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2Department of Physics, University of California, Berkeley CA 94720, USA
(Dated: January 17, 2019)

We analyze the effect of a small inclination on the well-studied problem of two-dimensional binary
fluid convection in a horizontally extended closed rectangular box with a negative separation ratio,
heated from below. The horizontal component of gravity generates a shear flow that replaces the
motionless conduction state when inclination is not present. This large scale flow interacts with the
convective currents resulting from the vertical component of gravity. For very small inclinations
the primary bifurcation of this flow is a Hopf bifurcation that gives rise to chevrons and blinking
states similar to those obtained with no inclination. For larger but still small inclinations this
bifurcation disappears and is superseded by a fold bifurcation of the large scale flow. The convecton
branches, i.e., branches of spatially localized states consisting of counterrotating rolls, are strongly
affected, with the snaking bifurcation diagram present in the non-inclined system destroyed already
at small inclinations. For slightly larger but still small inclinations we obtain small amplitude
localized states consisting of corotating rolls that evolve continuously when the primary large scale
flow is continued in the Rayleigh number. These localized states lie on a solution branch with very
complex behavior strongly dependent on the values of the system parameters. In addition, several
disconnected branches connecting solutions in the form of corotating rolls, counterrotating rolls, and
mixed corotating and counterrotating states are also obtained.
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I. INTRODUCTION

Binary fluid convection in a thin horizontal layer heated from below is a widely studied pattern-forming system
that has contributed significantly to our understanding of generic features of out-of-equilibrium patterns undergoing
symmetry-breaking bifurcations. In contrast to the pure fluid case, the dynamics near threshold can be much more
complicated due to the extra degree of freedom associated with the concentration field. One experimentally relevant
configuration for the study of pattern formation in binary mixtures, and the reference setup for our work, is that of a
horizontal closed rectangular box heated from below. Experiments performed in the late eighties [1–4] and subsequent
detailed numerical studies [5, 6, 8–10] showed that a variety of interesting spatially extended and spatially localized
patterns arise in this configuration. However, convective systems in nature are often inclined with respect to gravity.
Even when the cavity is intended to be placed horizontally, a very slight inclination may exist in a real physical
situation. Tilting the cavity provides a simple and experimentally realizable way of introducing shear into the system
via the generation of a large scale circulatory flow. An interplay with the usual double-diffusive convective mechanism
is then expected to take place: the vertically sheared flow will differentially advect material properties across lateral
fronts and the mixing and transport properties (momentum, heat, solute) will be affected. Determining the extent
to which the dynamics is modified when a convective layer is tilted is thus an important issue in many practical
applications. The aim of this work is thus to explore and quantify the influence of a slight inclination on pattern
formation in a closed rectangular cell containing a binary mixture.

Binary mixtures are characterized by the Soret effect, a cross-diffusion effect responsible for the diffusive separation
of the lighter and heavier molecular weight components when the mixture is placed in an imposed temperature
gradient. The nondimensional parameter that quantifies the influence of this effect on the convective buoyancy force
is the separation ratio S. In mixtures with S < 0, the type of mixtures we are interested in, the heavier component
migrates towards the hotter region. If such a mixture is heated from below, the destabilizing temperature gradient
sets up a competing stabilizing concentration distribution. The primary bifurcation of the conduction state is then a
Hopf bifurcation [11], a fact that leads to rich dynamical behavior near the onset of convection.

The aforementioned small-scale experiments in laterally bounded rectangular containers [1–4] employed exquisitely
controlled alignment and smoothness of the top and bottom plates and of their temperature. Corroborated by two-
dimensional simulations in rectangular domains [5, 6] these results revealed a complex sequence of transitions in the
vicinity of the primary Hopf bifurcation involving three characteristic states of the system: chevrons (counterpropa-
gating waves), blinking states (states dominated alternately by left- and right-traveling waves) and repeated transients
(chevrons with growing amplitude that undergo repeated collapse to small amplitude states). When larger thermal
stresses are applied to the layer, the system may evolve towards wall-attached confined patches of travelling rolls [12]
or to steady convection, which can either fill the domain or form localized structures called convectons (bound states
of fronts that connect the conduction state to the convection state). Convectons are organized in parameter space in
a pair of intertwined snaking branches, consisting of even and odd parity states [7–10].

The effect of inclination on a convecting layer has been studied in numerous papers but almost entirely in one-
component fluids. Early interest focused on the competition between longitudinal, transverse and oblique rolls that
arise from the primary bifurcation of the large-scale circulatory flow. Bodenschatz et al reviewed the main numerical
and experimental results obtained in the 80s and 90s on extended layers [13]. More recent experimental [14, 15] and
numerical [16] studies of extended layers show that a rich variety of spatio-temporal patterns may be realized when
the inclination angle is varied. Other geometries have also been considered. Torres et al [17] study the transition from
Rayleigh-Bénard convection to the heated-from-the-sides configuration in a closed parallelepiped. Convective patterns
arising in a tilted cylinder at much larger rates of heating and for angles covering the Rayleigh-Bénard case are shown
in [18]. These works cover a wide range of inclination angles, and agree that for sufficiently small inclination angles
the idealization of the physical system as being strictly horizontal works well and that the resulting pattern formation
does not appear to be strongly influenced by very small inclination angles.

In contrast, previous numerical works on inclined binary mixture convection are scarce and mostly limited to studies
of the onset of convection in two-dimensional or extended configurations. Numerical simulations of binary mixtures
are much more costly, owing to the difference in relaxation times between the temperature and the concentration
field arising from the sharp contrast between thermal and solutal diffusivities. Among relevant work on inclined
two-dimensional binary fluid convection is an analytical and numerical study of natural binary fluid convection in an
inclined shallow cavity with fixed flux boundary conditions on the temperature [19] and, more usefully for the present
work, a related study of the onset of convection in an inclined infinite slot with fixed temperature boundary conditions
[20]. More recently, experimental and numerical studies of convection in a slightly inclined disk-like cylinder filled
with a S > 0 mixture and subject to fixed temperature boundary conditions at the top and bottom [21, 22] indicate
that pattern formation is strongly affected even by small inclinations. Taken together, existing results on the tilted
problem thus suggest that even very small inclinations produce substantial changes in the flow structure and result
in new phenomena.
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FIG. 1. Sketch of the domain geometry.

Bearing in mind the available results on binary mixtures, the aim of the present work is to analyze the effect of
a slight tilt on the stability of the patterns arising in closed rectangular containers filled with a S < 0 mixture. We
employ fixed temperature boundary conditions at the top and bottom and insulating sidewalls, and wish to determine
to what extent the breaking of symmetry that inclination implies affects the Hopf bifurcation of the conduction state
and the emerging patterns (chevrons, blinking and repeated transient states), as well as the snaking branches of
localized steady convection. We perform two-dimensional simulations that provide a suitable model of convection in
elongated parallelepipeds with a small transverse dimension. As shown in the experimental and numerical work of
Kirchartz et al on inclined pure fluid convection in confined cells of aspect ratios 10:4:1 and 4:2:1 [23], convection in
these cavities sets in as transverse rolls for small inclinations that are well-described by two-dimensional simulations,
in contrast to what happens in laterally extended layers.

The organization of the paper is as follows. In Section II, we formulate the equations, boundary conditions and
summarize the symmetries of the system. We also explain the numerical methods used. The main results are discussed
in Section III. Specifically, in Section III A we summarize the main properties of the system with no inclination.
Section III B then describes the large-scale base flow that arises when a small inclination is introduced and analyzes
the properties of some of the multiple solutions obtained for inclination angles α = 0.01 and 0.03. The corresponding
results for α = 0.05 are described in Section III C. The influence of the container aspect ratio and of the binary
mixture parameters on the base flow is studied in Section III D, followed by a summary of the main results of the
work in Section IV.

II. FORMULATION OF THE PROBLEM: EQUATIONS, SYMMETRIES AND NUMERICAL
METHODS

We consider two-dimensional Boussinesq binary fluid convection in a rectangular cell of height H and length L,
inclined at a small angle α with respect to the horizontal. The cell is heated from below, ∆T being the temperature
difference between the bottom and the top. We choose coordinates whose origin is located at the bottom left corner,
and oriented along the bottom wall (the x direction) and the side wall (the z direction). In terms of these coordinates
the acceleration due to gravity takes the form

g = −g sinα êx − g cosα êz.

A sketch of the domain geometry is shown in Fig. 1.
We split the temperature T and concentration of the heavier molecular weight component Cheavy into a linear

profile in z and fluctuations Θ∗ and Σ∗ as follows:

T = T0 + ∆T (1/2− z/H) + Θ∗,

Cheavy = C0 − C0(1− C0)ST ∆T (1/2− z/H) + Σ∗, (1)

where T0 and C0 are the values of the temperature and concentration at midheight and ST is the Soret coefficient,
hereafter assumed to be negative so that the heavier component migrates towards the lower boundary in response
to the applied temperature difference. Here H is the height of the cell. With this decomposition the mass flux only
depends on the gradient of Θ∗ and Σ∗, the superscript ∗ indicating unscaled quantities.

Scaling lengths with H, time with the vertical thermal diffusion time H2/κ, κ being the thermal diffusivity, tem-
perature with ∆T and concentration with the induced concentration difference −C0(1 − C0)ST ∆T , we obtain the
following dimensionless equations describing inclined binary fluid convection:

ut + (u · ∇)u = −∇P + σ∇2u +Razσ[(1 + S)Θ + Sη]êz

+Raxσ[(1 + S)Θ + Sη]êx −Raxσ(1 + S)(z − 1/2)êx,

Θt + (u · ∇)Θ = w +∇2Θ,

ηt + (u · ∇)η = −∇2Θ + τ∇2η, (2)
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together with the incompressibility condition

∇ · u = 0. (3)

Here u ≡ (u,w) denotes the nondimensional velocity field, P is the nondimensional mechanical pressure that includes
parts of the buoyancy term that can be written as a gradient, Θ is the nondimensional temperature fluctuation and
η ≡ Σ−Θ, where Σ represents the nondimensional concentration fluctuation. The variable η is defined such that its
gradient is proportional to the dimensionless mass flux.

The system is thus specified by the inclination angle α and four dimensionless parameters: the Rayleigh number Ra
that provides a dimensionless measure of the imposed temperature difference ∆T , the separation ratio S proportional
to the Soret coefficient ST that measures the concentration contribution to the buoyancy force due to cross-diffusion,
and the Prandtl and Lewis numbers σ, τ , in addition to the aspect ratio Γ of the rectangular cell. These parameters
are defined as follows:

Ra =
γg∆TH3

κν
, S = C0(1− C0)

β

γ
ST , σ =

ν

κ
, τ =

D

κ
, Γ =

L

H
,

where γ and β are the thermal and concentration expansion coefficients, D is the solute diffusivity, and ν is the
kinematic viscosity. In these equations Rax = Ra sinα and Raz = Ra cosα.

The resulting equations are to be solved subject to appropriate boundary conditions. We consider here the boundary
conditions corresponding to impermeable, no-slip boundaries with fixed imposed temperature at the top and bottom,
and thermally insulating sidewalls. Thus

u = w = Θ = ηz = 0 on z = 0, 1, (4)

and

u = w = Θx = ηx = 0 on x = 0,Γ. (5)

As a measure of the heat transport by convection, we use the Nusselt number Nu, defined as the ratio of the heat
flux through the top plate to that of the corresponding conduction solution, and given by the expression

Nu = 1− Γ−1

∫ x=Γ

x=0

∂zΘ(z = 1) dx.

We also evaluate, as an estimate of the strength of the convection, the dimensionless velocity norm E defined by

E = Γ−1

∫ z=1

z=0

∫ x=Γ

x=0

u · udxdz.

This quantity represents twice the kinetic energy per unit area of the system. In the following we refer to E for short
as the mean kinetic energy.

As in earlier work [8–10], our computations are carried out mostly for the parameter values σ = 7, τ = 0.01,
S = −0.1, and for aspect ratios around Γ = 14. Section III D is devoted to exploring the aspect ratio and the binary
mixture parameter dependence of some of our results. The physical parameter values we employ are appropriate for a
number of experimental studies using water-ethanol mixtures, notably those performed by P. Kolodner [4]. However,
in all prior experiments great effort has been made to level the experimental cell thereby eliminating any convection
arising from stray horizontal temperature or concentration gradients to the extent possible. In the present work we
deliberately introduce such gradients by inclining the cell, albeit at a small angle α to the horizontal.

The above equations have an important symmetry: when α 6= 0 the equations together with the boundary conditions
are equivariant with respect to the symmetry group Z2 = {I,R}, where I stands for the identity and R is a reflection
with respect to the center of the cell. Specifically, the reflection R acts on the fields u,w,Θ, η as follows:

R : (x, z)→ (Γ− x, 1− z),
(u,w,Θ, η)→ (−u,−w,−Θ,−η). (6)

As a consequence the equations admit solutions invariant under R as well as solutions that break the symmetry R. In
the latter case the application of R to a nonsymmetric solution generates a distinct but symmetry-related solution.
When α = 0, i.e., the layer is horizontal, the symmetry group is enlarged and becomes the symmetry group D2
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generated by two separate reflections R1 and R2, the former corresponding to reflection in x alone and the latter to
reflection in the layer midplane:

R1 : (x, z)→ (Γ− x, z),
(u,w,Θ, η)→ (−u,w,Θ, η), (7)

R2 : (x, z)→ (x, 1− z),
(u,w,Θ, η)→ (u,−w,−Θ,−η). (8)

Notice that the reflection R can be obtained as R = R1◦R2. The system of equations (2)-(3) and boundary conditions
(4)-(5) has been solved numerically using the algorithm IPS described in [24], which can be summarized as follows.
To integrate the equations in time, we use a second-order time-splitting method proposed in [25] combined with a
pseudospectral method for the spatial discretization, Chebyshev collocation in x and z. The Helmholtz equations
obtained as a result of the splitting are solved using a diagonalization technique [26].

Steady solutions have been computed with Newton’s method. We have used a first-order version of the time-
stepping code described above for the calculation of a Stokes preconditioner that allows a matrix-free inversion of
the preconditioned Jacobian needed in each Newton iteration [27]. The corresponding linear system is solved by an
iterative technique using the GMRES package [28]. The left-hand side of the preconditioned linear system (Jacobian
acting on the correction) corresponds to one time step of the linearized equations and the right-hand side corresponds
to performing one time step of the full nonlinear equations. In this way the Jacobian matrix is never constructed or
stored [27]. The convergence criterion for the Newton method is 10−7.

Once the steady states have been calculated by the method described above, their stability properties are determined
by computing the eigenvalues and eigenvectors of the linearized problem using Arnoldi’s method. The method
calculates the dominant eigenvalues of the exponential of the Jacobian, which can be trivially related to the leading
eigenvalues, i.e., those with the largest real part of the Jacobian. To this end, the algorithm for the time-stepping of
the linearized equations can be used since it, in fact, approximates the action of the exponential transformation of the
Jacobian on the solution at the previous time step. The eigensolving itself has been implemented using the ARPACK
package.

In the results reported in the present paper we have used a resolution that ensures variations of the Nusselt number
or the mean kinetic energy smaller than 0.1%. We have used a grid of nx = 640 and nz = 32 points in the x and z
directions, respectively, in a non dealiased code. For the time integration we have used the time step ∆t = 1× 10−3.

III. RESULTS

A. Non-inclined system: α = 0

In previous work, we have studied the problem of binary convection in a closed two-dimensional rectangular container
heated from below and no inclination [5–10]. It is well established that the resulting system admits both spatially
extended and spatially localized structures. The latter may be localized in the center of the domain or wall-attached,
either on one side or on both sides, thereby resembling a hole in an otherwise spatially extended state. Moreover,
states in the form of bound states of two or more localized solutions, referred to as multipulse states [10], can also be
present.

For the fluid parameters and the aspect ratio we consider in this paper (σ = 7, τ = 0.01, Γ = 14), the primary
bifurcation of the α = 0 conduction state is a Hopf bifurcation [6] that takes place at RaHopf = 1947.5. In the vicinity
of this bifurcation, computations revealed complex sequences of transitions among a state called a chevron state and
two other states called blinking states and repeated transients as the aspect ratio or the applied Rayleigh number
varies. The chevrons (or counter-propagating waves) consist of a pair of equal amplitude waves, usually propagating
outwards from the cell center (i.e., left-traveling waves dominate in the left half of the domain while right-traveling
waves dominates in the right half), and these are the states that result from the primary Hopf bifurcation in domains
that are not too large [5]. This primary bifurcation is subcritical, in agreement with the prediction for standing
waves in a horizontally periodic system. The detailed properties and appearance of the time-dependent states depend
crucially on the no-slip lateral boundary conditions which break the periodicity of the system in the x direction.
Stable chevrons may be present in particular ranges of the aspect ratio Γ, but are most likely observed for values
of Ra below its onset value. Stable small amplitude blinking states set in when stable chevrons lose stability at a
secondary Hopf bifurcation that produces oscillations in the amplitudes of the counter-propagating waves. Thus,
the blinking states are alternately dominated by left- and right-traveling waves. A third type of state, the repeated
transients, was observed by Kolodner and co-workers in water-ethanol mixtures [4] very close to onset. These states
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FIG. 2. The large scale base flow (LSF) when α = 0.03. Mean kinetic energy E as a function of Ra showing the location of the
Hopf bifurcation (*). The insets show contour plots corresponding to the streamfunction Ψ, concentration C and temperature
fluctuation Θ at Ra = 11313 (solid dot on the solution branch). In the color map used here and throughout the paper, red
corresponds to positive values of the field, blue to negative values, and green to zero. Parameters: S = −0.1, τ = 0.01, σ = 7
and Γ = 14.

consist of chevrons that grow exponentially from small amplitude without change of shape until they reach a critical
amplitude at which they become unstable, and collapse back to small amplitude. The repeated transients appear via
a global bifurcation as the Rayleigh number Ra increases and may be the first nontrivial state that is seen. This state
transitions into stable large amplitude blinking states with further increase in Ra. This transition has been identified
as a tertiary Hopf bifurcation that eliminates the slowest frequency from the time trace and is typically hysteretic.
With further increase in the Rayleigh number, the system evolves either into wall-attached patches of traveling waves
or towards steady convection, which can either fill the domain or form localized time-independent structures called
convectons.

Convectons can be viewed as bound states of fronts that connect the conduction state to the convection state. Such
states can exist as a consequence of the pinning of the fronts to the finite amplitude convection state, and are present
in a pinning region. There are two types of centered localized convectons: those invariant under R1 (even convectons)
and those invariant under R = R1 ◦ R2 (odd convectons), organized in a pair of intertwined snaking branches in
an (Ra,E) plot. As one proceeds up along each snaking branch, the localized states grow in length by nucleating
new rolls on either side in such a way that the parity of the states is preserved. When the domain is almost filled
the snaking must cease and the two snaking branches turn continuously into large amplitude domain-filling states
that resemble the mixed mode states computed with periodic boundary conditions. This continuous transition from
spatially localized convectons to spatially extended structures is a consequence of the no-slip boundary conditions
at the sides that eliminate the spatially periodic state [8]. It is important to note that each snaking branch in fact
represents a pair of solutions related by the reflections R (even convectons) and R1 (odd convectons) [10]. There are
also branches of steady asymmetric states, called rung states, that connect the even and odd branches. These branches
are born and die in parity-breaking bifurcations from the pure parity snaking branches. With periodic boundary
conditions these states drift [10]. Hole-like states and two-pulse states are also organized in snaking branches with
reconnections between them that are also a consequence of the no-slip boundary conditions. Other snaking branches
with connections between n − 1 and n pulses are also present [10]. We note that for sufficiently negative values of
the separation ratio like those used in this paper, the convecton branches do not connect to the base flow: all steady
state bifurcations of the base flow have been pushed off to infinity.

B. Very small inclination: α = 0.01, α = 0.03

In this section we present the results for inclinations α = 0.01 and α = 0.03. When α 6= 0 the character of the
problem changes dramatically, largely because of the generation of a large-scale flow along the bottom wall with a
return flow along the top wall. This flow is the unique solution at very low Ra, and hereafter is called the base flow
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FIG. 3. Time evolution of a perturbation of the LSF flow near the primary Hopf bifurcation (Rac = 1923.54) for a slightly
supercritical Rayleigh number Ra = 1925. Top: three space-time plots showing the evolution of Θ at midheight z = 1/2 with
time increasing upwards (each for 20 units of time) at the three instants indicated in the much longer time series shown in the
panel below. Bottom: E as a function of time t. Parameters: α = 0.03, S = −0.1, τ = 0.01, σ = 7 and Γ = 14.

or LSF. Physically, the appearance of this flow is a consequence of a nonzero component of the buoyancy force along
the horizontal wall, while mathematically it is a consequence of the broken R1 symmetry mentioned above.

In Fig. 2 we show the development of the LSF with increasing Ra for α = 0.03 (in the following we measure α in
radians). For the parameters used in this paper and for very small values of α, the large scale flow that replaces the
conduction state extends towards very large values of Ra. The insets in Fig. 2 show in succession the streamfunction
Ψ (u = −Ψz, w = Ψx), the total scaled concentration C [C = −Cheavy/(C0(1 − C0)ST ∆T )], and the temperature
fluctuation Θ, computed at Ra = 11313 (solid dot in the bifurcation diagram; this dot does not represent the
termination of the branch). The figure shows an R-symmetric solution with flow towards the right along the bottom
boundary and to the left along the top boundary, as predicted by linear theory for an unbounded system [20]. In
the present case the container is closed and the flow along the bottom boundary transports the higher concentration
near the bottom boundary to the right, leading to a substantial increase in C at the right wall and a corresponding
deficit near the left wall. The net effect of the base flow is to generate contours of constant concentration that have a
constant positive slope, except very close to the sidewalls where the slope must be zero. This result is in qualitative
agreement with linear stability theory [20], which predicts a slope proportional to |S|/τ . Note that despite the small
value of the inclination α the slope of the constant concentration contours is of order one. The existence of this base
flow state is not at all surprising. However, it is unexpected that in order for the α 6= 0 system to resemble the α = 0
system the inclination α must be extraordinarily small, as we show below.

For these small inclinations, just as for α = 0, the LSF flow destabilizes in a primary Hopf bifurcation that either
respects or breaks its symmetry R and so gives rise to several time-dependent patterns. We begin by showing an
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τ = 0.01, σ = 7 and Γ = 14.
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FIG. 5. (a) Snaking branch showing the mean kinetic energy E for solutions with a counterclockwise central roll (blue states)
as a function of the Rayleigh number Ra when α = 0.01, together with (b) the concentration C and (c) contours of the vertical
velocity w at the locations indicated in the left panel. In both fields the same color bar is used for all the states. Parameters:
S = −0.1, τ = 0.01, σ = 7 and Γ = 14.

example of the transient states that emerge as a result of this primary Hopf bifurcation when α = 0.03. In Fig. 3
we show the time evolution of a small perturbation at a Rayleigh number slightly larger than the critical value for
this bifurcation (ε ≡ (Ra − Rac)/Rac = 7.6 × 10−4). Several patterns appear as transients before the final state is
reached. First we see a growing chevron with a frequency close to the critical frequency ωc = 6.04 [Fig. 3(a)]. This
state eventually saturates but the saturated chevron state is not stable and evolves to a quasiperiodic pattern that
does not correspond to the blinking state obtained when α = 0. Instead of a pattern dominated alternately by left-
and right-traveling waves, we first observe a modulation that corresponds to oscillations in the phase of the amplitude
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superposed on the corresponding snaking branches of odd states from Fig. 4 (blue and red solid lines); the dashed line indicates
the snaking even parity states when α = 0. (b) The panels on the right show the streamfunction Ψ, and contours of constant
concentration C and temperature fluctuation Θ of an asymmetric solution at the location indicated in the figure by the open
circle. Parameters: S = −0.1, τ = 0.01, σ = 7 and Γ = 14.

of the left- and right-traveling waves propagating outwards from the center (Fig. 3(b)). This pattern evolves quickly
to a pattern resembling a standing wave confined to the left side of the container, and a traveling wave on the right
side of the container, with both regions separated by a very small amplitude central region (not shown). This pattern
is in turn unstable, and evolves to a chaotic blinking state in which we observe episodes dominated either by left- or
right-traveling waves, or coexisting left- and right-traveling waves, or amplitude collapse (Fig. 3(c)). These states are
reminiscent of those studied in Ref. [35]. The time evolution of the mean kinetic energy and of the Nusselt number
of this final state exhibits bursting behavior. When the Rayleigh number is decreased this state persists to negative
values of ε.

We now focus on steady localized solutions (centered convectons) that originate from the α = 0 snaking diagram,
and consider the range of Ra for which such solutions exist.

When α 6= 0 the equations continue to admit solutions invariant under R (we retain the name odd parity states for
these states, as used in the α = 0 case), and present in Fig. 4(a) the snaking diagram for these states for α = 0.01,
i.e., the mean kinetic energy E as a function of the Rayleigh number Ra. Since the symmetry R1 is broken, the
odd-parity branch present for α = 0 necessarily splits in two, leading to a pair of distinct snaking branches (blue and
red) each consisting of R-symmetric states. Figure 4(a) also includes the snaking diagram for the odd parity states
when α = 0 (black curve). States on the blue branch are characterized by a counterclockwise central roll, while states
on the red branch have a clockwise central roll. Figure 4(b) shows an example of states on the blue and red branches
at Ra = 1973 and Ra = 1887, labeled (2) and (1), respectively. Because of the pumping action associated with odd
parity states [7, 8], the former state entrains heavier fluid from below on the right and lighter fluid from top on the
left. The result is a marked positive gradient in the contours of constant concentration C. Similar pumping takes
place in the latter case but because of the reversed circulation of the outer rolls the entrainment direction is reversed,
resulting in a much starker left-right asymmetry in the concentration profile.

When α = 0 the odd localized states undergo a sequence of back-and-forth oscillations within a well-defined snaking
region, reflecting the addition of rolls on either side of the structure, until the domain is filled [black line in Fig. 4(a)].
The solution branch then turns towards higher values of Ra, growing the resulting domain-filling state in amplitude.
This behavior is followed by both branches of odd convectons when α is small enough. Figure 5 shows sample states
along the blue branch of such states corresponding to the locations indicated in the left panel, and summarizes the
evolution of these states from a small number of rolls to larger amplitude states with many more rolls where the
convective structure turns into a domain-filling state. The figure shows that as one proceeds up the branch a state
with counterclockwise rolls at the ends turns into one with clockwise rolls at the ends and back again, as the structure
adds new rolls, one on each side. As a result, the pumping effect repeatedly changes direction as the structure grows.
This is also the case along the red branch (not shown). Note that relative to the α = 0 snaking branch the new
branches are obtained by shifting pairs of successive left-right folds in the α = 0 diagram alternately inwards and
outwards, an effect shown clearly in Fig. 5(a). Moreover, the pumping effect is more prominent when the number of
rolls is small (Fig. 5(b)): when the number is large a much larger fraction of the cell is homogenized, and the effect
of pumping correspondingly reduced.
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In contrast to the odd solutions, the solutions originating from each pair of α = 0 even convectons become asym-
metric with respect to R1 but continue to lie on a single branch in the bifurcation diagram because the symmetry R
that relates them is not broken by the inclination. The asymmetric rung states, which are four-fold degenerate when
α = 0, also do not survive unchanged when α 6= 0 and split into two pairs of asymmetric states which reconnect with
the asymmetric states created from the α = 0 even states. This reconnection leads to a break-up of the even states
into a series of disconnected branches of asymmetric states. In Fig. 6 we show in green one of these disconnected
pieces. It follows that the effects of α 6= 0 are completely analogous to the effects of breaking the midplane reflection
symmetry R2 in the problem without inclination [29], and in the cubic-quintic Swift-Hohenberg equation, as described
by Houghton and Knobloch [30], except that here the roles of the odd and even branches are reversed.

We consider now the results for a slightly larger value of the inclination, α = 0.03. Figure 7 shows the corresponding
results for the odd states (blue and red, as before), compared with the α = 0 branch shown in black. Figure 8 shows
details of the R-symmetric states on the blue branch. In comparison with the corresponding branch for α = 0.01
we observe that at the bottom part of the branch the two consecutive inner saddle-nodes have merged so that the
solutions at successive saddle nodes on the left (locations 3 and 5) or on the right (locations 4 and 6) now differ
in adding two new rolls on either side of the convecton structure as one proceeds towards larger energy E. In the
upper part of the snaking structure, the complex behavior near location 8 is a consequence of the fact that at this
location the remaining domain width is larger than that required for the insertion of a weaker cell near the no-slip
boundary. Consequently, the structure must first adjust its internal wavelength before the insertion of the boundary
rolls succeeds and the state becomes a true domain-filling state. This is the physics behind the complex structure of
the blue branch near the transition to the domain-filling state.

Finally, it is also worth mentioning the behavior of the lower part of the snaking branches when α is small and
the Rayleigh number Ra is increased: in contrast to the α = 0 case, the red and blue branches do not extend to
infinity. Instead both turn around in a fold at large Ra and reenter the snaking region. For example, the red branch
in Fig. 4 turns around at Ra ∼ 8200, where a single-pulse state (a clockwise roll in the center of the domain with a
counterclockwise roll on both sides) starts to split and turns into a two-pulse state. This state then undergoes two
pairs of additional folds, one at Ra ∼ 6020 and 7180 and one at Ra ∼ 2420 and 2720, before undergoing two-pulse
snaking within the same snaking region as the single pulse states, much as occurs in the α = 0 case when the lateral
boundary conditions are nonperiodic [10] as is the case here. These two-pulse states are omitted from Fig. 4. The
states on the blue branch behave broadly similarly although the transition to the two-pulse states now occurs at
slightly larger α. Prior to the transition (i.e., at smaller α) one finds that the central roll splits at larger Ra into three
much smaller and vertically staggered corotating rolls before the solution branch turns around towards smaller Ra.
These states are also not shown here because the behavior of the lower part of the snaking branches is in fact extremely
sensitive to the precise value of the inclination α (and the type of branch: clockwise/counterclockwise central roll)
and remains to be fully elucidated. The relevant fluid mechanical reasons for this sensitivity to the inclination are



11

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(b)

(13)

(c)

1800 2000 2200 2400
0

2

4

6

8

10

12

14
(a)

Ra

E

(1)
(2)(3)

(4)

(5)

(6)

(7)

(8)(9)

(10)

(11)

(12)

(13)

FIG. 8. (a) Snaking branch showing the mean kinetic energy E for solutions with a counterclockwise central roll (blue states)
as a function of the Rayleigh number Ra when α = 0.03, together with (b) the concentration C and (c) contours of the vertical
velocity w at the locations indicated in panel (a). In both fields the same color bar is used for all the states. Parameters:
S = −0.1, τ = 0.01, σ = 7 and Γ = 14.

discussed further in Section IV with the relevant mathematical considerations likely resembling those in Ref. [31]. In
any case, we see that for these very small values of the inclination α the localized states are not connected to the LSF
branch which continues monotonically to large values of the Rayleigh number Ra (Fig. 2).

C. Small inclination: α = 0.05

We now present the results obtained for a slightly larger inclination, α = 0.05. We aim to find out how increasing
the strength of the large scale flow affects the base flow branch and the branches of localized states obtained earlier
for smaller inclinations. As we shall see, this relatively small change in α changes completely the arrangement of the
solution branches.

We explore first the evolution of the large scale flow. Figure 9 shows that when the Rayleigh number exceeds a
critical value of order Ra ∼ 1050 the base flow ceases to be featureless and starts to develop a localized roll in the
center of the domain (location 1). The formation of this roll is associated with the presence of a fold at Ra ∼ 1050.
When the resulting subcritical branch is followed to lower Ra and then past the next fold on the left this central
roll becomes strongly localized, and a new state results (location 2), characterized by a single counterclockwise roll
embedded in a much lower amplitude background. Although it may seem from an inspection of the streamfunction
contour plots that increased inclination suppresses the base flow completely, this is not the case. The shear horizontal
velocity is still present, but its amplitude is much lower than that of the velocity field within the localized rolls. As
a result the color map used to plot the figures makes the background look, misleadingly, quiescent. The different
scale that is used for the streamfunction representation helps to visualize the flow, while the velocity amplitude can
be inferred from the mean kinetic energy plot. As one follows the branch to larger amplitude the number of rolls
gradually increases. What is of interest, however, is that the next state that is encountered (location 3) consists
of two rolls, both of which rotate in the counterclockwise sense. The tendency to generate corotating rolls with
increasing Rayleigh number is of course well known for doubly diffusive convection in a vertical slot [32, 33], but
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FIG. 9. (a) Complex curve showing the mean kinetic energy E for solutions obtained by numerical continuation of the large
scale flow with the Rayleigh number Ra when α = 0.05. The letters PF indicate the primary fold. (b) Concentration C and
(c) contours of the streamfunction Ψ at the locations indicated in panel (a). In the concentration contours the same color bar
is used for all states, while a variable scale is used for the streamfunction representation to ease visualization. Parameters:
S = −0.1, τ = 0.01, σ = 7 and Γ = 14.

what is of particular interest in the present case is that this already occurs for the very small inclinations used here.
This process is a consequence of the interaction between the base flow and the rolls, the flow strengthening rolls that
rotate in the same sense as the base flow but weakening those that rotate counter to it. As one follows the branch
farther upward these corotating rolls gradually drift apart before expanding laterally (location 6) and then splitting
into two pairs of corotating rolls. These drift towards each other as one follows the branch yet farther, forming a
four-roll localized state (location 9). A similar sequence of transitions subsequently generates a state consisting of
three equidistant corotating but isolated rolls (location 13). We have continued this solution branch much farther
(not shown) and have not reached a domain-filling state. Following the solution branch from location 13 one finds
there are many subsequent sharp folds, corresponding to lateral displacements of the three rolls, which increase and
decrease their kinetic energy as the Rayleigh number varies, while the number of rolls remains constant (there are
always three corotating rolls). The highest Ra value reached along this path was Ra ∼ 2285, with a mean kinetic
energy E ∼ 1.29, far beyond the limits of Fig. 9(a).

In the evolution of the large scale flow curve we have just described, the location in the curve of the first fold on
the right (Ra ∼ 1050) is evidently going to play a key role, since it marks the location where the large scale base
flow is overcome for the first time by vertical motions due to vertical temperature gradients as opposed to horizontal
temperature gradients. Hereafter we refer to this fold as the primary fold.

Since the primary fold at α = 0.05 occurs at quite low values of Ra, it is necessary to examine its competition with
the primary Hopf bifurcation of the LSF as α increases from α = 0. In Fig. 10(a) we indicate, as a function of the
inclination, the critical Rayleigh numbers corresponding to the primary Hopf bifurcation of the basic LSF flow and
to the primary fold. Whereas the Hopf bifurcation hardly varies with α, the values of Ra at which the primary fold
takes place increase substantially as the inclination decreases, ie., the onset the first appearance of significant vertical
motions is delayed to larger and larger values of Ra. These vertical motions arise in different locations within the
domain depending on the inclination. We find that for inclinations larger than α = 0.045 a localized roll develops in
the center of the domain as in the α = 0.05 case. For slightly smaller inclinations, beyond the fold bifurcation, the
vertical motions instead take the form of two localized rolls near the lateral walls.

Finally, it is important to notice that the primary Hopf bifurcation of the base flow disappears when α exceeds
0.0473. Figure 10(b) shows the behavior near this value. With increasing α the Hopf bifurcation that destabilizes
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FIG. 11. Mean kinetic energy E for solutions that develop continuously with increasing Rayleigh number from the large scale
flow for α = 0.05, showing three additional branches of disconnected states consisting of five (green curve), six (magenta curve)
and seven (blue curve) corotating rolls, in addition to the states connected continuously to the LSF (black curve). The insets
show the streamfunction of the steady solutions at the three locations indicated by solid dots, all at Ra = 1200. Parameters:
S = −0.1, τ = 0.01, σ = 7 and Γ = 14.

the lower branch collides with a second Hopf bifurcation, the latter on the upper LSF branch, and the two Hopf
bifurcations annihilate in the vicinity of the primary fold at α ∼ 0.0473 where the two Hopf frequencies coincide.
Thus, beyond this critical inclination, the base flow loses stability at the primary fold and remains unstable above it.

A more detailed examination of the R-symmetric solutions that exist near the base flow branch we just discussed
reveals the existence of a sequence of disconnected solution curves at larger energy, three of which are shown in
Fig. 11. The upper part of the green curve corresponds to states consisting of five equispaced corotating rolls, while
the magenta curve corresponds to similar states consisting of six corotating rolls and the blue curve corresponds
to states consisting of seven corotating rolls. We illustrate these states in Fig. 11 at the location indicated by the
green, magenta and blue dots. These solutions are numerically stable. In contrast, states consisting of three and
four equispaced corotating rolls are connected by the black branch in Fig. 11, as already discussed. The breakup of
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FIG. 12. (a) Complex solution branch obtained by numerical continuation of the steady 6-roll state depicted in Fig. 11 when
the Rayleigh number Ra is initially decreased, for α = 0.05. A transition from corotating rolls back to counter-rotating rolls
is observed. (b) Concentration C and (c) the contours of the streamfunction Ψ at the locations indicated in panel (a). In the
concentration contours the same color bar is used for all states. Parameters: S = −0.1, τ = 0.01, σ = 7 and Γ = 14.

a snaking structure into a stack of disconnected isolas is a common feature of pattern-forming systems, and is seen,
for example, in the quadratic-cubic Swift-Hohenberg equation in two spatial dimensions. In this system localized
structures in the form of spots initially snake but eventually the snaking breaks up into isolas [34], a consequence
of decreasing curvature of the spot as it grows in size. This process resembles that played here by the LSF whose
influence is gradually suppressed as Ra increases for fixed inclination α.

In Fig. 12 we show the fate of the 6-roll state (magenta curve in Fig. 11) with increasing Ra. The figure is of
interest because it shows that the corotating structure does not persist to larger Ra, and describes the details of the
transition with increasing Ra into a state consisting again of counter-rotating rolls resembling those present when
α = 0. For example, we can distinguish a centered convecton with four single corotating rolls (location 4) and three
pulses of convectons (location 8). Similar behavior is obtained when the branch of 5 roll states (green curve in Fig. 11)
is followed to increasing Ra. The branch of seven corotating roll states (blue curve in Fig. 11) is described below,
since, as we shall see, it is also reached when a domain-filling state of counter-rotating rolls with a counterclockwise
central roll is continued to smaller Rayleigh numbers.

In an attempt to look for snaking branches of R-symmetric localized solutions resembling those depicted in Fig. 4
for α = 0.01 and in Fig. 7 for α = 0.03, we have performed continuation as the Rayleigh number decreases of two
equivalent large amplitude domain-filling states: a state with six pairs of counter-rotating rolls plus a counterclockwise
central roll, and a state with six pairs of counter-rotating rolls plus a clockwise central roll. The resulting branches
are shown in Fig. 13 and Fig. 14.

In Fig. 13 we summarize the complicated transitions undergone by a domain-filling state with a counterclockwise
central roll (solution at location 1). We have identified at least 28 saddle-node bifurcations in the curve we show.
Between locations 1 and 2 there is an abrupt weakening of the clockwise rolls with an overall shrinking in width of all
clockwise rolls, until only counter-rotating rolls remain (location 2), and the branch of solutions extends to very low
values of Ra, Ra ∼ 1000. The concentration field undergoes a significant transformation from a perfectly mixed state
(location 1) towards a state with a pronounced lateral stratification (location 2), a feature typical of low amplitude
states in inclined systems. This low amplitude state consists of seven corotating rolls and lies precisely on the blue
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curve in Fig. 11. Thus the branch in Fig. 13 represents the evolution of the 7-roll state in Fig. 11 to larger values of Ra
and E. As the Rayleigh number starts to increase from the lowest value reached, the roll at the center of structure is
gradually eliminated and low amplitude states consisting of six corotating rolls (locations 4 and 7) are visited several
times along the path of this curve. Among the high amplitude states visited by the system, we can highlight a state
resembling a two-pulse convecton of counter-rotating rolls with two single rolls near the walls (location 3), a state
similar to a hole state with two single rolls near the center (location 5), and a pure hole state (location 6). The system
finally reaches a new domain-filling state (location 8) in which the central roll is now rotating clockwise. Evidently, the
transitions display strong hysteresis, and multiple states consisting of a given number of rolls all exist simultaneously.
We expect that these complex transitions are, once again, a consequence of the no-slip lateral boundary conditions
[10].

Figure 14 shows the transitions undergone by the domain-filling state with a clockwise central roll (location 1) when
the Rayleigh number decreases. In this case the lowest Rayleigh number state reached by the solution branch is around
Ra = 1750, so this branch is located to the right of the diagram in Fig. 11. Again the behavior is complicated and 18
saddle-node bifurcations are identified along the branch. As before, the system visits low amplitude states consisting
of six corotating rolls (locations 2 and 4), but only one high amplitude state resembling a convecton with two single
isolated rolls on either side is visited (location 3). In contrast to what happens in Fig. 13, the transitions between the
high and low amplitude states occur after gradual erosion and subsequent disappearance of the rolls near the lateral
walls takes place. The system eventually returns to a domain-filling state but with a slightly different wavenumber
(location 6), in which the central roll is rotating clockwise, as in the initial state (location 1). We emphasize that,
despite appearances, the branch in Fig. 14 does not represent a continuation of the 6-roll state in Fig. 11 to larger Ra
and E.

D. Parameter-dependence of the base flow branch for α = 0.05

We focus now on exploring the sensitivity of the complex α = 0.05 base flow branch to the other parameters: aspect
ratio Γ, separation ratio S, and Lewis number τ . We analyze first the dependence of the location of the primary fold
on the aspect ratio of the domain. This bifurcation arises when the increased energy input can no longer be convected
across the whole cell by the large scale flow and results in the gradual appearance of isolated rolls superposed on the
LSF. Figure 15 displays the mean kinetic energy E as a function of Ra for four values of the aspect ratio. In all cases
the fold is located at Ra ∼ 1050, reflecting the fact that the lateral walls exert negligible influence on its location.
In addition, we see that the values of the concentration gradient and the horizontal velocity at the fold are almost
independent of the aspect ratio (∆C/∆x ∼ 0.4 and u ∼ 0.05 in nondimensional units). The horizontal velocity and
the mean energy of the base flow is fixed by the Rayleigh number, and therefore its total energy before the primary
fold increases linearly with Γ. For this reason the mean energy is the same and the four curves overlap. After the
primary fold, when a single roll emerges, the curves diverge and the higher mean energy curve corresponds to the
shorter box. For the longest Γ = 40 box, two rolls appear near the walls and move towards the center after a further
fold bifurcation.

Many of the details of the behavior we have described throughout the paper depend strongly on the precise value
of the separation ratio S. Figure 16 shows the solution branches (mean kinetic energy E as a function of the Rayleigh
number Ra) for four nearby values of S. The leftmost branch, in green, corresponds to S = −0.08. For this value of
S the mean kinetic energy of the solution increases monotonically with increasing Rayleigh number; the evolution of
the spatial structure of the pattern with Ra can be visualized in Fig. 17. We observe that the large scale flow that
forms initially gradually breaks up into cellular patterns as Ra increases. This break-up occurs first near the lateral
walls and then invades the interior. This behavior matches exactly the experimental observations reported in [23] for
a pure fluid in a slightly inclined cell. The authors observed that one convection roll after another develop stepwise,
beginning at the sidewalls and moving towards the middle of the box. This means that the instability does not set
in simultaneously in the whole domain, as in the case of horizontal cells, and that an inhomogeneous development of
cellular convection takes place instead. We conclude, therefore, that for the σ and τ values used in this paper, the
evolution of the large scale flow with increasing Ra for separation ratios in the range −0.08 < S < 0 fits well the
phenomenology reported for pure fluids.

For slightly more negative values of S the LSF branch becomes much more complex. Figure 16 shows that already for
S = −0.09 the solution branch develops a series of folds (red curve), with yet more complex behavior for S = −0.0945
(black curve). Figure 18 provides details of the evolution of the solutions in the latter case. This behavior should
be compared with that displayed in Fig. 9 for S = −0.1 (blue curve in Fig. 16). We see that in all these cases the
evolution starts out in a similar manner: the base flow ceases to be featureless and starts to develop a localized roll
in the center of the domain. However, the details of the evolution are quite different even though at various locations
the solutions along the branches take the form of four corotating rolls, albeit with different separations, in each case
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FIG. 13. (a) Complex solution branch obtained by numerical continuation of the steady counterclockwise central roll domain-
filling state when the Rayleigh number is initially decreased, for α = 0.05. Several transitions from counter-rotating rolls to
corotating rolls can be observed. (b) Concentration C and (c) the contours of the streamfunction Ψ at the locations indicated
in panel (a). In the concentration contours the same color bar is used for all states. Parameters: S = −0.1, τ = 0.01, σ = 7
and Γ = 14.

reached by a rather different sequence of transitions. The complexity increases as S becomes more negative.

The precise value of the Lewis number τ also turns out to have a strong influence on the behavior of the LSF branch.
Together with the branch already obtained for τ = 0.01, we present in Fig. 19 two additional solution branches for
larger values of τ , τ = 0.015 and τ = 0.02. First, we observe that at the largest value of the mean kinetic energy in
the figure, the LSF for τ = 0.01 contains three corotating rolls, while that for τ = 0.015 contains only two corotating
rolls and that for τ = 0.02 contains only one roll. In addition, the threshold for the disappearance of the quasi-parallel
flow becomes higher as τ increases. Indeed, the actual value of the concentration gradient at the lowest turning point
has a similar value in the three cases shown, and a single roll emerges in the center of the cell in all cases, although at
larger amplitudes the number of corotating rolls forming the pattern decreases with increasing τ , as already described.
Moreover, the subcritical region between the first the two folds grows as the value of τ increases. The complexity of
the LSF branch in these cases increases as τ decreases.
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FIG. 14. (a) Complex solution branch obtained by numerical continuation of the steady clockwise central roll domain-filling
state when the Rayleigh number is initially decreased, for α = 0.05. Several transitions from counter-rotating rolls to corotating
rolls can be observed. (b) Concentration C and (c) the contours of the streamfunction Ψ at the locations indicated in panel
(a). In the concentration contours the same color bar is used for all states. Parameters: S = −0.1, τ = 0.01, σ = 7 and Γ = 14.

IV. SUMMARY AND CONCLUDING REMARKS

In this paper we have analyzed numerically the effect of slightly tilting a rectangular cell filled with a negative
separation ratio binary mixture. The choice of the physical parameters of the mixture is representative of water-
ethanol mixtures (S = −0.1, τ = 0.01, and σ = 7). The study has been done using numerical continuation (with the
focus on symmetric solutions) and direct numerical simulation. The changes in the bifurcation diagrams that would
be expected from the breaking of symmetry that inclination implies are only observed for the smallest inclinations
considered in this work, α = 0.01 and α = 0.03. For a slightly larger but still small inclination, α = 0.05, a completely
different scenario is obtained. In addition, the dynamics and patterns arising for α = 0.05 depend strongly on the
precise values of S and τ .

For α = 0.01 and α = 0.03 the solution branch corresponding to the large scale base flow that replaces the conduction
state in the inclined system extends to large values of Ra without significant change. This base flow undergoes a
primary Hopf bifurcation after which chevrons, blinking states and chaotic blinking states resembling those observed
in the absence of inclination may emerge. In contrast, for the slightly larger inclination α = 0.05, the behavior of
the base flow branch is completely different. The Hopf bifurcations of the large scale flow no longer exist and the
base flow undergoes a fold bifurcation at a low value of Ra and, for Γ = 14, a single roll appears in the center of
the cell. We have referred to the associated fold as the primary fold. When the base flow is numerically continued a
variety of small amplitude states characterized by lateral concentration gradients and made up of corotating rolls that
differ in their position and number is encountered. These states are organized in a complex bifurcation diagram that
exhibits sharp folds near which splitting, merging or changing in position of the rolls takes place. We show that, as
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FIG. 16. Mean kinetic energy E for steady solutions obtained by numerical continuation of the large scale flow with increasing
Rayleigh number Ra for four different values of the separation ratio S. Parameters: α = 0.05, τ = 0.01, σ = 7 and Γ = 14.

α increases, the primary fold appears at smaller values of Ra whereas the primary Hopf bifurcation of the base flow
hardly varies with Ra. The primary Hopf bifurcation on the lower part of the LSF branch annihilates with a Hopf
bifurcation on the upper part near the primary fold and both disappear when α ∼ 0.0473. Beyond this inclination,
the primary bifurcation of the base flow is the primary fold.

The organization of the large amplitude localized solutions into snaking branches also undergoes a profound change
as the inclination increases. For very small inclinations, α = 0.01 and α = 0.03, snaking branches of localized solutions
were identified and these coexist with the base flow branch. We showed that the inclination splits the odd-parity
snaking branch in the non-inclined system into two branches of odd-parity localized solutions, while the even-parity
snaking branch breaks up into disconnected branches of asymmetric states. However, for α = 0.05, there is no trace
of the snaking diagram seen in the non-inclined case; we locate its disappearance between α = 0.03 and α = 0.04.
Instead, we now find complex solution branches that visit a great variety of large and small amplitude states. The
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FIG. 17. Detail of the steady solutions obtained by numerical continuation of the base flow with increasing Rayleigh number
when S = −0.08. Parameters: α = 0.05, τ = 0.01, σ = 7 and Γ = 14.

large amplitude solutions consist of counter-rotating rolls and exhibit well-mixed concentration profiles; these include
domain-filling states, extended convectons, holes and multipulse states, the latter either pure or accompanied by single
isolated rolls. In contrast, the small amplitude states consist of corotating rolls with a pronounced lateral stratification.
These states do not snake in the sense that the numerous folds that are encountered do not correspond to the usual
nucleation of rolls on either side of an existing convecton. Instead we believe they are ultimately a consequence of
the no-slip boundary conditions as the sides, much as occurs in the Swift-Hohenberg equation with mixed (Robin)
boundary conditions [36]. However, none of the complex solution branches we computed includes convecton states
with a small number of counter-rotating pairs of rolls. If such convectons exist, they have to be located on distinct
solution branches. These could conceivably be located by two-parameter continuation focusing on the precise way in
which the snaking branches disappear but such a study is beyond the scope of the present work, since it would require
exhaustive computations for many different values of α.

Although the primary fold on the LSF branch and the right fold at high values of the Rayleigh number on the
lower part of the snaking branches both appear to move off to Ra = ∞ as α decreases to zero, they do not appear
to be related. As an example, for α = 0.03 the lower part of the counterclockwise central roll snaking branch turns
around in a fold at Ra ∼ 9300 while the LSF branch turns around in a different fold (the primary fold) located at
Ra ∼ 44000. There is no connection between the branches when continued beyond these folds.

We have also analyzed the influence of varying the aspect ratio Γ of the cell, the separation ratio S, and the Lewis
number τ , on the base flow branch obtained for α = 0.05. The location of the primary fold is not affected by Γ, but
the number of corotating rolls that appear after the primary fold increases to two for Γ = 40. In contrast, the precise
value of S and τ alters dramatically the behavior of the base flow branch. In fact, our initial choice of the parameters
of the mixture, S = −0.1 and τ = 0.01, is located in a region of parameter space in which the behavior is particularly
complex. As S increases, a transition to a smoother branch takes place along which the large-scale flow that forms
initially gradually breaks up into a cellular pattern as Ra increases. This break-up occurs initially near the lateral
walls and then invades the interior, much as occurs in inclined pure fluid convection [23]. As τ increases, the location
of the primary fold moves to higher values of Ra and the region of existence of the base flow increases. Moreover, the
additional folds on the LSF branch present for smaller τ progressively disappear.

To sum up, we have shown that a slight tilt of a rectangular cell filled with a negative separation ratio binary mixture
changes the behavior of the system in several ways. On the one hand, the complex spatio-temporal dynamics resulting
from the Hopf bifurcation of the base flow disappear at a certain inclination when the Hopf bifurcation passes the
primary fold. On the other hand, the inclination gives rise to a rich diversity of small amplitude localized corotating-
roll states with significant lateral concentration gradients and to larger amplitude localized solutions that are organized
in complicated snaking diagrams that cover a broad range of Rayleigh numbers. Of particular significance is the fact
that the arrangement of the localized solutions into snaking branches is completely destroyed already at very small
inclinations. In non-inclined binary convection the snaking structure persists after changes in the lateral boundary
conditions [9, 10] or in the top and bottom boundary conditions [29]. However, it is evidently not robust with respect
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FIG. 18. Detail of the steady solutions obtained by numerical continuation of the base flow with increasing Rayleigh number
when S = −0.0945. Parameters: α = 0.05, τ = 0.01, σ = 7 and Γ = 14.
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to the introduction of a slight inclination into the system. Another example in which the snaking diagram does not
persist is discussed in recent work of Lo Jacono et al [37]. In this system, natural doubly diffusive convection in a
vertical slot, changing the boundary condition at one of the vertical walls to Robin or mixed concentration boundary
condition suffices to destroy the snaking diagram: all localized states of the snaking diagram now travel and may
connect up with separate branches of traveling pulses.

We have presented numerical evidence that a very small inclination produces significant changes in the dynamics
of binary fluid convection. In fact this should not come as a complete surprise. As originally shown by Wunsch
[38] and Phillips [39] a stratifying agent in contact with an inclined no-flux boundary condition necessarily leads to
a diffusion-driven flow upwards along the lower boundary and downwards along the upper boundary. The physics
behind this observation is simple: isopycnals cannot be horizontal near inclined boundaries and still satisfy the no-flux
boundary condition. The dependence of the resulting flow on the inclination angle α is explored experimentally in
Ref. [40]. When the separation ratio S is sufficiently negative the present system resembles that studied by Wunsch
and Phillips: a small applied temperature difference generates a stable stratification subject to an effective no mass-
flux boundary condition. Thus a large scale flow is present even for very small Rayleigh numbers (cf. Fig. 16), and it
is this flow that evolves into many of the structures exhibited in this paper when the imposed temperature difference,
i.e., the Rayleigh number Ra, increases and the diffusively generated flow starts competing with destabilizing thermal
buoyancy effects. Despite the complexity in the resulting behavior described here, the study of the slightly inclined
longitudinal system is far from complete. On one hand, in the two-dimensional system, computation of the branches
of asymmetric steady solutions, exploration of new regions of parameter space, or a study of stable spatio-temporal
dynamics, are some aspects that deserve future attention. Three-dimensional simulations would also be of interest but
are much more costly. However, provided the transverse direction is small enough, we expect that the basic physics of
the problem will persist in three dimensions, as happens in pure fluids with the onset of corotating rolls, although the
increase in dissipation arising from the additional walls is expected to postpone the various transitions to larger values
of the Rayleigh number. On the other hand, while some experiments dealing with tilted vertically elongated cells
filled with a binary mixture are available due to their application to thermogravitational columns, we are not aware
of any systematic experimental study of the slightly inclined horizontally elongated case. Our calculations indicate
that this system would benefit from such experiments because of the interesting physics that it entails.
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