
f ′b0
ma

∇fa0
)
d3v′ (9)

is the equilibrium operator formally at order O (ε0) and

CL
ab (fa1, fb1) = Cab (fa1, fb0) + Cab (fa0, fb1) (10)

is the linearized operator at order O (ε), with the test-particle part and the field-particle

part given by

Cab (fa1, fb0) = −Γab∇ ·
ˆ
U ·

(
fa1
mb

∇′f ′b0 −
f ′b0
ma

∇fa1
)
d3v′ (11)

and

Cab (fa0, fb1) = −Γab∇ ·
ˆ
U ·

(
fa0
mb

∇′f ′b1 −
f ′b1
ma

∇fa0
)
d3v′, (12)

respectively. Note that Cab (fa0, fb0) = 0 when fa0 = faM , fb0 = fbM , with Ta = Tb = T .

This can be seen by using the relation

U ·
(
fa0
mb

∇′f ′b0 −
f ′b0
ma

∇fa0
)

=
faMf

′
bM

T
U · u = 0. (13)

When Ta 6= Tb, the Cab (fa0, fb0) term pushes the plasma towards an equilibrium state

between different species. For the same relation shown in Eq. (13), Cab (eaϕfaM/Ta, fbM) =

Cab (faM , ebϕfbM/Tb) = 0 when Ta = Tb, namely the contribution from the adiabatic part of

the first-order distribution function vanishes for the linearized operator.

The conservative structure of the Landau operator is preserved in the linearization. The

(anti-)symmetry of the Landau operator carries through to the symmetry between the test-

particle part and field-particle part. The linearized operator thus inherits essential physical

properties of the Landau operator. First, it conserves particles, momentum, and energy. To

show this, considerˆ
d3vφaCab (fa1, fb0) +

ˆ
d3vφbCba (fb0, fa1)

= 2πe2ae
2
b ln Λ

ˆ
d3v

ˆ
d3v′

(
∇φa
ma

− ∇
′φ′b
mb

)
·U ·

(
fa1
mb

∇′f ′b0 −
f ′b0
ma

∇fa1
)
, (14)
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which vanishes because (∇φa/ma −∇′φ′b/mb) · U = 0 for φs = 1 (particle conservation),

φs = msv (momentum conservation), and φs = msv
2/2 (energy conservation). While the

particle conservation is independently satisfied by the test-particle part and the field-particle

part, the momentum (and energy) loss via the test-particle operator of a − b collisions is

exactly canceled by the momentum (and energy) gain via the field-particle operator of the

b− a collisions, and vice versa.

Second the entropy production due to a− b collisions for the linearized case is given by

dSa
dt
≡ − d

dt

ˆ
falnfad3v ' −

ˆ
CL
ab (fa1, fb1)

(
lnfa0 + f̂a1

)
d3v, (15)

where the normalized perturbed distribution function f̂s1 = fs1/fs0 is introduced. When fa0

and fb0 are Maxwellian distribution functions with equal temperatures, the first term from

the mutual collisions between species a and b does not contribute to the overall entropy pro-

duction due to the conservation laws, thus we have the H-theorem based on the contribution

from the second term∑
s=a,b

dSs
dt

= −
[ˆ

d3vf̂a1C
L
ab (fa1, fb1) +

ˆ
d3vf̂b1C

L
ba (fb1, fa1)

]

= 2πe2ae
2
b ln Λ

ˆ
d3v

ˆ
d3v′fa0f

′
b0

(
∇′f̂ ′b1
mb

− ∇f̂a1
ma

)
·U ·

(
∇′f̂ ′b1
mb

− ∇f̂a1
ma

)
≥ 0,

(16)

due to the Cauchy–Schwarz inequality. Note that with unequal temperatures Ta 6= Tb, the

dominant entropy production is from the equilibrium operator and closely related to the

collisional energy exchange between the Maxwellian distribution functions,∑
s=a,b

dSs
dt

= −
[ˆ

Cab (fa0, fb0) ln fa0 d
3v +

ˆ
Cba (fb0, fa0) ln fb0 d

3v

]
=

ˆ
Cab (fa0, fb0)

mav
2

2Ta
d3v +

ˆ
Cba (fb0, fa0)

mbv
2

2Tb
d3v. (17)

The expression for energy exchange is well known (Ref. [26], p. 34),
ˆ
Cab (fa0, fb0)

mav
2

2
d3v =

4
√

2πnanbe
2
ae

2
b ln Λ

mamb

(Tb − Ta)
(
Ta
ma

+
Tb
mb

)−3/2
. (18)

In present context it can be calculated with the equilibrium operator obtained from replacing

fa1 with faM in Eq. (5),

Cab (fa0, fb0) =
ma

Tb

(
1− Tb

Ta

)
1

v2
∂

∂v

[
νab‖ (v)

2
v5faM

]
. (19)

7



Therefore the H-theorem for the equilibrium operator is established as

∑
s=a,b

dSs
dt

=
4
√

2πnanbe
2
ae

2
b ln Λ

mamb

(
Ta
ma

+
Tb
mb

)−3/2
(Tb − Ta)2

TaTb
≥ 0. (20)

Accordingly, the H-theorem is satisfied and entropy production is positive for collisions

between two species with equal or unequal temperatures.

III. GYROKINETIC LINEARIZED LANDAU OPERATOR IN CONSERVATIVE

LANDAU FORM

A. Bessel function series for field-particle terms

The gyrokinetic version of the linearized operator describing collision effects on the nona-

diabatic guiding-center distribution can be obtained via a guiding-center transformation and

gyrophase averaging. Mathematically, this is achieved by substituting Eqs. (10)-(12) into

Eq. (4), CL
ab (ha, hb)→ Cgk

ab (ha, hb) =
〈
eik·ρaCL

ab

(
hae

−ik·ρa , hbe
−ik·ρb

)〉
. In order to carry out

the derivation, a coordinate system in velocity space needs to be specified. In this paper,

we adopt a cylindrical coordinate system as defined in Appendix (A). For future reference,

the gyrokinetic operator in spherical representation (speed and pitch-angle) is given in Ap-

pendix (C). The spherical representation is sometimes preferred because it diagonalizes the

test-particle operator in the Fokker–Planck form, motivating some codes to use speed (or

energy) and pitch-angle coordinates.

By using the vector relation a∇ ·A = ∇ · (aA) −A · ∇a, the gyrokinetic test-particle

operator can be split into two parts,

Cgk
ab (ha, fb0) /Γab

= −
〈
∇ ·
[
eik·ρa

ˆ
U ·

(
ha
mb

e−ik·ρa∇′f ′b0 −
f ′b0
ma

∇
(
hae

−ik·ρa
))

d3v′
]〉

+

〈
∇ · eik·ρa

ˆ
U ·

(
ha
mb

e−ik·ρa∇′f ′b0 −
f ′b0
ma

∇
(
hae

−ik·ρa
))

d3v′
〉
. (21)
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The first part of Eq. (21) can be written as

−
〈
∇ ·
[
eik·ρa

ˆ
d3v′U ·

(
ha
mb

e−ik·ρa∇′f ′b0 −
f ′b0
ma

∇
(
hae

−ik·ρa
))]〉

= − 1

v⊥

∂

∂v⊥

〈
v⊥

ˆ
d3v′

f ′b0
ma

[
U⊥⊥

(
−∂ha
∂v⊥

+
ik · ρaha

v⊥

)
+ U⊥⊥′

ma

mb

ha∂f
′
b0

f ′b0∂v
′
⊥

+U⊥‖

(
ma

mb

ha∂f
′
b0

f ′b0∂v
′
‖
− ∂ha
∂v‖

)
+ U⊥φ

−ik · v⊥ha
Ωav⊥

]〉

− ∂

∂v‖

〈ˆ
d3v′

f ′b0
ma

[
U‖⊥

(
−∂ha
∂v⊥

+
ik · ρaha

v⊥

)
+ U‖⊥′

ma

mb

ha∂f
′
b0

f ′b0∂v
′
⊥

+U‖‖

(
ma

mb

ha∂f
′
b0

f ′b0∂v
′
‖
− ∂ha
∂v‖

)
+ U‖φ

−ik · v⊥ha
Ωav⊥

]〉

= − 1

v⊥

∂

∂v⊥

〈
v⊥

ˆ
d3v′

f ′b0
ma

[
−U⊥⊥

∂ha
∂v⊥

+ U⊥‖

(
ma

mb

ha∂f
′
b0

f ′b0∂v
′
‖
− ∂ha
∂v‖

)
+ U⊥⊥′

ma

mb

ha∂f
′
b0

f ′b0∂v
′
⊥

]〉

− ∂

∂v‖

〈ˆ
d3v′

f ′b0
ma

[
−U‖⊥

∂ha
∂v⊥

+ U‖‖

(
ma

mb

ha∂f
′
b0

f ′b0∂v
′
‖
− ∂ha
∂v‖

)
+ U‖⊥′

ma

mb

ha∂f
′
b0

f ′b0∂v
′
⊥

]〉
. (22)

Here the first identity results from projecting the ∇ operator and the Landau tensor onto the

cylindrical coordinate basis. The relations in Eqs. (A3)-(A5) associated with the cylindrical

coordinates are used. Uµν ≡ eµ ·U · eν is the projection of the Landau tensor, and is given

explicitly in Eqs. (A7)-(A18). The 1/v⊥∂/∂φ term of the divergence does not survive the

averaging over gyrophase. The apparent imaginary terms vanish in the second identity of

Eq. (22) because f ′b0 is assumed independent of φ′, and

2πˆ

0

dφ

2πˆ

0

dφ′Uµν (φ− φ′) g (φ) = −
2πˆ

0

dφg (φ)

φ−2πˆ

φ−0

dδUµν (δ) =

2πˆ

0

dφg (φ)

2πˆ

0

dδUµν (δ) = 0,

(23)

for g (φ) ∈ {sinφ, cosφ}, where the first identity is from the change of integration variable

φ′ to δ = φ− φ′, and the second identity results from the periodicity of Uµν (δ) in δ.

By using the same relations in Eqs. (A3)-(A5) and argument in Eq. (23), it is not difficult

to show that the second part of the test-particle operator in Eq. (21) accounting for FLR
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effects can be written as〈(
∇eik·ρa

)
·
ˆ
d3v′U ·

(
ha
mb

e−ik·ρa∇′f ′b0 −
f ′b0
ma

∇
(
hae

−ik·ρa
))〉

= −k
2ρ2aha
v2⊥

ˆ
d2v′

f ′b0
ma

2π

˛
dδ

2π

[
1

2
U⊥⊥ (δ) +

1

2
Uφφ (δ)

]
= −k

2ρ2aha
v2⊥

ˆ
d2v′

f ′b0
ma

2π

˛
dδ

2π

1

2u3

[
u2 +

(
v‖ − v′‖

)2]
, (24)

where k is wavenumber perpendicular to the magnetic field.

A notable feature of the gyrokinetic test-particle operator is that the FLR effects are

completely separable from the drift-kinetic part. This feature is present in the Landau form,

as well as the Fokker–Planck form [18, 22]. In Appendix (B), it is demonstrated that the

test-particle operator in the Landau form is equivalent to the gyrokinetic version of Eq. (5).

Specifically the drift-kinetic part of Eq. (22) corresponds to the drift-kinetic part of the

gyrokinetic version of Eq. (5), and the FLR terms representing the gyrodiffusion in Eq. (24)

can also be written as
[
−νabD

(
2v2‖ + v2⊥

)
− νab‖ v2⊥

]
k2ha/ (4Ω2

a) in the Fokker–Planck form

[13, 18, 21, 22]. The gyrodiffusion increases secularly with the perpendicular wavenumber

and thus preferentially damps the high-k modes of turbulent fluctuations.

The gyrokinetic field-particle operator also contains two parts. By projecting the ∇ op-

erator and the Landau tensor onto the coordinate basis, the first part becomes

−
〈
∇ ·
[
eik·ρa

ˆ
d3v′U ·

(
fa0
mb

∇′
(
h′be
−ik·ρ′b

)
− h′b
ma

e−ik·ρ
′
b∇fa0

)]〉
= − 1

v⊥

∂

∂v⊥

〈
v⊥

ˆ
d3v′eik·(ρa−ρ

′
b)fa0
mb

∑
n

[
cn⊥⊥′einδ

(
∂h′b
∂v′⊥

+
eiφ

′ − e−iφ′

2

kρ′bh
′
b

v′⊥

)

−cn⊥⊥
mb

ma

h′b∂fa0
fa0∂v⊥

+ cn⊥‖′e
inδ

(
∂h′b
∂v′‖
− mb

ma

h′b∂fa0
fa0∂v‖

)
− cn⊥φ′einδ

eiφ
′
+ e−iφ

′

2i

kρ′bh
′
b

v′⊥

]〉

− ∂

∂v‖

〈ˆ
d3v′eik·(ρa−ρ

′
b)fa0
mb

∑
n

[
cn‖⊥′einδ

(
∂h′b
∂v′⊥

+
eiφ

′ − e−iφ′

2

kρ′bh
′
b

v′⊥

)

−cn‖⊥
mb

ma

h′b∂fa0
fa0∂v⊥

+ cn‖‖′e
inδ

(
∂h′b
∂v′‖
− mb

ma

h′b∂fa0
fa0∂v‖

)
− cn‖φ′einδ

eiφ
′
+ e−iφ

′

2i

kρ′bh
′
b

v′⊥

]〉
,

(25)

where the Landau tensor projection Uµν is periodic in δ and expanded in Fourier series,

Uµν (δ) =
∑

n c
n
µνe

inδ, with cnµν the nth expansion coefficient given by Eq. (A20). Notice that

Uµν is either even or odd in δ, thus cnµν is either real or imaginary. To represent the FLR

10



effects, the integral representations of Bessel functions Jan ≡
¸
dφ/2π exp (ikρa sinφ− inφ)

and J bn ≡
¸
dφ′/2π exp (ikρ′b sinφ′ − inφ′) can be applied and the first part of the gyrokinetic

field-particle operator Eq. (25) can be further written as

− 1

v⊥

∂

∂v⊥

{
v⊥

ˆ
2πd2v′

fa0
mb

∑
n

Ja−n

[
cn⊥⊥′

(
J bn
∂h′b
∂v′⊥

+
J bn−1 − J bn+1

2

kρ′bh
′
b

v′⊥

)

−cn⊥⊥J bn
mb

ma

h′b∂fa0
fa0∂v⊥

+ cn⊥‖′J
b
n

(
∂h′b
∂v′‖
− mb

ma

h′b∂fa0
fa0∂v‖

)
−
cn⊥φ′

i

J bn−1 + J bn+1

2

kρ′bh
′
b

v′⊥

]}

− ∂

∂v‖

{ˆ
2πd2v′

fa0
mb

∑
n

Ja−n

[
cn‖⊥′

(
J bn
∂h′b
∂v′⊥

+
J bn−1 − J bn+1

2

kρ′bh
′
b

v′⊥

)

−cn‖⊥J bn
mb

ma

h′b∂fa0
fa0∂v⊥

+ cn‖‖′J
b
n

(
∂h′b
∂v′‖
− mb

ma

h′b∂fa0
fa0∂v‖

)
−
cn‖φ′

i

J bn−1 + J bn+1

2

kρ′bh
′
b

v′⊥

]}
. (26)

The Bessel function Jan is real because sin (kρa sinφ− nφ) is odd in φ. Same is true for J bn.

It can be verified that all terms in Eq. (26) are real, despite some terms appearing to be

imaginary.

Similarly, the second part of the field-particle operator can be expressed as〈(
∇eik·ρa

)
·
ˆ
d3v′U ·

(
fa0∇′

(
h′be
−ik·ρ′b

)
− h′be−ik·ρ

′
b∇fa0

)〉
= −kρa

v⊥

ˆ
2πd2v′

fa0
mb

∑
n

Ja−(n+1) − Ja−(n−1)
2

[
cn⊥⊥′

(
J bn
∂h′b
∂v′⊥

+
J bn−1 − J bn+1

2

kρ′bh
′
b

v′⊥

)

−cn⊥⊥J bn
mb

ma

h′b∂fa0
fa0∂v⊥

+ cn⊥‖′J
b
n

(
∂h′b
∂v′‖
− mb

ma

h′b∂fa0
fa0∂v‖

)
−
cn⊥φ′

i

J bn−1 + J bn+1

2

kρ′bh
′
b

v′⊥

]

+
kρa
v⊥

ˆ
2πd2v′

fa0
mb

∑
n

Ja−(n+1) + Ja−(n−1)
2i

[
cnφ⊥′

(
J bn
∂h′b
∂v′⊥

+
J bn−1 − J bn+1

2

kρ′bh
′
b

v′⊥

)

−cnφ⊥J bn
mb

ma

h′b∂fa0
fa0∂v⊥

+ cnφ‖′J
b
n

(
∂h′b
∂v′‖
− mb

ma

h′b∂fa0
fa0∂v‖

)
−
cnφφ′

i

J bn−1 + J bn+1

2

kρ′bh
′
b

v′⊥

]
, (27)

where all the terms are real. For the field-particle operator, the second part accounts for

FLR effects since it vanishes in the drift-kinetic limit kρ = kρ′ = 0, and the first part

also contains FLR effects via the Bessel functions. This is in contrast to the test-particle

operator, for which the drift-kinetic part is completely separable from the FLR terms. We

note Eqs. (26)-(27) involve Bessel functions of all orders, revealing a different wavenumber

dependence than the model operators which involve only J0 and J1.
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B. Symmetric integral form

The operator in Bessel function series requires a proper truncation of the infinite sum-

mation for analytical analyses and numerical implementations. Approximations can be per-

formed based on the significance of the FLR effects in the limits of kρ� 1 and kρ� 1 (e.g.

Catto and Tsang [13] and references therein). In order to treat arbitrary wavenumber and

fully assess the FLR effects in numerical simulations, here we pursue the operator in integral

form [25]. Since both the test-particle and field-particle parts of the gyrokinetic operator are

proven real, we can factor out the gyrophase average
¸
dφ/ (2π), the gyrophase integration¸

dφ′/ (2π), and the gyrophase-dependent part of the integrand, then combine them into

precomputable and real-valued gyrophase integrals. The fact that the gyrophase integrals

are independent of the distribution and can be pre-computed should result in significant

time savings in simulations. The resultant gyrokinetic operator involves two-dimensional

velocity-space integrals and can be written in vector form similar to Eqs. (10)-(12),

Cgk
ab (ha, hb) = −∇ · Jab + (FLR terms) . (28)

Here ∇ = e⊥∂/∂v⊥ + e‖∂/∂v‖, and the flux density Jab (v) in the two-dimensional velocity

space is the sum of the test-particle flux density

JTab = Γab

ˆ
2πd2v′

(
ha
mb

ITE · ∇′f ′b0 −
f ′b0
ma

ITD · ∇ha
)

(29)

and the field-particle flux density

JFab = Γab

ˆ
2πd2v′

(
fa0
mb

IFE · ∇′h′b −
h′b
ma

IFD · ∇fa0
)
, (30)

with the 2× 2 tensors ITE and ITD for the drag and diffusion coefficients of test-particle part

given by

ITE (v,v′) =

 IT⊥⊥′ IT⊥‖

IT‖⊥′ IT‖‖

 ≡ ˛ dφ

2π

˛
dφ′

2π

 U⊥⊥′ U⊥‖

U‖⊥′ U‖‖

 (31)

and

ITD (v,v′) =

 IT⊥⊥ IT⊥‖

IT‖⊥ IT‖‖

 ≡ ˛ dφ

2π

˛
dφ′

2π

 U⊥⊥ U⊥‖

U‖⊥ U‖‖

 , (32)

respectively, and IFE and IFD for field-particle drag and diffusion coefficients given by

IFE (v,v′) =

 IF⊥⊥′ IF⊥‖

IF‖⊥′ IF‖‖

 ≡ ˛ dφ

2π

˛
dφ′

2π
cos (kρ′ sinφ′ − kρ sinφ)

 U⊥⊥′ U⊥‖

U‖⊥′ U‖‖

 (33)
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and

IFD (v,v′) =

 IF⊥⊥ IF⊥‖

IF‖⊥ IF‖‖

 ≡ ˛ dφ

2π

˛
dφ′

2π
cos (kρ′ sinφ′ − kρ sinφ)

 U⊥⊥ U⊥‖

U‖⊥ U‖‖

 . (34)

The FLR terms in the gyrokinetic collision operator are proportional to the perpendicular

wavenumber and can be cast into

(FLR terms) /Γab

= −k
2ρ2aha
v2⊥

ˆ
2πd2v′

f ′b0
ma

ITFLR

+
1

v⊥

∂

∂v⊥

(
v⊥

ˆ
2πd2v′

fa0
mb

kρ′bh
′
b

v′⊥
IF,1FLR

)
+

∂

∂v‖

(ˆ
2πd2v′

fa0
mb

kρ′bh
′
b

v′⊥
IF,2FLR

)
+
kρa
v⊥

ˆ
2πd2v′

fa0
mb

[
∂h′b
∂v′⊥

IF,3FLR +

(
∂h′b
∂v′‖
− mb

ma

h′b∂fa0
fa0∂v‖

)
IF,4FLR −

mb

ma

h′b∂fa0
fa0∂v⊥

IF,5FLR +
kρ′bh

′
b

v′⊥
IF,6FLR

]
,

(35)

with the additional gyrophase integrals given by

ITFLR =

˛
dφ

2π

˛
dφ′

2π

(
sin2 φU⊥⊥ + 2 sinφ cosφU⊥φ + cos2 φUφφ

)
, (36)

IF,1FLR =

˛
dφ

2π

˛
dφ′

2π
sin (kρ′ sinφ′ − kρ sinφ) (sinφ′U⊥⊥′ + cosφ′U⊥φ′) , (37)

IF,2FLR =

˛
dφ

2π

˛
dφ′

2π
sin (kρ′ sinφ′ − kρ sinφ)

(
sinφ′U‖⊥′ + cosφ′U‖φ′

)
, (38)

IF,3FLR =

˛
dφ

2π

˛
dφ′

2π
sin (kρ′ sinφ′ − kρ sinφ) (sinφU⊥⊥′ + cosφUφ⊥′) , (39)

IF,4FLR =

˛
dφ

2π

˛
dφ′

2π
sin (kρ′ sinφ′ − kρ sinφ)

(
sinφU⊥‖ + cosφUφ‖

)
, (40)

IF,5FLR =

˛
dφ

2π

˛
dφ′

2π
sin (kρ′ sinφ′ − kρ sinφ) (sinφU⊥⊥ + cosφUφ⊥) , (41)

IF,6FLR =

˛
dφ

2π

˛
dφ′

2π
cos (kρ′ sinφ′ − kρ sinφ)

· (sinφ sinφ′U⊥⊥′ + sinφ cosφ′U⊥φ′ + cosφ sinφ′Uφ⊥′ + cosφ cosφ′Uφφ′) . (42)

It is straightforward to verify that the gyrokinetic operator in integral form is equivalent

to the operator in Bessel function series given in Eqs. (22)(24)(25)(27). It simply involves

expanding Uµν of the gyrophase integrals in Fourier series and rewriting the integrals as

Bessel function series. As in the Bessel function series, in integral form the FLR effects
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are completely separated from the drift-kinetic part for the test-particle operator and par-

tially separated from the drift-kinetic part for the field-particle operator. The test-particle

operator and the field-particle operator in integral form are treated on an equal footing.

From the definition of gyrophase integrals Eqs. (31)-(34), we have ITE = IFE and ITD = IFD

when kρ = kρ′ = 0. Thus the symmetry of the linearized Landau operator Eqs. (10)-(12)

in three-dimensional velocity space is transformed to the symmetry of the gyrokinetic op-

erator in two-dimensional velocity space in the drift-kinetic limit. It is well known that the

gyrophase integrals in the drift-kinetic limit can be written in terms of complete elliptic

integrals [10, 25, 27]. For example, one of the gyrophase integrals is

IT⊥⊥ = IF⊥⊥ =
2

πλ3
E (κ)

1− κ2
(
v‖ − v′‖

)2
+

λ

πv2⊥

[(
λ2 − 2v⊥v

′
⊥
) K (κ)

λ2
− E (κ)

]
, (43)

where λ2 = (v⊥ + v′⊥)2 +
(
v‖ − v′‖

)2
, κ2 = 4v⊥v

′
⊥/λ

2, and K and E are complete elliptic

integrals of the first kind and the second kind, respectively. I⊥⊥ diverges when v⊥ = v′⊥ and

v‖ = v′‖ because K (κ) logarithmically diverges as κ→ 1. Similar analysis can be applied to

other gyrophase integrals.

Let us discuss the conservation properties of the gyrokinetic operator. Because the par-

ticle position and velocity coordinates are mixed in the gyrokinetic phase space via the

guiding-center transformation, the conservation laws cannot be simply expressed as the in-

variance of the first three velocity moments at fixed guiding-center positions – rather they

apply at the particle positions. To address this, we write the FLR effects for the collision op-

erator in the general form Eq. (4) as a divergence of flux density in particle position space, so

that the particle conservation laws require the first three velocity moments to be conserved

by gyrokinetic collisions in the drift-kinetic limit [18]. Recall that the symmetry between

the test-particle operator and the field-particle operator allows for the proof of conservation

laws in Eq. (14) for the linearized Landau operator. Since the symmetry is inherited by the

gyrokinetic version of the linearized operator, the conservation laws in the drift-kinetic limit

can be demonstrated in a similar fashion. Consider

−
(ˆ

d2vφa∇ · JTab +

ˆ
d2vφb∇ · JFba

)
= 2πe2ae

2
b ln Λ

ˆ
d2v

ˆ
2πd2v′

[
ha
mb

(
∇φa
ma

· ITE −
∇′φ′b
mb

· I ′F
D

)
· ∇′f ′b0

− f
′
b0

ma

(
∇φa
ma

· ITD −
∇′φ′b
mb

· I ′F
E

)
· ∇ha

]
, (44)
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where the primed tensors are obtained from their corresponding unprimed ones by swapping

v and v′. We need to show Eq. (44) vanishes for φs = 1 (particle conservation), φs =

msv‖ (parallel momentum conservation), and φs = ms

(
v2⊥ + v2‖

)
/2 (energy conservation).

Particle conservation is satisfied separately by the test-particle part and the field-particle

part. The parallel momentum conservation is guaranteed since in the drift-kinetic limit we

have ITE = IFE and ITD = IFD, thus(
0 1

)
·
(
ITE − I

′F
D

)
=
(
IT‖⊥′ − I

′F
‖⊥ IT‖‖ − I

′F
‖‖

)
= 0, (45)(

0 1
)
·
(
ITD − I

′F
E

)
=
(
IT‖⊥ − I

′F
‖⊥′ IT‖‖ − I

′F
‖‖

)
= 0. (46)

For energy conservation, it can be verified that(
v⊥ v‖

)
· ITE −

(
v′⊥ v′‖

)
· I ′F

D = 0, (47)(
v⊥ v‖

)
· ITD −

(
v′⊥ v′‖

)
· I ′F

E = 0, (48)

by substituting the expressions for Uµν given in the Appendix (A) into the gyrophase inte-

grals.

IV. CONSERVATIVE DISCRETIZATION OF THE LANDAU FORM

To discretize the gyrokinetic linear Landau operator such that it obeys corresponding dis-

crete conservation laws in the drift-kinetic limit even for simulations with low to moderate

resolutions, it is essential to observe that the conservative structure of the nonlinear oper-

ator is inherited by the gyrokinetic linearized operator, and the symmetry of the nonlinear

operator leads to the symmetry between test-particle operator and field-particle operator.

The proof of the conservation laws for the continuous case in Eq. (44) suggests a weak

formulation of the conservative form in Eq. (28) as

∂

∂t

ˆ
d2vφaha =

ˆ
d2v∇φa · Jab, (49)

where φa are test functions depending on specific numerical schemes and the boundary terms

are dropped by using appropriate zero-flux boundary conditions. The key observation on this

weak formulation is that it directly measures the changes of φa-moments due to collisions.

If we manage to find a scheme such that (1) the set of monomials
{

1, v‖, v
2
}
, which measure
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the conservation quantities, can be represented by test functions, and (2) the discretization

of the RHS of Eq. (49) respects the relations required for the continuous conservation laws

(shown in Eq. (44)) for each velocity pair (v,v′):

∇φa
ma

· ITE −
∇′φ′b
mb

· I ′F
D = 0, (50)

∇φa
ma

· ITD −
∇′φ′b
mb

· I ′F
E = 0, (51)

then this scheme will obey the discrete conservation laws.

One type of scheme involves expanding the distribution functions and the test functions

with a discrete orthogonal polynomial basis [12, 28, 29], namely

hs (vj) =
∑
i

hsiλi (vj) , (52)

φs (vj) =
∑
i

φsiλi (vj) , (53)

where the λi (vj) represents the ith element of the two-dimensional polynomial basis eval-

uated at the grid point vj. The grid point locations are determined by the quadrature of

the basis polynomials for given boundary conditions [28]. The operator, formulated in the

spherical representation in Appendix (C), is suitable for the spectral type discretization.

The tensor product of the Legendre polynomials in pitch-angle coordinate Pl (ξ) (ξ = v‖/v)

and the Chebyshev polynomials in speed coordinate Tn (v) (v =
√
v2⊥ + v2‖) can serve as

a favorable two-dimensional basis. The Legendre polynomials are eigenfunctions of both

test-particle operator and field-particle operator. The basis in speed should have the char-

acteristic that, in the regions where the distribution function shows strong variation, the

next basis functions in the series are different enough from preceding basis functions so that

few additional basis functions are needed to effectively span the space. This will ensure

rapid decay of the error with the number of basis functions included [29]. For perturbed

distributions in turbulence, which display structure at low speeds, Chebyshev polynomials

are appropriate. To verify the conservation laws, we note that
{

1, v‖, v
2
}
are represented

by the basis since 1 = P0T0, v‖ = P1T1, and v2 = (P0T0 + P0T2) /2. In addition, the two-

dimensional velocity-space integration in Eq. (49) is evaluated with a quadrature rule, and

at the quadrature points the derivatives of
{

1, v‖, v
2
}
obtained by differentiating the basis

polynomials [28] are exact. Thus Eqs. (50)-(51) are respected at each pair of quadrature

points
(
vj,v

′
j′

)
.
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Alternatively, the gyrokinetic linearized Landau operator can be discretized with a finite-

volume method as in Yoon et al. [10] and Hager et al. [11]. This method was originally

designed for a two-dimensional nonlinear Landau operator in the drift-kinetic limit based

on a weak formulation of the symmetric and conservative form. Because the symmetric and

conservative form is preserved in present formulation of the gyrokinetic linearized operator,

the finite-volume method is applicable to Eq. (28) after replacing the nonlinear flux density

with the linear flux density. The scheme requires a velocity grid
(
v⊥, v‖

)
uniformly spaced

in both directions to ensure conservation numerically. The FLR terms in Eq. (35) contain-

ing purely FLR effects also need to be evaluated. The conservative terms associated with

IF,1FLR and IF,2FLR can be incorporated into the drift-kinetic part simply by adding correspond-

ing terms in the definition of the flux density Jab. The differentiations and integrations

in the non-conservative FLR terms can be carried out by centered finite-differencing and

numerical summations, respectively. The FLR terms are proportional to the perpendicular

wavenumber and do not affect the conservation laws.

V. DISCUSSION AND FUTURE WORK

In this paper, the gyrokinetic exact linearized Landau collision operator is formulated.

Two key properties of the nonlinear Landau operator – symmetry and conservative structure

– are explicitly preserved in the linearization and subsequent guiding-center transformation

and gyrophase averaging. These two mathematical properties underline the physical prop-

erties including the conservation laws and the H-theorem. It is verified that the gyrokinetic

operator in the Landau form is equivalent to the operator in the non-conservative and

non-symmetric Fokker–Planck form [25]. The present formulation addresses the potential

numerical difficulty associated with the logarithmic singularity in the gyrophase integral of

the field-particle operator in the Fokker–Planck form. By treating the test-particle contribu-

tion and the field-particle contribution symmetrically, potential numerical errors associated

with the logarithmic singularity in the test-particle operator of a− b collisions are balanced

by the field-particle operator of b− a collisions, and vice versa. Thus overall conservation is

ensured despite numerical errors.

This work is motivated in part by previous results which show that the inherent differ-

ences between the exact linearized drift-kinetic field operator and present model operators

17



produce different results for collisional fluxes and flows in magnetically confined fusion plas-

mas. In addition to the strong effects of electron collisions, ion collisions (subject to FLR

corrections) affect turbulence through the neoclassical polarization and zonal flow damping

[30, 31], as well as neoclassical distortions of the background distribution. The latter can

break symmetry, leading to momentum transport [32], and neoclassical distortions are par-

ticularly relevant to steep gradient regions such as the tokamak edge pedestal [33]. When

Abel’s model operator is applied to classical ion transport, the coefficient of heat flux trans-

port perpendicular to the magnetic field is found to be about 50% greater than the result

from the exact linearized Fokker–Planck operator (see the paragraph between Eq. (21) and

Eq. (22) of Ref. [22]). The exact linearized Fokker–Planck operator, without FLR cor-

rections, has been used in several kinetic neoclassical codes [10, 29, 33–37]. The codes of

Refs. [29, 33, 35, 37] closely agree over a wide range of collisionality (e.g. Fig. 4 of Ref.

[33], and similar comparison with the NEO code had been performed). Neoclassical re-

sults from the exact linearized Fokker–Planck operator differ significantly from results of

model operators [37], showing errors as large as 10–15% for the neoclassical particle fluxes

and 20–30% for the neoclassical ion energy fluxes. In the same work, the model referred

to as ad hoc Fokker–Planck (actually a drift-kinetic generalization of the Abel operator

for multiple species) resulted in 25% larger parallel neoclassical flows at high collisionality

and 15% smaller bootstrap current than the exact linearized Fokker–Planck operator. Be-

fore this, it was reported [34] that the exact linearized Fokker–Planck operator resulted in

20% differences relative to the most accurate calculation of the bootstrap current at that

time. Similar differences in neoclassical fluxes, using the exact linearized operator relative

to widely accepted calculations using model operators, were observed [35].

The gyrokinetic operator in conservative form can be implemented with either spectral

or finite-volume numerical schemes. In continuum codes, spectral methods [29] can achieve

rapid convergence in velocity space. Particle codes can utilize methods similar to Refs.

[10, 11] to ensure numerical conservation. The initial implementation of the gyrokinetic

exact linearized Landau operator is underway in the gyrokinetic code GENE [38, 39], using

the finite-volume scheme described in Sec. (IV). The δf version of GENE can apply a velocity

grid
(
v⊥, v‖

)
that is equally distant in both directions and has the model operators by Abel

et al. [18] and Sugama et al. [20] implemented [40]. We have utilized this framework so far to

implement the drift-kinetic Landau operator and are continuing to include FLR corrections.
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Progress on the implementation, including numerical verification of the conservation laws

and comparisons of the exact operator with model operators in physical applications, such

as the turbulence driven by microinstabilities, will be reported in the future. Using this

new formulation, it will be possible to assess the accuracy of present model operators in

gyrokinetic turbulence simulations for the first time.
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Appendix A: Cylindrical coordinates and associated useful relations

Fig. 1 shows the cylindrical coordinate system used in this work. In this coordinate

system, the velocity can be decomposed as

v = v⊥ (e1 cosφ+ e2 sinφ) + v‖e‖, (A1)

and the gyroradius is

ρ =
v⊥
Ω
eρ =

v⊥
Ω
e‖ × e⊥ =

v⊥
Ω

(−e1sinφ+ e2cosφ) . (A2)

From Eq. (A2), we have ∂ρ/∂v⊥ = ρ/v⊥, ∂ρ/∂v‖ = 0, and ∂ρ/∂φ = −v⊥/Ω. Thus

∂

∂v⊥

(
e−ik·ρg

)
= e−ik·ρ

(
∂g

∂v⊥
− ik · ρg

v⊥

)
, (A3)

∂

∂v‖

(
e−ik·ρg

)
= e−ik·ρ

∂g

∂v‖
, (A4)

∂

∂φ

(
e−ik·ρg

)
= e−ik·ρ

ik · v⊥
Ω

g, (A5)

for a distribution function g = g
(
v⊥, v‖

)
(either fs0 or hs) that is independent of gyrophase.

Without loss of generality, e1 may be chosen in the direction of the perpendicular wavenum-

ber so that k = ke1, k · ρ = −kρ sinφ, and k · v⊥ = kv⊥ cosφ.
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e1=ek

e2

e⟂'

e⟂

eρ=eϕ

eρ'=eϕ' 

ϕ'

δ=ϕ-ϕ'

ϕ

e1×e2=e||=eb

Figure 1. The cylindrical coordinate system for velocity of species a, and for velocity of species b

with primed subscripts, in a− b type collisions.

The projection of the Landau tensor is defined as

Uµν ≡ eµ ·
Iu2 − uu

u3
· eν (A6)

with u = v − v′, µ ∈ {⊥, ‖, φ}, and ν ∈ {⊥, ‖, φ,⊥′, ‖′, φ′}. Here the unprimed quantities

are for species a and primed quantities are for species b in a − b collisions. By using u =

v⊥e⊥ − v′⊥e
′
⊥ +

(
v‖ − v′‖

)
e‖ and Fig. (1), Uµv can be explicitly written out and they are

listed below for a reference:

U⊥⊥ =
1

u3

[
u2 − (v⊥ − v′⊥ cos δ)

2
]
, (A7)

U⊥‖ = U⊥‖′ = U‖⊥ = − 1

u3
(v⊥ − v′⊥ cos δ)

(
v‖ − v′‖

)
, (A8)

U⊥φ = Uφ⊥ = − 1

u3
(v⊥ − v′⊥ cos δ) v′⊥ sin δ, (A9)

U⊥⊥′ =
1

u3
[
u2 cos δ + (v⊥ − v′⊥ cos δ) (v′⊥ − v⊥ cos δ)

]
, (A10)

U⊥φ′ =
1

u3
[
u2 sin δ − (v⊥ − v′⊥cosδ) v⊥ sin δ

]
, (A11)

U‖‖ = U‖‖′ =
1

u3

[
u2 −

(
v‖ − v′‖

)2]
, (A12)

U‖φ = Uφ‖ = Uφ‖′ = − 1

u3
(
v‖ − v′‖

)
v′⊥ sin δ, (A13)
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U‖⊥′ =
1

u3
(
v‖ − v′‖

)
(v′⊥ − v⊥ cos δ) , (A14)

U‖φ′ = − 1

u3
(
v‖ − v′‖

)
v⊥ sin δ, (A15)

Uφφ =
1

u3

[
u2 − (v′⊥ sin δ)

2
]
, (A16)

Uφ⊥′ =
1

u3
[
−u2 sin δ + v′⊥ sin δ (v′⊥ − v⊥ cos δ)

]
, (A17)

Uφφ′ =
1

u3
(
u2 cos δ − v⊥v′⊥ sin2 δ

)
, (A18)

with δ = φ− φ′. Uµν is periodic in δ and can be expanded in Fourier series as

Uµν (δ) =
∑
n∈Z

cnµνe
inδ, (A19)

where the expansion coefficients

cnµν = − 1

2π

φ−2πˆ

φ

dδUµν (δ) e−inδ =
1

2π

πˆ

−π

dδUµν (δ) e−inδ (A20)

can be obtained by first expanding Uµν as function of φ′ and then changing the variable from

φ′ to δ. Note that Uµν is either even or odd in δ, thus cnµν is either real or imaginary.

Appendix B: proof of the equivalence between gyrokinetic Landau form and gyroki-

netic Fokker–Planck form

The approach to proving the equivalence of gyrokinetic test-particle operator in the Lan-

dau form with the Fokker–Planck form is first writing Eq. (5) in a conservative form in

cylindrical coordinates, then obtaining the gyrokinetic version via substitution to Eq. (4)

and comparing it with the Landau form given in Eqs. (22) and (24).

Eq. (5) can be written in a conservative form as

CT
ab (fa1, fbM) = ∇ · Jab, (B1)

where Jab is the sum of the pitch-angle-scattering flux density and energy-diffusion flux

density given by

JPAab =
1

2

(
v2I − vv

)
· ∂ (νDfa1)

∂v
, (B2)
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and

JEab = ev

[
νab‖
2
v4faM

∂

∂v

(
fa1
faM

)
+
ma

Tb

(
1− Tb

Ta

)
νab‖
2
v5fa1

]
, (B3)

respectively. Notice that since νabD (v) depends only on v, it can be absorbed in the pitch-

angle-scattering operator. Projecting the flux density Jab onto the basis of cylindrical coor-

dinates, we obtain

CT
ab (fa1, fbM) =

1

v⊥

∂

∂v⊥

(
v⊥J

⊥
ab

)
+
∂J
‖
ab

∂v‖
+

1

v⊥

∂Jφab
∂φ

, (B4)

with

J⊥ab =
1

2

(
νab‖ (v)− νabD (v)

)
v‖v⊥

∂fa1
∂v‖

+
1

2

(
νab‖ v

2
⊥ + νabD v

2
‖
) ∂fa1
∂v⊥

+
1

2
νab‖ v⊥v

2mafa1
Tb

, (B5)

J
‖
ab =

1

2

(
νab‖ (v)− νabD (v)

)
v‖v⊥

∂fa1
∂v⊥

+
1

2

(
νab‖ v

2
‖ + νabD v

2
⊥
) ∂fa1
∂v‖

+
1

2
νab‖ v‖v

2mafa1
Tb

, (B6)

Jφab =
νabD
2

v2

v⊥

∂fa1
∂φ

. (B7)

The gyrokinetic form for the nonadiabatic part of the guiding-center distribution function

obtained by substituting Eqs. (B4)-(B7) into Eq. (4) eliminates the gyrophase dependence

and contains FLR effects,

Cgk
ab (ha, fbM) =

1

v⊥

∂

∂v⊥

(
v⊥J

⊥,gk
ab

)
+
∂J
‖,gk
ab

∂v‖

+
k2ha
4Ω2

a

[
−νabD

(
v2‖ + 2v2⊥

)
− νab‖ v2⊥

]
, (B8)

with the gyrokinetic flux densities given by

J⊥,gk
ab =

1

2

(
νab‖ (v)− νabD (v)

)
v‖v⊥

∂ha
∂v‖

+
1

2

(
νab‖ v

2
⊥ + νabD v

2
‖
) ∂ha
∂v⊥

+
1

2
νab‖ v⊥v

2maha
Tb

, (B9)

J
‖,gk
ab =

1

2

(
νab‖ (v)− νabD (v)

)
v‖v⊥

∂ha
∂v⊥

+
1

2

(
νab‖ v

2
‖ + νabD v

2
⊥
) ∂ha
∂v‖

+
1

2
νab‖ v‖v

2maha
Tb

. (B10)
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1. Equivalence in the drift-kinetic limit

By using the periodicity of Uµν in δ, we can evaluate the gyroaverage in Eq. (22) and

obtain the flux densities of the test-particle operator,

J⊥,gk
ab = −Γab

ma

ˆ
d3v′f ′b0

[
−U⊥⊥

∂ha
∂v⊥

+ U⊥‖

(
ma

mb

ha∂f
′
b0

f ′b0∂v
′
‖
− ∂ha
∂v‖

)
+ U⊥⊥′

ma

mb

ha∂f
′
b0

f ′b0∂v
′
⊥

]
,

(B11)

J
‖,gk
ab = −Γab

ma

ˆ
d3v′f ′b0

[
−U‖⊥

∂ha
∂v⊥

+ U‖‖

(
ma

mb

ha∂f
′
b0

f ′b0∂v
′
‖
− ∂ha
∂v‖

)
+ U‖⊥′

ma

mb

ha∂f
′
b0

f ′b0∂v
′
⊥

]
.

(B12)

To prove the equivalence of the drift-kinetic part of the test-particle operator, we only need to

show that the flux densities defined in Eqs. (B11) and (B12) are equivalent to Eqs. (B9) and

(B10), respectively. The two expressions consist of five pairs of one-to-one correspondence.

The proof uses the identity U = ∂2u/∂v∂v and the definitions of νabD and νab‖ in terms of the

Rosenbluth potentials given in Eqs. (6)-(7). First, for the perpendicular diffusion coefficient

we have

Γab
ma

ˆ
d3v′f ′b0U⊥⊥ =

Γab
ma

ˆ
d3v′f ′b0

∂2u

∂v∂v
: e⊥e⊥ =

Γab
ma

ˆ
d3v′f ′b0

∂2u

∂2v⊥

=
Γab
ma

∂2G0

∂v⊥∂v⊥
=

Γab
ma

(
v2⊥
v2
d2G0

dv2
+
v2‖
v3
dG0

dv

)
=

1

2

(
νab‖ v

2
⊥ + νabD v

2
‖
)
. (B13)

Similarly, the equivalence of the parallel and cross diffusion coefficients:

Γab
ma

ˆ
d3v′f ′b0U‖‖ =

1

2

(
νab‖ v

2
‖ + νabD v

2
⊥
)
, (B14)

Γab
ma

ˆ
d3v′f ′b0U‖⊥ =

1

2

(
νab‖ − νabD

)
v‖v⊥ (B15)
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can be demonstrated. Second, for the perpendicular drag coefficient we have

−Γab
ma

ˆ
d3v′f ′b0

(
U⊥‖

ma

mb

∂f ′b0
f ′b0∂v

′
‖

+ U⊥⊥′
ma

mb

∂f ′b0
f ′b0∂v

′
⊥

)
=

Γab
Tb

ˆ
d3v′f ′b0

(
U⊥‖′v

′
‖ + U⊥⊥′v′⊥

)
=

Γab
Tb

ˆ
d3v′f ′b0

(
U⊥‖v‖ + U⊥⊥v⊥

)
=

Γab
Tb

ˆ
d3v′f ′b0

(
∂2u

∂v⊥∂v‖
v‖ +

∂2u

∂2v⊥
v⊥

)
=

Γab
Tb

(
∂2G0

∂v⊥∂v‖
v‖ +

∂2G0

∂2v⊥
v⊥

)
=

Γab
Tb

d2G0

dv2
v⊥ =

1

2
νab‖ v⊥v

2ma

Tb
, (B16)

where the identity U · (v − v′) = U · u = 0 is used. The equivalence of the parallel drag

coefficient:

− Γab
ma

ˆ
d3v′f ′b0

(
U‖‖

ma

mb

ha∂f
′
b0

f ′b0∂v
′
‖

+ U‖⊥′
ma

mb

ha∂f
′
b0

f ′b0∂v
′
⊥

)
=

1

2
νab‖ v‖v

2ma

Tb
(B17)

can be proved as Eq. (B16). This proof demonstrates that the apparent singularity in νabD
and νab‖ as v → 0 originates from the Landau tensor.

2. Equivalence of the gyrodiffusion

The gyrodiffusion equivalence can be proved in a similar fashion. Starting with the

gyrodiffusion in Landau form given in Eq. (24), we have

− Γab
2ma

k2ha
Ω2
a

ˆ
d3v′f ′b0 (U⊥⊥ + Uφφ)

= − Γab
2ma

k2ha
Ω2
a

ˆ
d3v′f ′b0

(
∂2u

∂v∂v
: e⊥e⊥ +

∂2u

∂v∂v
: eφeφ

)
= − Γab

2ma

k2ha
Ω2
a

{
∂2G0

∂v2⊥
+

1

v⊥

[
∂

∂φ

(
1

v⊥

∂G0 (v)

∂φ

)
+
∂G0

∂v⊥

]}
= − Γab

2ma

k2ha
Ω2
a

(
∂2G0

∂v2⊥
+

1

v⊥

∂G0

∂v⊥

)
=
k2ha
4Ω2

a

[
−νabD

(
2v2‖ + v2⊥

)
− νab‖ v2⊥

]
. (B18)

24



Appendix C: Gyrokinetic linearized Landau operator in spherical representation

The derivation approach and conclusions of this paper are independent of the coordinate

systems, and the operator can be reformulated straightforwardly in different representations.

Here we present the operator in spherical representation without detail derivation. The basis

of the spherical coordinate system is (ev, eξ, eφ) with v = |v|, ξ = ev · e‖ = cos θ the pitch-

angle coordinate, and φ the gyrophase. Analogous to Eqs. (28)-(42), the gyrokinetic Landau

operator can be cast into a conservative form as

Cgk
ab (ha, hb) = −∇ ·

(
JTab + JFab

)
+ (FLR terms) , (C1)

where

JTab = Γab

ˆ
2πd2v′

(
ha
mb

ITE · ∇′f ′b0 −
f ′b0
ma

ITD · ∇ha
)
, (C2)

JFab = Γab

ˆ
2πd2v′

(
fa0
mb

IFE · ∇′h′b −
h′b
ma

IFD · ∇fa0
)
. (C3)

The 2× 2 tensors for the test-particle part are given by

ITE =

 ITvv′ I
T
vξ′

ITξv′ I
T
ξξ′

 ≡ ˛ dφ

2π

˛
dφ′

2π

 Uvv′ Uvξ′

Uξv′ Uξξ′

 , (C4)

ITD =

 ITvv I
T
vξ

ITξv ITξξ

 ≡ ˛ dφ

2π

˛
dφ′

2π

 Uvv Uvξ

Uξv Uξξ

 , (C5)

and for field-particle part they are defined as

IFE =

 IFvv′ I
F
vξ′

IFξv′ I
F
ξξ′

 ≡ ˛ dφ

2π

˛
dφ′

2π
cos (kρ′ sinφ′ − kρ sinφ)

 Uvv′ Uvξ′

Uξv′ Uξξ′

 , (C6)

IFD =

 IFvv I
F
vξ

IFξv IFξξ

 ≡ ˛ dφ

2π

˛
dφ′

2π
cos (kρ′ sinφ′ − kρ sinφ)

 Uvv Uvξ

Uξv Uξξ

 . (C7)
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The FLR terms can be written as

(FLR terms) /Γab

= −k
2ρ2aha
v2

ˆ
2πd2v′

f ′b0
ma

ITFLR

− 1

v2
∂

∂v

(
v2
ˆ

2πd2v′
fa0
mb

kρ′bh
′
b

v′
IF,1FLR

)
− ∂

v∂ξ

[√
1− ξ2

ˆ
2πd2v′

fa0
mb

kρ′bh
′
b

v′
IF,2FLR

]
+
kρa
v

ˆ
2πd2v′

fa0
mb

(
∂h′b
∂v′

IF,3FLR +

√
1− ξ′2

v′
∂h′b
∂ξ′

IF,4FLR

−mb

ma

h′b∂fa0
fa0∂v

IF,5FLR −
√

1− ξ2
v

mb

ma

h′b∂fa0
fa0∂ξ

IF,6FLR +
kρ′bh

′
b

v′
IF,7FLR

)
, (C8)

with the additional gyrophase integrals given by

ITFLR =

˛
dφ

2π

˛
dφ′

2π

[
sinφ

(
sinφUvv −

ξ√
1− ξ2

sinφUvξ +
cosφUvφ√

1− ξ2

)

− ξ sinφ√
1− ξ2

(
sinφUξv −

ξ√
1− ξ2

sinφUξξ +
cosφUξφ√

1− ξ2

)

+
cosφ√
1− ξ2

(
sinφUφv −

ξ√
1− ξ2

sinφUφξ +
cosφUξφ√

1− ξ2

)]
, (C9)

IF,1FLR =

˛
dφ

2π

˛
dφ′

2π
sin (kρ′ sinφ′ − kρ sinφ)

(
ξ′ sinφ′Uvξ′√

1− ξ′2
− sinφ′Uvv′ −

cosφ′Uvφ′√
1− ξ′2

)
,

(C10)

IF,2FLR =

˛
dφ

2π

˛
dφ′

2π
sin (kρ′ sinφ′ − kρ sinφ)

(
ξ′ sinφ′Uξξ′√

1− ξ′2
− sinφ′Uξv′ −

cosφ′Uξφ′√
1− ξ′2

)
,

(C11)

IF,3FLR =

˛
dφ

2π

˛
dφ′

2π
sin (kρ′ sinφ′ − kρ sinφ)

(
sinφUvv′ −

ξ√
1− ξ2

sinφUξv′ +
cosφUφv′√

1− ξ2

)
,

(C12)

IF,4FLR =

˛
dφ

2π

˛
dφ′

2π
sin (kρ′ sinφ′ − kρ sinφ)

(
sinφUvξ′ −

ξ√
1− ξ2

sinφUξξ′ +
cosφUφξ′√

1− ξ2

)
,

(C13)
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IF,5FLR =

˛
dφ

2π

˛
dφ′

2π
sin (kρ′ sinφ′ − kρ sinφ)

(
sinφUvv −

ξ√
1− ξ2

sinφUξv +
cosφUφv√

1− ξ2

)
,

(C14)

IF,6FLR =

˛
dφ

2π

˛
dφ′

2π
sin (kρ′ sinφ′ − kρ sinφ)

(
sinφUvξ −

ξ√
1− ξ2

sinφUξξ +
cosφUφξ√

1− ξ2

)
,

(C15)

IF,7FLR =

˛
dφ

2π

˛
dφ′

2π
cos (kρ′ sinφ′ − kρ sinφ)[

sinφ

(
sinφ′Uvv′ −

ξ′√
1− ξ′2

sinφ′Uvξ′ +
cosφ′Uvφ′√

1− ξ′2

)

− ξ sinφ√
1− ξ2

(
sinφ′Uξv′ −

ξ′√
1− ξ′2

sinφ′Uξξ′ +
cosφ′Uξφ′√

1− ξ′2

)

+
cosφ√
1− ξ2

(
sinφ′Uφv′ −

ξ′√
1− ξ′2

sinφ′Uφξ′ +
cosφ′Uφφ′√

1− ξ′2

)]
. (C16)

The projections of the Landau tensor Uµν ≡ eµ · U · eν with µ ∈ (v, ξ, φ) and ν ∈

(v, ξ, φ, v′, ξ′, φ′) can be calculated by using u = vev − v′ev′ , ev = ξe‖ +
√

1− ξ2e⊥,

eξ =
√

1− ξ2e‖ − ξe⊥, and relations shown in Fig. (1).
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