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We consider Rayleigh-Taylor and Richtmyer-Meshkov instabilities 

at the interface between two fluids one or both of which may be viscous. 

We derive exact analytic expressions for the amplitude 𝜂(𝑡) in the linear 

regime when only one of the fluids is viscous. The more general case is 

solved numerically using Laplace transforms. We compare the exact 

solutions of the initial-value problem with the approximate solutions of the 

eigenvalue problem used in a simple expression for 𝜂(𝑡) in terms of two 

growth rates 𝛾& and  𝛾'. We then propose a hybrid model as an improvement 

on the approximate model. The hybrid model is based on the same 

expression for 𝜂(𝑡) in terms of 𝛾± but uses exact eigenvalues for 𝛾&, the 

larger growth rate, and a relationship between 𝛾' and 𝛾&. We also discuss 

two concepts: Isogrowth wavenumber pairs and asymptotic decay. The first 

relies on viscosity in one or both fluids to identify perturbations of two 

different wavelengths having the same 𝛾&. The second concept, which is 

more general, can be found in viscous as well as inviscid fluids and requires 

only a specific initial growth rate  �̇�*+,-.-+/0  to force 𝜂(𝑡) → 0 as 𝑡 → ∞. We 

present several examples illustrating these two concepts and comparing 

exact, approximate, and hybrid treatments. 
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I. INTRODUCTION, MOTIVATION, AND BACKGROUND 

Hydrodynamic instabilities are known to cause the growth, often exponential, of small 

perturbations at an interface between two fluids, leading to transition from laminar to 

turbulent flow. The Rayleigh-Taylor (RT) instability arises when a low-density fluid 

supports a higher-density fluid in a gravitational field [1], or accelerates it with or without 

the presence of gravity [2]. The Richtmyer-Meshkov (RM) instability arises when a shock 

wave passes through the interface, in either direction [3,4]. Recent interest in RT/RM 

instabilities stems from their effect on inertial-confinement-fusion (ICF) [5,6,7] and 

supernova explosions [8]. A six-volume review by Ye Zhou citing numerous recent 

experimental, theoretical, and numerical investigations can be found in [9,10]. 

In this paper we consider RT/RM instabilities in two-fluid systems when one or both 

of the fluids are viscous. We present exact, approximate, and “hybrid” (combining exact 

and approximate) expressions for the evolution of perturbations at the interface between 

the two fluids. Viscosity almost always slows down the growth and has important 

applications in a number of fields: Ferrofluids [11], tectonics [12], ICF [13], exploding 

foils [14], aerobreakup [15], and astrophysics [16]. 

Linear analyses start with a small-amplitude, initial value 𝜂*, sinusoidal perturbation 

𝜂*cos	(𝑘𝑥) of wavelength 𝜆 = 2𝜋/𝑘  in the x-direction, taking the acceleration or the 

shock to be in the y-direction. We shall consider only two-dimensional (2D) planar 

geometry. For the perturbation amplitude 𝜂(𝑡) to remain in the linear regime it must satisfy 

𝜂(𝑡)𝑘 ≪ 1. 

Since the Navier-Stokes (NS) equations are second order in time their solutions, in the 

linear regime, must have the form 
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𝜂(𝑡) = 𝜂*𝐹(𝑡) + �̇�*𝐺(𝑡)             (1) 

where �̇�* ≡ �̇�(𝑡 = 0) ≡ (EF
E.
)*. 𝐹	and 𝐺 satisfy initial conditions 𝐹(0) = �̇�(0) = 1 and 

𝐺(0) = �̇�(0) = 0. We shall refer to Eq. (1) as the initial value (IV) solution. 

In Eq. (1) we suppress the dependence of 𝐹 and 𝐺 on the parameters of the problem: 

𝜌H, 	𝜌J, 	𝜇H, 𝜇J, 𝑔 and/or Δ𝑉, 𝑇(P), and 𝑘, where 𝜌 =density, 𝜇 =viscosity, 

𝑔 =acceleration, Δ𝑉 =interface velocity jump following a shock, and 𝑇(P) is the surface 

tension at the interface. Of course these parameters determine the stability or instability of 

the configuration, taken to be two infinitely-thick fluids (finite-thickness effects will be 

considered elsewhere). Stability is determined by a growth rate 𝛾 which depends strongly 

on those parameters. Following Chandrasekhar [17], 𝛾 is determined by assuming that 

𝜂(𝑡)~𝑒S. in the linearized NS equations. This yields an eigenvalue problem with 𝛾 the 

eigenvalue, and the resulting equation that determines 𝛾 is often called the “dispersion 

relation” (DR). Assuming that there are two solutions denoted, for example, by 𝛾& and 𝛾', 

we proposed [18] 

 𝜂(𝑡) = 𝜂*
STUVWX'SWUVTX

ST'SW
+ �̇�*

UVTX'UVWX

ST'SW
            (2) 

from which 𝐹(𝑡) and 𝐺(𝑡) can be readily identified. All 7 or 8 parameters defining the 

system appear only in 𝛾± and a real, large 𝛾& indicates a highly unstable system as 

𝜂(𝑡)~𝑒ST.. We shall refer to Eq. (2) as the eigenvalue (EV) solution. 

The exact solution for 𝜂(𝑡) is given by the IV solution, assuming that the linearized, 

time-dependent NS equations have been solved exactly. The EV solution, Eq. (2), is only 

an approximation, more of an ansatz. The two solutions may or may not agree with each 
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other, depending on the complexity of the problem – they will agree if the fluids are 

inviscid, but not if one or both of them are viscous. 

A somewhat subtle point, which had escaped us when we proposed Eq. (2), is what to 

do when there is only one eigenvalue, say 𝛾&. We hope to provide an answer in this paper 

by proposing a “hybrid” solution. This was not an issue in our earlier work [18] because 

we had coupled Eq. (2) with another approximation, that of using approximate 𝛾±, making 

our results doubly approximate justified only by their simplicity. 

In anticipation of what is to follow in this paper we simply state that the hybrid model 

uses Eq. (2) with 𝛾& calculated from the exact DR and 𝛾' = −𝑔𝑘𝐴/𝛾& , where 𝐴 is the 

usual Atwood number defined as (𝜌J − 𝜌H)/(𝜌J + 𝜌H). 

Interestingly, finding a hybrid solution lies on the following general observation: The 

instability of a system, evidenced by the existence of a large and positive 𝛾&, means that 

perturbations in general will grow with time. It does not mean that every perturbation will 

grow – it depends on the initial conditions. Assume that the ratio 𝐹(∞)/𝐺(∞) exists and 

is finite, and define 

   �̇�*+,-.-+/0 ≡ −𝜂* lim.→^(𝐹(𝑡)/𝐺(𝑡)).                        (3) 

If �̇�* = �̇�*+,-.-+/0  then 𝜂(𝑡) = 𝜂* `𝐹(𝑡) − a
b(^)
c(^)

d 𝐺(𝑡)e → 0 as 𝑡 → ∞. In this process, 

which we label “asymptotic decay”, the 𝜂*  and �̇�* terms in Eq. (1) “cancel” each other out 

asymptotically even though each term separately grows large. If Eq. (2) applies then we 

need to zero-out the coefficient of the growing 𝑒ST. term which is (�̇�* − 𝜂*𝛾')/(𝛾& − 𝛾'). 

Hence 

       �̇�*+,-.-+/0 = 𝛾'𝜂*                 (approximate).            (4) 
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In this paper we will propose using the concept of a critical �̇�* to define a 𝛾' where one 

does not exist or is not allowed by the DR. 

In most early applications of the RT instability �̇�* was set equal to zero, a natural 

choice. With the relatively recent focus on RM instabilities [7, 9, 10, 19] we know that 

each shock is accompanied by a change in �̇�, the growth rate of the perturbation. The 

concept of a critical �̇�* and asymptotic decay, occurring in RT instabilities, is similar but 

somewhat different from that of freeze-out occurring in RM instabilities [19] where a 

perturbation immediately stops growing (�̇� = 0) after a second shock tuned to “cancel” the 

growth induced by a first shock. In contrast, with asymptotic decay �̇�*+,-.-+/0  drives  

in an unstable system which otherwise would be growing exponentially with time. 

Examples will illustrate this point in Sec. IV. Note that this argument is quite general and 

does not require nor preclude viscosity. 

We first review previous work starting with the classic system of two inviscid fluids 

[1]. The DR reads  

𝛾J − 𝑔𝑘𝐴 = 0            (5) 

from which 𝛾± = ±𝛾  with 𝛾 = 𝛾+0/PP-+/0 = f𝑔𝑘𝐴. In this paper we consider only unstable 

configurations 𝐴 > 0  and 𝑔 ≥ 0. Eq. (5) was derived first by Lord Rayleigh [1] for gravity. 

Substituting for 𝛾± in Eq. (2) one obtains the well-known result for the classical RT 

instability: 

              𝜂(𝑡) = 𝜂* cosh(𝛾𝑡) +
Ḟj
S
sinh(𝛾𝑡) , 𝛾 = f𝑔𝑘𝐴.           (6) 

G. I. Taylor used the IV approach to derive [2] 

�̈�(𝑡) − 𝑔𝑘𝐴𝜂(𝑡) = 0             (7) 

whose solution, for a constant 𝑔, is the same as given above in Eq. (6). 

0®h
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We now review the classical RM problem. Richtmyer [3] first treated the shock as an 

instantaneous acceleration, essentially replacing 𝑔 by Δ𝑉𝛿(𝑡) in Eq. (7) (𝛿(𝑡)is the Dirac 

delta function). Integrating Eq. (7) once leads to 

       �̇�* = Δ𝑉𝑘𝐴𝜂*.             (8) 

Assuming 𝑔 = 0 after the shock one obtains 

 𝜂(𝑡) = 𝜂* + �̇�*𝑡 = 𝜂*(1 + Δ𝑉𝑘𝐴𝑡),            (9) 

another well-known result for a single-shock RM instability. 

If 𝑔 ≠ 0 after the shock one must combine RM and RT instabilities [18] by solving Eq. 

(7) with an initial �̇�* given by Eq. (8). If after the shock 𝑔 = 𝑐𝑜𝑛𝑠𝑡. then one simply uses 

the solution given by Eq. (6) in which �̇�* is given by Eq. (8). Note that the condition for 

criticality �̇�*+,-.-+/0 = 𝛾'𝜂* = −𝛾𝜂* = −𝜂*f𝑔𝑘𝐴 = Δ𝑉𝑘𝐴𝜂* will be satisfied if Δ𝑉 =

−s t
uv
. The negative sign means the initial shock must proceed from the heavy to the light 

fluid. 

For double-shock freeze-out one generalizes Eq. (8) to read [19] 

�̇�*& = Δ𝑉𝑘𝐴𝜂* + �̇�*'           (10) 

where �̇�*' is set by the first shock arriving at some time t<0 and the second shock arriving 

at t=0. Clearly, the two terms on the right-hand-side of the above equation can cancel each 

other out leading to �̇�*& = 0 after the second shock. Examples can be found in Ref. [19]. 

The above discussion is exact within the limitation of linearity, incompressibility, and 

𝜇H = 𝜇J = 𝑇(P) = 0. Finite surface tension can be accounted for by the replacement 

𝑔 → 𝑔 − uwx(y)

zw'z{
.          (11) 
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For simplicity of notation we will suppress surface tension terms remembering that in the 

final formulas the above replacement must be done if 𝑇(P)	is appreciable. Its effect on the 

RM instability was treated in [18]. 

The problem, however, becomes extremely complex when we include viscosity, calling 

for approximate treatments which must be compared against the few cases where an exact 

treatment is possible, the main subject of this paper. Needless to say, all treatments must 

return to the above inviscid results for 𝜇H = 𝜇J = 0 (this is not as simple as it appears) but, 

in general, approximations must be used for viscous fluids. Suffice it to note that there are 

no explicit exact results for arbitrary 𝜇H and 𝜇J. There are solutions for special cases and 

to differentiate one case from another we propose using a viscous Atwood number 𝐴| in 

analogy with the one based on density: 

              𝐴| ≡
|w'|{
|w&|{

 .                                             (12) 

The first exact and general eigenvalue treatment was carried out by Harrison [17, 20] 

followed by Bellman and Pennington [21], deriving a DR reproduced in our Appendix A. 

It cannot be solved explicitly for arbitrary 𝐴 and 𝐴| and one must solve it numerically. An 

explicit analytic solution for the simplest case of all, a single viscous fluid, was presented 

in Ref. [22] solving a quartic equation. This single-fluid case can be described as the case 

𝐴 = 1 and 𝐴| = 1, which we refer to as case A. Most often studied [17] is case B where 

𝜈H ≡
|{
z{
= 𝜈J ≡ 𝜇J/𝜌J, i.e. 𝐴| = 𝐴, arbitrary 𝐴. Two new cases which, as far as we know 

have not been studied previously, are case C, 𝜇H = 0, and case D, 𝜇J = 0; The results are 

presented in this paper. The following summarize these four cases: 

𝐴| = 1,𝐴 = 1 (single fluid),    case A     (13a) 

𝐴| = 𝐴, 𝐴 arbitrary,                   case B     (13b) 
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𝐴| = 1,𝐴 arbitrary,    case C     (13c) 

𝐴| = −1,𝐴 arbitrary,    case D.        (13d) 

Of course the single-fluid case A can be considered as a special case of C where the 

“heavy” fluid has viscosity  𝜇J. 

         All four cases above share one common characteristic: Their DRs reduce to a 4th-

order polynomial equation which can be solved explicitly [23], although numerical 

solutions are more common. With exact, explicit solutions in hand we will compare them 

with approximate techniques, which we discuss next. These are useful because of their 

simplicity. 

         The first approximate DR was proposed by Hide [24]: 

 𝛾J + 2𝜈𝑘J𝛾 − 𝑔𝑘𝐴 = 0          (14) 

where 

 𝜈 ≡ |w&|{
zw&z{

.          (15) 

The larger root of Eq. (14), 

        𝛾& = 𝛾&
/~~,��. = −𝜈𝑘J + f𝑔𝑘𝐴 + 𝜈J𝑘�  ,          (16) 

was shown earlier [21] to be an upper bound of the exact DR. Invariably, 𝛾& has been 

shown to be a good approximation, not just an upper bound, to the exact result, and our 

comparison confirms this fact (See Fig. 1 below). As we will argue in this paper the smaller, 

negative root 𝛾' = −𝜈𝑘J − f𝑔𝑘𝐴 + 𝜈J𝑘� is the more interesting quantity. 

Hide’s derivation, based on an original suggestion by Chandrasekhar, was criticized 

by Reid [25]. We showed [18], however, that by using a variation of that method one can 

sidestep Reid’s criticism and arrive at the same approximate DR shown in Eq. (14) above. 
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 The most extensive comparison of exact and approximate DRs was presented in 

Willson’s seldom-cited paper [26] followed by Menikoff et al. [27] who limited their 

comparison to 𝛾& only and who, like Willson, found good agreement between exact and 

approximate 𝛾&. Considering 𝛾', however, Willson reported gross discrepancies. The exact 

DR not only disagreed with the approximate	𝛾', but there were cases, most notably when 

𝜇H = 𝜇J, where a second exact root did not even exist. In Ref. [22] we also reported that 

an exact second root (associated with  in Ref. [22]) did not exist for 𝑘 < ( t
�w
)H/�. 

Although a second exact root exists for 𝑘 > ( t
�w
)H/� (see the last paragraph in [22]), we 

merely noted its existence and did not compare it with the approximate 𝛾'. A comparison 

is presented in this paper (Figs. 2 and 3) and indeed there are vast discrepancies between 

the exact (where it exists) and approximate results. 

One would naturally think that the exact result is the correct one. However recently, in 

studying the viscous RM instability, we reported [28] that the exact EV result leads to the 

wrong growth for 𝜂(𝑡) and that the approximate 𝛾' which we had used earlier gave the 

correct behavior. In fact, we reported (without proof – the proof is given in Appendix A of 

this paper) that the asymptotic RM value is given by 

𝜂(∞) = 𝜂* +
Ḟj
J�uw

          (17) 

and that this is exact for any value of 𝜇H and 𝜇J. The above result was obtained [18] by 

using the approximate eigenvalue 𝛾', in contrast to using the exact eigenvalue which 

misses the mark by more than a factor of 2! The work presented in this paper was spurred 

in part by this apparent contradiction. 

        The solution to the above-mentioned puzzle (approximate 𝛾' gives better results for 

RM than the exact 𝛾') lies in the following basic observation which is also the core 

2Z
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conclusion of this paper: The time-evolution of the amplitude 𝜂(𝑡) is given by solving the 

NS equations as an IV problem [29, 30]. In the linear regime it has the general form given 

by Eq. (1). The EV solution addresses the question: Are there exponentially growing 

solutions? The existence of such solutions does not guarantee, nor contradict, the solution 

in the form of Eq. (2). There are initial conditions, which we have denoted by �̇�*+,-.-+/0 , 

where an initial perturbation decays to zero even in a highly unstable system. As Prosperetti 

has shown (Eq. (24) in Ref. [30]), the IV approach asymptotes to 𝜂(𝑡)~𝑒ST. where 𝛾& is 

the largest root of the DR, but the coefficient is not necessarily the same as in Eq. (2). The 

two approaches, EV and IV, yield the same  for the inviscid case but not for the viscous 

case. 

        The IV solution was given by Carrier and Chang [29] explicitly for the case of a single 

viscous fluid which is case A, Eq. (13a). Prosperetti [30] gave the formal solution in terms 

of a Laplace transform for the general case and gave an explicit expression only for case 

B, Eq. (13b). In this paper we derive (Appendix B) the explicit expressions for cases C and 

D as defined by Eqs. (13c) and (13d). 

        A second motive for studying cases C and D is that other models [31, 32] predict no 

viscous slow down when only one of the fluids is viscous; they require viscosity in both 

fluids for any viscous slow down. While numerical simulations support our approximate 

model, an exact solution for cases C and D would be further confirmation that viscosity in 

only one of the fluids is sufficient for slow down. 

        In Sec. II we present the DRs for cases C and D and discuss the RT and RM problems 

in Secs. IIA and IIB respectively, comparing exact and approximate growth rates 𝛾±. In 

Sec. III we present exact and explicit expressions for 𝜂(𝑡) as an IV solution for cases C 

)(th
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and D, taking up the RT and RM problems in Secs. IIIA and IIIB respectively. A 

comparison between EV and IV treatments is given in Sec. IV where we use concepts based 

on �̇�*+,-.-+/0  to propose a “hybrid” model intermediate between the approximate and the 

exact results. We also discuss the dependence on the viscous Atwood number 𝐴| and point 

out the existence, in general, of “isogrowth wavenumbers,” two different wavenumbers 

sharing the same growth rate 𝛾&. Conclusions and future work are discussed in Sec. V. In 

two appendices we present the mathematical derivations of our results. 

 

II. EIGENVALUES 

A. Rayleigh-Taylor (RT) 

The general DR for obtaining exact growth rates [17, 20, 21, 26, 27, 30] can be 

written as  

 𝛾J + Λ(𝛾)𝛾 − 𝑔𝑘𝐴 = 0          (18) 

with Λ(𝛾) given in Appendix A. The complexity of Λ(𝛾) rules out any analytic solution 

for the general case where both 𝜇H ≠ 0  and 𝜇J ≠ 0 and are arbitrary. Here we outline the 

derivation for case C where 𝜇H = 0  and only the heavy fluid has an arbitrary viscosity 𝜇J. 

Our notation follows mostly Chandrasekhar’s [17] which was also adopted in Ref. [22]. 

        The heavy fluid of density 𝜌J lies in  and has a perturbed velocity  𝑊 =

𝐴J𝑒'u� + 𝐵J𝑒'�w�	while the lighter fluid of density 𝜌H lies in  and has a perturbed 

velocity 𝑊 = 𝐴H𝑒u�  (for the general case where 𝜇H ≠ 0 one would add 𝐵H𝑒�{�.) Here 

           (𝑞H,J)J ≡ 𝑘J + 𝛾 z{,w
|{,w

          (19) 

and 𝑞H,J are defined as having a positive real part because the velocity perturbations must 

vanish as 𝑦 → ±∞. 

0³y

0£y
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        For the general case the 4 constants 𝐴H, 𝐵H, 𝐴J, 𝐵J must be determined by the 

following 4 conditions all applied at the interface (See [17] or [22]): 1) A “jump” condition 

assuring continuity of pressure; 2) Continuity of 𝑊; 3) Continuity of the derivative 𝐷𝑊 ≡

𝑑𝑊(𝑦)/𝑑𝑦; and 4) Continuity of 𝜇(𝐷J + 𝑘J)𝑊(𝑦). For case C which has only 3 constants 

𝐴H, 𝐴J and 𝐵J one must give up one of these constraints and it is the 3rd condition, 

continuity of 𝐷𝑊, that must be given up. Since 𝐷𝑊 is proportional to the tangential 

velocity [17], giving it up means allowing for slip at the interface. The same is true for the 

completely inviscid case 𝜇H = 𝜇J = 0. All other conditions, in particular condition 4, are 

satisfied in all cases. 

        The procedure is well-known and we will not give any more details: The 3 conditions 

for the 3 unknowns are written in matrix form 𝑀𝑉 = 0 with the vector 𝑉 = (𝐴H	𝐴J	𝐵J)x 

and the DR is given by setting det(𝑀) = 0 necessary for a nontrivial solution. The result 

is: 

                  𝐷(𝑍) = 𝑍� + 2𝐴𝑍J − 2(1 + 𝐴)𝑍 + 1 − 𝐴𝑄J = 0        (20) 

where  

              𝑍 ≡ 𝑞J/𝑘     and  𝑄J ≡ 𝑔/𝜈JJ𝑘�.               (21) 

The same result is obtained by taking the limit 𝜇H → 0 in the general DR (Eq. (113) in 

Chapter X of Ref. [17]). We went through the exercise outlined in this and the preceding 

paragraph to identify which constraint must be given up when one of the fluids has 

vanishing viscosity as in case C. 

         For case D, Eq. (13d), where the heavier fluid has 𝜇J = 0 the result is similar: 

        𝑍� − 2𝐴𝑍J − 2(1 − 𝐴)𝑍 + 1 − 𝐴𝑄H = 0          (22) 

where 
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              𝑍 ≡ 𝑞H/𝑘     and  𝑄H ≡ 𝑔/𝜈HJ𝑘�.          (23) 

For physical applications viscous fluids are usually heavier so case C is probably more 

useful, for example: honey supported by water. 

         By using the definitions given by Eqs. (19) and (21) or (23), one obtains the growth 

rates 𝛾 by solving the quartic equations (20) or (22) and using the largest solution for 𝑍. 

Note that 𝑍′s are functions of 𝐴 and 𝑄J or 𝑄H only. Now, quartic equations are solved by 

writing them as a pair of quadratic equations [23]. Note that Eqs. (20) and (22) are relatively 

simpler forms of quadratic equations as they lack a cubic (𝑍�) term. As we hinted above 

setting 𝐴 = 1  (𝜌H = 0) reproduces the simplest case of all, case A, a single viscous fluid: 

Eq. (20) above reduces to  𝑍� + 2𝑍J − 4𝑍 + 1 − 𝑄J = 0 which is Eq. (20) in Ref. [22]. 

Note that when 𝜌H = 𝜇H = 0 then 𝜈J = 𝜈 hence 𝑄J = 𝑄. 

         The 4 solutions to Eq. (20) mirror the ones discussed in Ref. [22]. There are two real 

and two complex solutions for 𝑍. The two complex roots labelled 𝑍�,�  have negative real 

parts and hence are not acceptable. The largest root 𝑍H is always positive and hence always 

present and must be associated with 𝛾&. As for 𝑍J, it is real and negative and hence 

unacceptable if 𝐴𝑄J > 1, meaning if 𝑘 < (tv
�ww
)H/�. However for 𝑘 > (tv

�ww
)H/� 𝑍J is positive 

and hence acceptable, and the associated 𝛾 may be identified with 𝛾'. More on this later. 

         Given the complexity of the exact solutions for even a case as simple as case C, the 

simplicity of the approximate solution, Eq. (14), is even more appreciable. Comparing Eqs. 

(14) and (18), the approximation corresponds to letting Λ → 2𝜈𝑘J for any and all cases. 

This approximate solution has the highly desirable property that its viscous term persists 

even when only one of the fluids is viscous. As we mentioned in the Introduction, this 

brings up another motivation for studying cases C and D, cases where one of the fluids is 
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inviscid yet viscous effects clearly persist because the other fluid is viscous. We have 

pointed out [28] that models where all viscous effects vanish as soon as one of the fluids 

becomes inviscid are rather unphysical and must be limited to cases, like case B, where 

both fluids have comparable viscosities. 

         To compare exact and approximate growth rates we follow the usual scaling 

procedure of reducing the 6 variables in 𝛾(𝜌H, 	𝜌J, 	𝜇H, 𝜇J, 𝑔, 𝑘) to 3 non-dimensional 

variables in 𝑌(𝐴, 𝐴|, 𝑋). We will concentrate on case C hence 𝐴| = 1. For 𝑋, we define 

𝑋 ≡ 𝑘(�w
w

t
)H/�, and for 𝑌 we define 𝑌 ≡ 𝛾(�w

tw
)H/�. Similar variables were used in Refs. [17] 

and [22]. In Fig. 1 we plot 𝑌 as a function of 𝑋 for 𝐴 =0.1, 0.5, and 1.0, the last one 

reverting to case A. The agreement between exact and approximate 𝛾& is indeed 

impressive. 

         In Ref. 22 the same quantities, 𝑌 vs. 𝑋, were plotted for 𝐴 = 1 (Fig. 2 of Ref. [22]). 

Unfortunately we had made an error in plotting the approximate curve in that figure – the 

factor of 2 that appears in the approximate Eq. (14) above was left out leading to an 

approximate curve that actually corresponds to 𝜈/2 instead of 𝜈 as it should have been. 

This error was first reported in Ref. [11]. The correct comparison is given in Fig. 1 of this 

paper and the upper pair of the curves for  in the present Fig. 1 should replace the 

incorrect Fig. 2 of Ref. [22]. 

         In addition to the generally good agreement between 𝛾&U�/+. and 𝛾&
/~~,��., we see 

another property in Fig. 1: All the curves in it are concave downwards. We conclude that 

𝑌(𝑋) or equivalently 𝛾&(𝑘) has a maximum value 𝛾&�/� at some 𝑘 = 𝑘�/�. It also follows 

that for any 𝛾& < 𝛾&�/� there are always two wavenumbers, call them 𝑘� and 𝑘�, which 

1=A



 

 

15 

have the same growth rate. An example is indicated in Fig. 1. We call them “isogrowth 

wavenumbers” and will return to these modes in Sec. IV. 

         A more extensive comparison [27] of exact and approximate 𝛾& shows that they agree 

to within 10% for any case. We concentrated on case C because its exact DR is a quartic 

equation solvable analytically for all four roots. 

         As Willson reported [26], the same cannot be said of the smaller (and negative, i.e. 

decaying) growth rate. This is shown in Fig. 2 where we plot 𝑌 vs. 𝑋 for the smaller, 𝛾' 

root of Eq. (18), using 𝑍J, the second root of Eq. (20). 𝑍J is real, but is positive only for 

𝑋 > 𝐴H/�, hence the corresponding exact 𝑌 start at 𝑋 =0.464, 0.794, and 1.0 for 𝐴 = 0.1, 

0.5, and 1.0 respectively. Unlike Fig. 1, in Fig. 2 there is more than a factor of 2 difference 

between the exact (continuous lines) and approximate (dashed lines) results. 

         The difference between 𝛾'U�/+. and 𝛾'/~~,��.	may not appear important because both 

are negative and hence represent decaying modes. However, two puzzles remain: First, 

what should one do when 𝛾'U�/+. does not exist [26]? Second, why does 𝛾'U�/+. give such 

poor results compared with 𝛾'/~~,��.	 when they are used in the treatment of the RM 

instability [28]? In Sec. IV we will propose a solution to these (related) puzzles. 

 

B. Richtmyer-Meshkov (RM) 

         Following Richtmyer [3] we consider the case of an ideal single shock and set 𝑔 = 0 

after shock passage. The approximate DR, Eq. (14), reads 𝛾J + 2𝜈𝑘J𝛾 = 0 from 

which	𝛾& = 0, 𝛾' = −2𝜈𝑘J. Eq. (2) reduces to [18] 

       𝜂(𝑡) = 𝜂* + �̇�*
�UVWX'H�

SW
= 𝜂* + �̇�*

aH'UWw��
wXd

J�uw
.               (24) 



 

 

16 

         We now turn to the exact DR given by Eq. (18) with 𝑔 = 0. It reads 𝛾J + Λ(𝛾)𝛾 =

0. Clearly, 𝛾 = 0 is a solution and we conclude that 	𝛾& = 0 is actually an exact result valid 

for any value of 𝜇H and 𝜇J [28]. The other root, 𝛾', requires solving 𝛾 + Λ(𝛾) = 0 which 

again cannot be carried out in the general case. Hence we turn to the exact DR given by 

Eq. (20) for case C. The same treatment applies to the DR for case D given in Eq. (22). 

         Now, Eq. (20) can be written as 

          (𝑍 − 1)(𝑍� + 𝑍J + (1 + 2𝐴)𝑍 − 1) − 𝐴𝑄J = 0                    (25) 

and, since 𝑄J = 0 for 𝑔 = 0, it follows that 𝑍 = 1 is one root from which 𝛾& = 0, as 

expected. The remaining three roots are determined by the cubic equation, 

 𝑍� + 𝑍J + (1 + 2𝐴)𝑍 − 1 = 0.          (26) 

Again, two of the roots 𝑍�	and 𝑍� are complex conjugate roots sharing a negative real part, 

but the third, 𝑍J, is a real solution from which one obtains 𝛾'U�/+. = (𝑍JJ − 1)𝜈J𝑘J. Cubic 

equations being straightforward to solve we will not write down 𝑍J explicitly but note that 

it is less than 1, hence 𝛾'U�/+. < 0. 

         With 𝑔 = 0 we cannot use the non-dimensional variables 𝑋 and 𝑌 adopted in the 

previous RT subsection. The Atwood number 𝐴 being the only variable appearing in Eq. 

(26) the 𝑍′𝑠 depend only on 𝐴 and therefore 𝛾'U�/+./𝜈J𝑘J depends only on	𝐴. 

         Similarly for	𝛾'/~~,��.: Since 𝜇H = 0 for case C it follows that 𝜈 ≡ (𝜇J + 𝜇H)/(𝜌J +

𝜌H) = 𝜇J/(𝜌J + 𝜌H) = 𝜈J(1 + 𝐴)/2 and therefore 

               𝛾'/~~,��. = −2𝜈𝑘J = −𝜈J𝑘J(1 + 𝐴).                     (27) 

We conclude that 𝛾'/𝜈J𝑘J depends only on 𝐴 for both exact and approximate treatments, 

as required also by a simple dimensional argument. 
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         In Fig. 3 we plot 𝛾'/𝜈J𝑘J vs. Atwood number 𝐴 for both approximate and exact 

treatments. As in the RT problem (Fig. 2) they differ by factors of ~2. To illustrate, for 𝐴 =

1 the value of the approximate 𝛾'/𝜈J𝑘J is -2 (see Eq. (27)) while the exact result is −2[4 +

�√297− 17�
{
£ − �√297 + 17�

{
£] ≈ −0.9126. This value was used in a summary report 

by Bakhrakh et al. [Ref. 33]. Yet, as reported in [28], numerical simulations of the viscous 

RM instability clearly favor 𝛾'/~~,��. over		𝛾'U�/+.. Similarly, for case B where we provided 

an exact analytic expression for 𝜂(𝑡), we found it much closer to the approximate result 

reproduced here as Eq. (24). 

 

III. INITIAL-VALUE APPROACH         

         In the preceding section we found eigenvalues, i.e. modes growing like 𝑒S±., with 

exact and approximate expressions for 𝛾±. The existence of these modes, however, does 

not guarantee that Eq. (2) is correct in all cases. The evolution of the amplitude must be 

found by solving the initial-value problem, considered in this Section, first for the RT 

problem and then for the RM problem, following a general discussion applicable to both. 

         In the linear regime, to which this paper is limited, the general expression is given by 

Eq. (1) which depends on the suppressed parameters of the system. There are 9 such 

parameters: 𝜂*, �̇�*, 𝜌H, 𝜌J, 𝜇H, 𝜇J, 𝑔	or Δ𝑉, 𝑘, and 𝑡. By dimensional considerations, they can 

be reduced to 5 non-dimensional parameters. We write Eq. (1) in a “growth factor” form: 

                           F(.)
Fj

= 𝑓( Ḟj
Fj�uw

, 𝐴, 𝐴|, 𝑅𝑒; 𝜏)          (28) 

in which the Reynolds number 𝑅𝑒 is defined by 

 𝑅𝑒 = 𝑅𝑒«x ≡ f|tv|
�u£/w

        (29a) 
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and 

 𝑅𝑒 = 𝑅𝑒« ≡ |®¯v|
�u

        (29b) 

for RT and RM respectively (see also Ref. [28]). Note that 𝑔 and Δ𝑉 appear explicitly only 

in the Reynolds numbers. We use the products 𝑔𝐴 and Δ𝑉𝐴 because the acceleration and 

the jump velocity always appear multiplied by the Atwood number 𝐴. As usual, 

𝑅𝑒	measures the ratio of inertial forces (~𝑔 or	Δ𝑉) to viscous forces (~𝜈).        

         There are two ways to non-dimensionalize time: The first is 𝜏 ≡ 𝑡f𝑔𝑘𝐴  and 𝜏 ≡

𝑡|Δ𝑉𝑘𝐴| for RT and RM respectively. The second way is to use 𝜏 ≡ 𝜈𝑘J𝑡 for both RT and 

RM. The ratio of the two ways is the Reynolds number 𝑅𝑒. We will use whichever is 

convenient; for example, when we want to display results for finite 𝜈 as well as for 𝜈 = 0 

then the first way is obviously more convenient. 

         To illustrate the above approach consider our approximate model for RT; By 

substituting 𝛾± from Eq. (14) into Eq. (2) we obtain 

                   F
°±±²³´.(.)

Fj
= 𝑒'µ ¶cosh�𝜏√1 + 𝑅𝑒J� + a1 + Ḟj

Fj�uw
d ·¸¹º	(µ√H&«U

w)
√H&«Uw

»    (30) 

where 𝜏 = 𝜈𝑘J𝑡 and 𝑅𝑒 = 𝑅𝑒«x. Comparing this expression with Eq. (28) note that neither 

𝐴 nor 𝐴| appear explicitly in it, a property on which we comment in the concluding Section. 

         The restriction to the linear regime implies that, first, the non-dimensional variable 

𝜂*𝑘 cannot appear in Eq. (28) and that, second, Ḟj
Fj�uw

 must appear only linearly in it.  

         By choosing 𝜈 ≡ (𝜇J + 𝜇H)/(𝜌J + 𝜌H) as our primary viscous parameter we stress 

the symmetry between 𝜇H and 𝜇J. All the terms appearing in Eq. (28) are symmetric under 

the interchange 𝜇H ↔ 𝜇J, except for 𝐴|. Approximate expressions are indeed symmetric 

(see Eq. (14)) and do not involve 𝐴|. Exact expressions, however, are not quite symmetric 
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and do depend on 𝐴|  - compare, for example, Eqs. (20) and (22) for 𝐴| = +1 and −1 

respectively. This asymmetry will be studied below. 

         The time-evolution of the growth factor 	𝜂(𝑡)/𝜂* for RT and RM problems will be 

presented in subsections A and B respectively. 

 

A. Rayleigh-Taylor (RT) 

         The exact, general evolution equation for 𝜂(𝑡) is obtained by inverting the following 

equation [30]: 

 𝜂½(𝑠) = H
P
a𝜂* +

Fjtuv&ḞjP
Pw&P¾(P)'tuv

d          (31) 

where 𝜂½(𝑠) is the Laplace transform of 𝜂(𝑡): 

 𝜂½(𝑠) ≡ ∫ 𝜂(𝑡)𝑒'P.𝑑𝑡^
* ,          (32) 

and Λ(𝑠) is the same function appearing in Eq. (18) and given explicitly in Appendix A. 

Its complexity again rules out any analytic solutions for the general 𝜇H,J case. 

         For the inviscid case 𝜇H = 𝜇J = 0 we have Λ = 0 and Eq. (31) reduces to 

 𝜂½(𝑠) = PFj&Ḟj
Pw'tuv

         (33) 

which, when Laplace-inverted, gives the classical solution shown in Eq. (6). For the 

viscous case, if we use the approximate relation Λ ≈ 2𝜈𝑘J then the resulting equation can 

again be Laplace-inverted and leads to Eq. (2) with the approximate 𝛾± (write the 

denominator appearing in Eq. (31) as (𝑠 − 𝛾&)(𝑠 − 𝛾') and use partial fractions).   

         Exact analytic expressions for 𝜂(𝑡) have been given in the literature [29,30] only for 

cases A and B specified by Eqs. (13a) and (13b). Before we present the results for cases C 
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and D let us quote the exact result for the asymptotic value of 𝜂(𝑡) given by Prosperetti 

[30]: 

 𝜂(𝑡).→^ =
Fja

À�Á
V d&Ḟj

JS&¾(Â)&Â¾Ã(S)
𝑒S.         (34) 

where 𝛾 ≡ 𝛾&, the largest real root of the exact DR given in Eq. (18). Since the exact and 

approximate 𝛾& are quite close (see Fig. 1) Eq. (34) implies that the time-dependence of 

the asymptotic growth 𝜂~𝑒ST. is well-captured by the approximate formula, but the 

coefficients may differ. We will return to this point later. 

         In the Appendix we derive the exact, fully explicit result for case C: 

     𝜂(𝑡)/𝜂* =
U,Ä+(√µw)

J' ÁÅw
w({TÁ)

+ ∑ ÇÈ
ÉÃ(ÇÈ)

�
-ÊH Ë vÌw

ÇÈ
w'H

+ Ḟj
Fj�wuw

Í 𝑒�ÇÈw'H�µw𝑒𝑟𝑓𝑐(−𝑍-√𝜏J)              (35) 

where 𝑒𝑟𝑓𝑐 is the complimentary error function 1-𝑒𝑟𝑓, 𝜏J ≡ 𝜈J𝑘J𝑡 = a|w
zw
d 𝑘J𝑡, and, as 

before (Eq. (21), 𝑄J ≡ 𝑔/𝜈JJ𝑘�. The 𝑍- are the four roots of the equation 𝐷(𝑍) = 0  where 

                   𝐷(𝑍) ≡ 𝑍� + 2𝐴𝑍J − 2(1 + 𝐴)𝑍 + 1 − 𝐴𝑄J         (36) 

and 

                   𝐷′(𝑍) ≡ 4𝑍� + 4𝐴𝑍 − 2(1 + 𝐴).          (37) 

         Note that Eq. (36) is the same as Eq. (20). The roots 𝑍-, 𝑖 = 1 − 4, are functions of 

𝐴 and 𝑅𝑒 only because 

 𝐴𝑄J =
tv
�wwu£

= [(1 + 𝐴)𝑅𝑒/2]J          (38) 

where 𝑅𝑒 = 𝑅𝑒«x as defined in Eq. (29a). 

         We recover the single-fluid case, case A, by setting 𝐴 = 1 in the above equations: 

After some algebra Eq. (35) reduces to the result given in Ref. [29] (note that Carrier and 

Chang  set �̇�* = 0.)          
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         A similar expression is obtained for case D: 

𝜂(𝑡)/𝜂* =
U,Ä+(√µ{)

J' ÁÅ{
w({WÁ)

+ ∑ ÇÈ
ÉÃ(ÇÈ)

�
-ÊH Ë vÌ{

ÇÈ
w'H

+ Ḟj
Fj�{uw

Í 𝑒�ÇÈw'H�µ{𝑒𝑟𝑓𝑐(−𝑍-√𝜏H)                         (39) 

where 𝜏H ≡ 𝜈H𝑘J𝑡 = a|{
z{
d 𝑘J𝑡  and  𝑄H ≡ 𝑔/𝜈HJ𝑘�. The Zi are the roots of 𝐷(𝑍) = 0 where 

                        𝐷(𝑍) = 𝑍� − 2𝐴𝑍J − 2(1 − 𝐴)𝑍 + 1 − 𝐴𝑄H        (40) 

and 

                        𝐷Ð(𝑍) = 4𝑍� − 4𝐴𝑍 − 2(1 − 𝐴).          (41) 

The above equations can also be obtained by noting that to go from case C to case D we 

can let 𝜌H ↔ 𝜌J, 𝜇J → 𝜇H, and 𝑔 → −𝑔, therefore 𝐴 → −𝐴 and 𝐴𝑄J → 𝐴𝑄H. 

         In Fig. 4 we plot the growth factor 𝜂(𝑡)/𝜂* for case C using Eq. (35). We keep the 

Atwood number fixed at 𝐴 = 0.5 and vary 𝑅𝑒«x from low (𝑅𝑒 = 2, lowest curve in Fig. 

4) to high (𝑅𝑒 = ∞, highest curve in Fig. 4). For the x-axis we chose the non-dimensional 

𝜏 = 𝑡f𝑔𝑘𝐴, also called “e-folding time,” because it is the same for all 𝑅𝑒. A nontrivial 

check is to verify that the curve plotted for 𝑅𝑒 = ∞, obtained from Eq. (35) for 𝑅𝑒 ≫ 1, is 

also the same as the classical curve given by Eq. (6).          

         From Fig. 4 we see that after 7 e-foldings the exact growth factors for 𝑅𝑒 = 2, 5, 10, 

and ∞ are 41, 133, 239, and 548 (=cosh(7)) respectively. As expected, the approximate 

formula given by Eq. (2) with 𝛾± = −𝜈𝑘J ± f𝑔𝑘𝐴 + 𝜈J𝑘�, overestimates the growth 

giving 55, 186, 310, and 548 respectively. Although these values are some 30%-40% larger 

than the exact results they are justified, we believe, by the simplicity of the approximate 

formula. Furthermore, the approximate formula can be used for any case, meaning any 

values of  𝜇H and 𝜇J, so that it should be compared not just with Eq. (35) but with Eq. (31), 

the more general Laplace transform which cannot be inverted analytically. Of course that 
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equation can be inverted numerically in which case the exact, explicit formulas presented 

in this paper, Eqs. (35) and (39), can serve as highly nontrivial checks of that numerical 

inversion.       

         An improved, “hybrid” model will be presented in subsection C of Sec. IV. It consists 

of using Eq. (2) with 𝛾& = 𝛾&U�/+. while retaining the relation 𝛾' = −𝑔𝑘𝐴/𝛾&. The exact, 

approximate, and hybrid results will be compared in that subsection also. 

 

B. Richtmyer-Meshkov (RM) 

         In the classic calculations of Richtmyer [3] and experiments of Meshkov [4] the fluid 

velocity is constant after the passage of the shock, leading to growth linear in time. 

However, as we pointed out earlier [19], this is not necessary: The shock can be followed 

by acceleration, deceleration, or any general motion as indeed happens in ICF implosions 

[6, 19, 34]. The shock induces an initial growth rate �̇�* = 𝜂*Δ𝑉𝑘𝐴 = ±𝜂*𝜈𝑘J𝑅𝑒«, hence 

Eq. (28) reads 

 F(.)
Fj

= 𝑓(±𝑅𝑒«, 𝐴|, 𝐴, 𝑅𝑒«x; 𝜏)          (42) 

with the Reynolds numbers defined by Eqs. (29a,b). 

         In the pure RM case we set 𝑔 = 𝑅𝑒«x = 0	 in the above equation and use either 𝜏 =

𝑡|Δ𝑉𝑘𝐴| (inviscid) or 𝜏 = 𝜈𝑘J𝑡 (viscous). Eq. (31) is much simplified for this case: 

 𝜂½(𝑠) = H
P
a𝜂* +

Ḟj
P&¾(P)

d.         (43) 

However, this Laplace transform still cannot be inverted analytically because of the 

nontrivial form of Λ(𝑠). For the inviscid case Λ = 0 and one obtains 𝜂(𝑡) = 𝜂* + �̇�*𝑡 as 

mentioned above. For the viscous case, if we approximate Λ ≈ 2𝜈𝑘J then we obtain the 

result given in Ref. [18] reproduced here as Eq. (24). An exact expression for case B was 



 

 

23 

given in Ref. [28]. Exact expressions for cases A, C, and D will be given below after a brief 

discussion of our approximate expression for viscous RM, Eq. (24). 

         Using Eq. (8) for �̇�* and 𝑅𝑒« defined in Eq. (29b), Eq. (24) can be written as 

      F(.)
Fj

= 1 + aḞj
Fj
d
aH'UWw��

wXd

J�uw
= 1 + Δ𝑉𝑘𝐴

aH'UWw��
wXd

J�uw
= 1 ± (1 − 𝑒'Jµ)𝑅𝑒«/2     (44) 

where 𝜏 = 𝜈𝑘J𝑡. The sign is determined by the direction of the shock: Positive if it 

proceeds from a light fluid to a heavy fluid (𝐴Δ𝑉 > 0), negative in the opposite case 

(𝐴Δ𝑉 < 0). 

         In Ref. [28] we claimed, without proof, that the asymptotic value of our approximate 

expression was exact. From the above equation, 

 𝜂(𝑡).→^ = 𝜂* +
Ḟj
JÓuw

= 𝜂*(1 ±
«UÔÕ

J
).           (45) 

         To show that the above expression is exact we compare it with the asymptotic value 

of the exact Laplace transform. From Eq. (43) we obtain 

 𝜂(𝑡).→^ = 𝜂* +
Ḟj
¾(*)

.          (46) 

In Appendix A we show that Λ(0) = 2𝜈𝑘J and we conclude that Eq. (45) is exact and valid 

for arbitrary 𝜇H and 𝜇J. The asymptotic expressions for RT and RM instabilities, given by 

Eqs. (34) and (45) respectively, are the only explicit and exact results for arbitrary 𝜇- and 

𝜌-; all other known exact results fall into one of the 4 cases listed in Eq. (13). 

         Note that in the case of the RT instability the effect of viscosity was only a reduction 

in the growth rate: the amplitude continues to grow exponentially with time, 𝜂(𝑡)~𝑒S., 

albeit at a reduced rate – see Eq. (34) and Fig. 4. In the case of the RM instability, however, 

viscosity has a more dramatic effect altering the inviscid growth 𝜂(𝑡)~𝑡 to 𝜂(𝑡) →

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 - See Eq. (45) above and Fig. 5 below.       
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         To investigate exact 𝜂(𝑡) for arbitrary 𝑡 we consider first case C, Eq. (13c). Since 

𝑔 = 0 for RM, we must set 𝑄J(≡
t

×wwu£
) equal to 0 in Eq. (35). Care, however, must be 

exercised in evaluating the term 𝐴𝑄J/(𝑍-J − 1) for 𝑖 = 1 since Z1=1 and numerator and 

denominator both vanish. We evaluate it using Eq. (25): 

             vÌw
Ç{w'H

= vÌw
(Ç{&H)(Ç{'H)

= aÇ
£&Çw&(H&Jv)Ç'H

Ç&H
d
ÇÊH

= 1 + 𝐴.        (47) 

Using 𝐷Ð(1) = 2(1 + 𝐴), 𝑒𝑟𝑓𝑐(𝑧) + 𝑒𝑟𝑓𝑐(−𝑧) = 2, the final result from Eq. (35) is 

              𝜂(𝑡) = 𝜂* +
ḞjU,Ä+('√µw)
J(H&v)�wuw

+ Ḟj
�wuw

∑ ÇÈ
ÉÃ(ÇÈ)

�
-ÊJ 𝑒�ÇÈw'H�µw𝑒𝑟𝑓𝑐(−𝑍-√𝜏J)               (48) 

with 𝜏J = 𝜈J𝑘J𝑡. The 3 roots 𝑍-, i=2,3,4 are the roots of 𝑍� + 𝑍J + (1 + 2𝐴)𝑍 − 1 = 0 

(see Eq. (26)) and depend only on 𝐴. 

         Fig. 5 illustrates the evolution of RM growth factors. Compare with Fig. 4. As 

discussed above, while viscosity changes the exponential growth of the classical inviscid 

RT instability to a reduced exponential growth (Fig. 4), it changes the classical inviscid 

RM growth from linear in time to an asymptotically constant value as seen in Fig. 5.  

         In the limit 𝑡 → ∞ only the first and second terms survive in Eq. (48). Although 

viscosity appears as a product (1 + 𝐴)𝜈J	in that second term, this is equal to 	2𝜈 for case 

C. Similarly for case D: that product is replaced by (1 − 𝐴)𝜈H	which is again equal to 

	2𝜈 . Similarly for case A, the single-fluid case where the product is 2𝜈J = 2𝜈. Using 

𝑒𝑟𝑓𝑐(−∞) = 2 we confirm that  𝜂(∞) = 𝜂* + �̇�*/2𝜈𝑘J in all cases, agreeing with Eq. 

(45). 

         We end this section by giving the exact, explicit RM expression for the viscous 

single-fluid case, case A: 

                   𝜂(𝑡) = 𝜂* +
ḞjU,Ä+�'√µ�

��uw
+ Ḟj

�uw
∑ ÇÈ

ÉÃ(ÇÈ)
�
-ÊJ 𝑒�ÇÈw'H�µ𝑒𝑟𝑓𝑐(−𝑍-√𝜏)                     (49) 
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where the 𝑍- are the three roots of the cubic equation  𝑍� + 𝑍J + 3𝑍 − 1 = 0, and 𝐷Ð(𝑍) =

4(𝑍� + 𝑍 − 1) = −4𝑍(𝑍 + 2). The three roots are 𝑍J = 𝑎 − 𝑏 − 1/3 and 𝑍�,� = (𝑏 −

𝑎)/2 − 1/3 ± 𝑖√3(𝑎 + 𝑏)/2,  where 𝑎 ≡ (J
{
£

�
)�√297 + 13�

H/�
 and 𝑏 ≡ (J

{
£

�
)�√297 −

13�
H/�

. The numerical value of 	𝑍J is approximately 0.2956 from which the normalized 

growth rate 𝛾'/𝜈𝑘J = 𝑍JJ-1≅ −0.9126 as discussed above. This value, however, should 

not be used in the approximate, eigenvalue treatment of the RM instability, as we cautioned 

previously [28]. 

 

IV. DEPENDENCE ON 𝑨𝝁, ASYMPTOTIC DECAY, A HYBRID MODEL, 

AND ISOGROWTH WAVENUMBERS 

A. Dependence on 𝐴| 

         As we have seen, exact results for 𝛾& and 𝜂(𝑡) depend on 𝐴|: Compare Eq. (20) with 

Eq. (22) and Eq. (35) with Eq. (39). Even when you set 𝜈H = 𝜈J where Eqs. (35) and (39) 

become (almost) formally identical since 𝑄H = 𝑄J , the DRs which give the corresponding 

𝑍- and  𝐷′(𝑍-), Eqs. (20) and (22), are still different because they call for 𝐴 → −𝐴. In 

contrast, the approximate results depend only on 𝜈 and therefore are always symmetric 

under 𝜇H ⟷ 𝜇J. 

         To accentuate this difference we plot in Fig. 6 𝜂(𝑡)/𝜂* vs. 𝜏 ≡ 𝜈𝑘J𝑡 for 𝐴 = 0.9 and 

𝑅𝑒 = 𝑅𝑒«x = 1. The two curves in Fig. 6 refer to two different systems: One where only 

the heavier fluid has viscosity 𝜇 (lower curve, 𝐴| = +1), and one where only the lighter 

fluid has the same viscosity 𝜇 (upper curve, 𝐴| = −1). Of course 𝜈 is the same for both 

curves. From these two exact curves we conclude that viscosity in the heavier fluid is more 
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effective in suppressing RT growth than the same viscosity appearing in the lighter fluid, 

although the difference is not very large even at 𝐴 = 0.9; Needless to say, the difference is 

even smaller at lower 𝐴. Note that 𝜈H(=
|
z{
) is larger than 𝜈J(=

|
zw
) because  zw

z{
= H&v

H'v
  and 

𝜌J is some 19 times larger than 𝜌H. This difference between 𝐴| = +1 and −1 is not 

captured by the approximate result (not shown) which always overestimates the growth 

somewhat and is much closer to the upper curve. A hybrid model, presented below, 

captures the difference. 

        There is no need to replicate the above exercise for RM instabilities because the 

difference between the two cases is even smaller and very brief in duration – We know that 

the exact RM asymptote, Eq. (17), does not depend on 𝐴| because it involves only 𝜈 which 

is symmetric under 𝜇H ⟷ 𝜇J. 

B. Asymptotic Decay and Calculation of �̇�*+,-.. 

         As discussed in the Introduction, one can define �̇�*+,-.. such that 𝜂(𝑡 → ∞) = 0, called 

“asymptotic decay”, in both RT and RM systems. We distinguish this phenomenon from 

the better-known RM freeze-out where the growth rate vanishes instantaneously, i.e. �̇� =

0, and is of a different origin occurring, for example, immediately after a second shock 

cancels the growth induced by the first shock [19], or if the reflected and transmitted shocks 

in compressible fluids conspire to arrest the growth of the interface perturbation [35]. 

Viscosity is not necessary for asymptotic decay or RM freeze-out to occur. As we have 

seen, the viscous RM instability always ends with freeze-out (�̇� = 0) but not necessarily 

decay (𝜂 = 0) except for the special case 𝑅𝑒« = 2 (see Eq. (45)) with the shock 

proceeding from a heavy to a light fluid, in which case the amplitude decays asymptotically 

to zero: 𝜂(𝑡 → ∞) = �̇�(𝑡 → ∞) = 0	– see Ref. [18]. 
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         Let us point out an interesting contrast between shocked and accelerating systems. A 

second shock can freeze (�̇� = 0) an amplitude but not when 𝜂 = 0 for the simple reason 

that a shock hitting a flat interface has no effect on it – See Fig. 3(i) in Ref. [19]. In other 

words one needs a finite amplitude in order to freeze it by a second shock. The opposite is 

true in an accelerating system: Since the amplitude grows exponentially with time at late 

times it is not possible to have �̇� → 0 unless 𝜂 → 0 also. 

         The existence of �̇�*+,-..	does not depend on viscosity but is more general requiring 

only that the ratio 𝐹(∞)/𝐺(∞) be finite – see Eq. (3). As we discussed in the Introduction, 

using the approximate Eq. (2) one obtains �̇�*+,-.. = 𝛾'𝜂*. For the classical RT instability 

given by Eq. (6), 

 Ḟjà²ÈX.

Fj
= 𝛾' = −f𝑔𝑘𝐴 = −𝑔𝑘𝐴/𝛾&         (50) 

where 𝛾& ≡ f𝑔𝑘𝐴 is the classic inviscid RT growth rate. What is somewhat surprising is 

that the same combination, 𝑔𝑘𝐴/𝛾&, appears in the coefficient of the exact, viscous RT 

asymptote, Eq. (34), which implies that if �̇�* = −𝜂*(
tuv
ST
) then there is no asymptotic 

growth. We conclude that Eq. (50) is a rather general relationship valid for both inviscid 

and viscous fluids and for any value of 𝜌- and 𝜇-. Of course 𝛾&U�/+. is a more complicated 

quantity than the classic f𝑔𝑘𝐴, being the largest real root of Eq. (18), the exact DR for the 

viscous RT instability. 

         We illustrate by repeating the same exact RT calculations displayed in Fig. 4 but now, 

instead of starting with �̇�* = 0, we start with �̇�* = �̇�*+,-.. = −𝜂*𝑔𝑘𝐴/𝛾&. The new results 

are displayed in Fig. 7. All amplitudes go to zero at late times. Of course the curve for 

𝑅𝑒 = ∞ is given by the classical result, Eq. (6). The rest use Eq. (35). Note that, since this 
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is an RT system, when we choose �̇�* = �̇�*+,-.. then 𝜂 → 0 with �̇� → 0, meaning that the 

amplitude approaches zero with zero slope, as confirmed by the curves in Fig. 7. 

         We should caution, however, that these situations are rather precarious and a slight 

deviation from the criticality condition �̇�* = �̇�*+,-..	can lead to large growth, positive or 

negative. To the two cases �̇�* = 0 and �̇�* = �̇�*+,-..		discussed so far one can add two more: 

�̇�* = 2�̇�*+,-..	 and �̇�* = −�̇�*+,-... These four cases are shown in Fig. 8 as curves labelled 1, 

2, 3, and 4 respectively. Overshooting the targeted value by a factor of 2 (�̇�* = 2�̇�*+,-.., 

curve 3) takes us back to the growing �̇�* = 0	 curve, curve 1, except it is now negative. Of 

course  �̇�* = −�̇�*+,-..	, curve 4, has the “wrong” sign (it is positive in value) and ends up 

essentially doubling the �̇�* = 0 curve, curve 1. Elsewhere we will propose and simulate 

experiments with	�̇�*+,-... 

         We now turn to the RM instability. It requires only a brief discussion since 𝜂(∞) is 

known exactly (Eq. (45)) and 𝜂(∞) = 0 only for  Ḟj
Fj
= Ḟjà²ÈX.

Fj
= −2𝜈𝑘J, requiring 𝑅𝑒« =

2 as mentioned above. This zero asymptote was already discussed in Ref. [18] and all we 

need to add is that this is an exact result (which we were not aware of at that time). 

         Stemming from the above considerations of 	�̇�*+,-.., here we would like to propose an 

alternative relationship between 𝛾'/~~,��. and 𝛾'U�/+. which, we believe, solves the conflict 

between them noted first by Willson [26] and which is clear from our Figs. 2 and 3. Since 

𝑞~𝑍 and we require the real part of 𝑞 > 0 for the eigenvalue analysis [17], in finding the 

roots of Eq. (18) one must impose this condition and, Willson pointed out, there are cases 

where only one root (the one we are calling 𝛾&) can be found [26]. We have verified this 

explicitly for case A in Ref. [22] (at that time we were not aware of Willson’s general 

analysis). Even when it exists 𝛾'U�/+. differs significantly from 𝛾'/~~,��., as confirmed by 
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Figs. 2 and 3. What we propose is to compare 𝛾'/~~,��. with a "𝛾'U�/+." not associated with 

𝑍J, which may or may not exist, but associated with 	�̇�*+,-... Specifically, if we define 

 𝛾'U�/+. ≡ �̇�*+,-../𝜂*                     (51) 

then both the approximate and the exact 𝛾' satisfy the relation 

 𝛾' = −𝑔𝑘𝐴/𝛾&.          (52) 

The advantage of this approach is twofold: i) 𝛾' always exists because 𝛾& does, and ii) 

since 𝛾&
/~~. ≈ 𝛾&U�/+. (See Fig. 1) we are guaranteed that 𝛾'/~~. ≈ 𝛾'U�/+. defined this way. 

         We illustrate by comparing 𝛾'/~~,��. with the new 𝛾'U�/+. in Fig. 9. The former is 

given by 𝛾'/~~,��. = −𝑔𝑘𝐴/𝛾&
/~~,��. = −𝜈𝑘J − f𝑔𝑘𝐴 + 𝜈J𝑘� and the latter by 𝛾'U�/+. =

−𝑔𝑘𝐴/𝛾&U�/+.. Since both 𝛾'/~~,��. and 𝛾'U�/+. are given by −𝑔𝑘𝐴/𝛾&, the good agreement 

between them stems from the proximity of 𝛾&
/~~,��. to 𝛾&U�/+. seen in Fig. 1. 

         In summary, we advocate defining 𝛾'U�/+. not as the second root of the exact DR 

which may or may not exist, but as  −𝑔𝑘𝐴/𝛾&U�/+. which always exists. In this way both 

the exact and the approximate treatment allow 𝜂(𝑡) to decay to zero (Fig. 7) when �̇�* =

�̇�*+,-.. = 𝛾'𝜂*. This approach suggests that the simple approximate treatment may be 

improved leading to a “hybrid” model discussed in the next subsection. 

C. Hybrid Model 

         The exact evolution of 𝜂(𝑡) is obtained by inverting the Laplace transform given in 

Eq. (31) which, in general, must be carried out numerically: As far as we know only the 

four cases listed in Eq. (13) admit analytic solutions. Even then the resulting exact 

expressions are quite complex – compare Eq. (35), which involves error functions of a 

complex variable 𝑍, with the approximate result given by Eq. (2) which involves only 

exponentials with 𝛾& ≡ −𝜈𝑘J + f𝑔𝑘𝐴 + 𝜈J𝑘� and 𝛾' ≡ −𝑔𝑘𝐴/𝛾&. Since this 𝛾&
/~~,��. is 
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actually an upper bound for 𝛾&U�/+.(see Ref. 21) it is not surprising that the approximate 

results overestimate the growth as we discussed in Sec. IIIA. 

         The hybrid model improves upon the approximate model albeit at some cost which 

we deem worthwhile. It is the same as the approximate model, Eq. (2), in which 𝛾' =

−𝑔𝑘𝐴/𝛾& as before, but 𝛾& = 𝛾&U�/+., a quantity that must be found from Eq. (18). Except 

for the four cases listed in Eq. (13) where that DR becomes a quartic equation solvable 

analytically [23], this root must be found numerically. Needless to say the advantage of the 

hybrid model is that it does not require Laplace transforms. 

         It is straightforward to show that our approximate solution, Eq. (2), obeys the 

following ordinary differential equation (ODE): 

 �̈�(𝑡) − (𝛾& + 𝛾')�̇�(𝑡) + 𝛾&𝛾'𝜂(𝑡) = 0.          (53) 

Since 𝛾&𝛾' = −𝑔𝑘𝐴 the above ODE can be written as 

  �̈�(𝑡) − a𝛾& −
tuv
ST
d �̇�(𝑡) − 𝑔𝑘𝐴𝜂(𝑡) = 0,          (54) 

and the only difference between the approximate and hybrid solutions is whether one uses 

the approximate 𝛾& from Eq. (16) or the exact 𝛾& by solving Eq. (18). 

         We now return to the exact results displayed in Fig. 4 and compare them with the 

approximate and the hybrid results for 𝑅𝑒 = 𝑅𝑒«x =2, 5, and 10. We do not consider 𝑅𝑒 =

∞ since all give the same exact classical evolution for inviscid fluids. This comparison is 

presented in Fig. 10; the hybrid results are so close to the exact results that they can be 

barely distinguished. After 7 e-foldings the (exact, hybrid) growth factors are (41, 43), 

(133, 137), and (239, 243) for 𝑅𝑒 = 2, 5, and 10 respectively, compared with the 

approximate results (dashed curves in Fig. 10) which are some 30-40% larger. 
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         The one and only price to pay in going from the approximate to the more accurate 

hybrid model for RT is the computation of 𝛾&U�/+.. Since 𝛾&U�/+. depends on 𝐴|	it 

differentiates between 𝐴| = +1 and 𝐴| = −1, cases C and D, as shown in Fig. 6. The 

exact growth factors 𝜂/𝜂* at the end (𝜏 = 12) of the two problems shown in Fig. 6 for 

𝐴| =1 and -1 are 92 and 121 respectively. The approximate model gives 123 for both cases, 

while the more accurate hybrid model gives 96 and 121 respectively. 

         We now examine a system that is not covered by any of the four cases listed in Eqs. 

(13a)-(13d) and hence the exact solution must be obtained by numerically inverting Eq. 

(31). Choose �̇�* = 0, 𝐴 = 1/6, 𝐴| = 2/3, 𝜏 = 𝜈𝑘J𝑡, and 𝑅𝑒 = 𝑅𝑒«x = 2.5 or 1. These 

are the only variables needed to compute the growth factor 𝜂(𝑡)/𝜂* as indicated in Eq. 

(28). The approximate, hybrid and exact results are shown in Figs. 11a and 11b for 𝑅𝑒 =

2.5 and 1 respectively, showing the expected slow-down with decreased 𝑅𝑒. 

         A concrete system with the above parameters is the following: Oil (𝜌 = 1	𝑔/𝑐𝑚�, 

𝜇 = 10	𝑝𝑜𝑖𝑠𝑒) and syrup (𝜌 = 1.4	𝑔/𝑐𝑚�, 𝜇 = 50	𝑝𝑜𝑖𝑠𝑒) in earth’s gravity, 𝑔 =

980	𝑐𝑚/𝑠J. This gives 𝜈 = 25	𝑆𝑡	(𝑆𝑡𝑜𝑘𝑒𝑠). 𝑅𝑒 = 2.5 for 𝑘 ≈ 0.347	𝑐𝑚'H or 𝜆 ≈ 18	𝑐𝑚. 

The classical inviscid growth rate would be 𝛾+0/PP ≈ 7.53	𝑠'H, while the viscous 

approximate rate, from Eq. (16), is 𝛾/~~,��. ≈ 5.10	𝑠'H, somewhat larger, as expected, 

than the exact viscous rate 𝛾U�/+. ≈ 4.61	𝑠'H, calculated numerically from Eq. (18). Since 

𝜈𝑘J ≈ 3	𝑠'H, it follows that 𝑡 ≈ 1	𝑠 by 𝜏 ≈ 3 in Fig. 11a, when the growth factor is about 

70. That growth factor reaches only 2.7 for 𝑅𝑒 = 1 in Fig. 11b. Now, the simplest way to 

change 𝑅𝑒«x is to change 𝑔, gravity, leaving everything else the same. Reducing 𝑔 by a 

factor of 2.5J = 6.25 reduces 𝑅𝑒 to 1. It follows that the same experiment described here, 

done on the surface of the Moon, will follow Fig. 11b due to its reduced gravity, and the 
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growth rates will be given by 𝛾+0/PP ≈ 3.01	𝑠'H, 𝛾/~~,��. ≈ 1.25	𝑠'H, and 𝛾U�/+. ≈

1.17	𝑠'H. In all cases the hybrid model, which uses 𝛾U�/+. instead of 𝛾/~~,��., gives results 

closer to the more accurate but numerically obtained growth factors. An alternative and 

more common method to change 𝑔 and hence 𝑅𝑒«x is to carry out microgravity 

experiments as, for example, in Ref. [36]. 

         The reader may inquire whether the approximate model for RM can be similarly 

improved, “hybridized”. The answer is no, because of two facts: First, 𝛾&
/~~. = 𝛾&U�/+. = 0 

already. Second, 𝛾'/~~. = −2𝜈𝑘J already gives the exact asymptotic value because Λ(0) =

2𝜈𝑘J is an exact relationship, proved in our Appendix A. It is somewhat ironic that the RM 

model presented in Ref. 18 was better than the RT model on which it was based, though 

we were not aware of it at that time. The first exact 𝜂(𝑡) for viscous RM was given in Ref. 

28 for case B, and in this paper for cases A, C, and D. That our exact and approximate 

expressions for RM show good agreement with each other in all cases is due to the two 

facts mentioned here. 

D. Isogrowth Wavenumbers 

         As we pointed out earlier and illustrated in Fig.1, for any 𝛾 < 𝛾&�/�  one can find two 

wavenumbers which have the same growth rate. We call these “isogrowth wavenumbers.” 

         Let us define 𝑘�/� as that unique value of 𝑘 where 𝛾 = 𝛾�/� ≡ 𝛾&�/� . Then the 

isogrowth wavenumbers 𝑘≶	 come in pairs, one on each side of 𝑘�/�, with 𝑘� < 𝑘�/� and 

𝑘� > 𝑘�/�. As usual, explicit expressions can be found only if we use the approximate 

treatment, and they are: 

 𝑘� =
tv
��S

− s twvw

Hç�wSw
− S

J�
     (55a) 

and 
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 𝑘� =
tv
��S

+ s twvw

Hç�wSw
− S

J�
     (55b) 

where 𝛾 is any growth rate 0 < 𝛾 < 𝛾�/� shared by the two wavenumbers. The above 

expressions follow from the approximate DR, Eq. (14), viewed not as a quadratic equation 

in 𝛾 but in 𝑘. Note that the product 𝑘�𝑘� = 𝛾/2𝜈. In this approximation 𝛾�/�  and 𝑘�/� 

are given by setting 𝑘� = 𝑘� = 𝑘�/�, i.e. 𝑘�/� =
tv

��Sè°´
= H

J
(tv
�w
)H/� and 𝛾�/� =

H
J
(t

wvw

�
)H/�. 

         Perturbations with isogrowth wavenumbers have the same asymptotic growth rates 

but always evolve somewhat differently because now the other growth rate, 𝛾', is different 

between the two: 𝛾' = −𝑔𝑘𝐴/𝛾& and having the same 𝛾& at two different 𝑘’s implies that 

𝛾' is different between the two. Note that it is not possible to have “isodecay 

wavenumbers” having the same 𝛾' because the curves for 𝛾', which is negative, are not 

concave but, starting from 0, decrease monotonically with 𝑘 – see Fig. 2. What this implies 

is that, in general, even though perturbations of 𝑘� and 𝑘� will share the same 𝛾&, the 

corresponding amplitudes will not evolve similarly, i.e. 𝜂(𝑡)ué ≠ 𝜂(𝑡)uê. An additional 

condition is required to achieve 𝜂(𝑡)ué ≈ 𝜂(𝑡)uê. 

         We illustrate with an example. Take 𝜌H =1 g/cm3, 𝜌J =3 g/cm3, hence 𝐴 = 1/2. Let 

𝜇H = 0 and 𝜇J = 1	𝑝𝑜𝑖𝑠𝑒, hence 𝜈 = H
�
	𝑆𝑡. Taking 𝑔 = 1000	𝑐𝑚/𝑠J, we find 𝛾�/� =

50	𝑠'H at 𝑘 = 𝑘�/� = 	10	𝑐𝑚'H. Suppose we seek 𝛾 = 40	𝑠'H; then the two 𝑘 −values 

are 𝑘� ≈ 3.77	𝑐𝑚'H (𝜆 ≈ 1.7	𝑐𝑚) and 𝑘� ≈ 21.2	𝑐𝑚'H (𝜆 ≈ 0.3	𝑐𝑚). The decaying 

modes are 𝛾'(𝑘�) ≈ −47	𝑠'H and 𝛾'(𝑘�) ≈ −265	𝑠'H. These modes decay quickly; 

nevertheless, the corresponding 𝜂(𝑡), starting with �̇�* = 0, are still different, as shown in 

Fig. 12a. The mode with 𝑘 = 𝑘� grows about 1.6 times more than the other, even though 
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its 𝑅𝑒 is about 13 times smaller. The exact results, calculated from Eq. (35), are also shown, 

in red: Again, the 𝑘� mode grows about 1.5 times more than the 𝑘� mode. Eq. (35) is too 

complicated to throw light on this issue, but the approximate Eq. (2) gives (setting �̇�* = 0 

and neglecting 𝑒SW. terms) 

 𝜂(𝑡)/𝜂* ≈
UVTX

H'ST/SW
 ,          (56) 

explaining the factor of 1.6 by 

 
(H'ST/SW)�é
(H'ST/SW)�ê

=
H&ëjëì
H& ëj

wíî
≈ 1.6.          (57) 

         Still neglecting 𝑒SW. terms but now keeping the �̇�* term Eq. (2) gives 

 𝜂(𝑡)/𝜂* ≈ ï
ð̇j
ðj
'SW

ST'SW
ñ 𝑒ST. ,          (58) 

so that if  Ḟj
Fj
= 𝛾& then 𝜂(𝑡)/𝜂* ≈ 𝑒STX and the two modes indeed evolve identically. This 

is the required additional condition, as shown in Fig. 12b. We conclude that isogrowth 

wavenumbers are necessary but not sufficient to have 𝜂(𝑡) be the same at two different 

wavenumbers; one must also have Ḟj
Fj
= 𝛾&, their shared growth rate. As usual, this is 

another condition that can be satisfied by starting the instability with appropriately tuned 

shocks. 

    

V.  REVIEW, CONCLUDING REMARKS, AND FUTURE WORK 

        

(i) In this paper we introduced the viscous Atwood number 𝐴| to classify various 

cases and compared approximate, exact, and hybrid treatments of the viscous 

RT and RM instabilities. We believe that exact explicit expressions can be 
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obtained only for the four cases (13a)-(13d); other cases require solving Eq. 

(18) and inverting Eq. (31) or Eq. (43), all done numerically, as we did for the 

example presented in Fig. 11. 

       The approximate result uses Eq. (2) with the approximate DR given in Eq. 

(14). The hybrid model also uses Eq. (2) but with 𝛾&, the larger growth rate, 

obtained from the exact DR, Eq. (18), and 𝛾' = −𝑔𝑘𝐴/𝛾&. This last condition 

ensures that for any inviscid or viscous case one can always find a critical initial 

growth rate �̇�*+,-.. = 𝛾'𝜂* = −(tuv
ST
)𝜂* such that the amplitude, instead of 

growing exponentially with time, will decay exponentially to zero. 

      These three approaches: exact, approximate, and hybrid, were illustrated in 

Figs. 10 and 11. Since asymptotically 𝜂(𝑡)~𝑒ST. the difference between 𝛾&U�/+. 

and 𝛾&
/~~. can naturally result in large differences after several e-foldings, as 

seen in Fig. 10. The hybrid model, as expected, performs much better: In Fig. 

10 exact and hybrid methods can be barely distinguished at 𝑅𝑒 = 2 and not at 

all at 𝑅𝑒 = 5 and 10. At higher 𝑅𝑒 the differences are even less noticeable since 

all three approaches lead to the classical inviscid evolution given in Eq. (6). 

       We believe the hybrid model presented in this paper and the approximate 

method presented in Ref. [18] solve the quest undertaken by Prosperetti in Ref. 

[30]. After presenting the Laplace transform of the exact solution Prosperetti 

searched for a model that approximated the exact result, but he did not find one: 

He found models that agreed with the asymptotic behavior of 𝜂(𝑡) but violated 

the initial conditions, and models that captured the initial conditions but 

violated the asymptotic evolution – See his Figs. 1, 2, and 3. The hybrid model 
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fulfills both conditions and, to a lesser degree, so does the approximate model, 

Eq. (2). By construction, Eq. (2) accommodates arbitrary initial conditions and, 

to the extent that 𝛾&
/~~. ≈ 𝛾&U�/+. (see Fig. 1), its asymptotic evolution is also 

acceptable. By defining 𝛾' ≡ −𝑔𝑘𝐴/𝛾& and using 𝛾&U�/+. in Eq. (2) the hybrid 

model goes one step further reproducing the asymptotic evolution exactly, 

albeit at the price of finding 𝛾&U�/+.. 

(ii)       We discussed that the approximate model is symmetric under 𝜇H ↔ 𝜇J 

while the hybrid and exact models are not. A similar property is the following: 

In the Boussinesq approximation [37] one keeps the Atwood number 𝐴 

multiplying the acceleration 𝑔 or the jump velocity ∆𝑉 but otherwise treats the 

system as one fluid with average densities and viscosities, i.e. 𝜌H,J → (𝜌H +

𝜌J)/2 and 𝜇H,J → (𝜇H + 𝜇J)/2, i.e. set 𝐴 = 𝐴| = 0. In the Boussinesq 

approximation all possible viscous cases collapse into one and the result can be 

written formally (see Eq. (28)) as 

                    F
ó(.)
Fj

= 𝑓( Ḟj
Fj�uw

, 0,0, 𝑅𝑒; 𝜏).          (59) 

Note that the Atwood number appears only in 	𝑅𝑒 (=𝑅𝑒«x or  𝑅𝑒«) 

multiplying  𝑔 or ∆𝑉. Clearly, in the Boussinesq approximation one uses 𝜏 =

𝜈𝑘J𝑡. 

      Recent considerations of the Boussinesq approximation in the context of 

RT and RM instabilities can be found in Refs. [38, 39, 40]. We pointed out that 

inviscid linear results remain the same under this approximation, but nonlinear 

results do not [39]. Here let us point out that viscous linear results also remain 

the same in our approximate treatment, but the exact and hybrid results do not 



 

 

37 

remain the same, as the reader can easily verify from the expressions given in 

this paper. 

(iii) Eq. (53) can be considered a generalization of Taylor’s equation, Eq. (7), which 

is recovered when 𝛾& = 𝛾+0/PP. = f𝑔𝑘𝐴. We would like to propose Eq. (53) as 

a bridge between the eigenvalue and the initial-value formulations of RT 

instabilities in the presence of viscosity or any other stabilizing mechanism such 

as ablation, rotation, magnetic fields, etc., as reflected in 𝛾&. 

     Additionally, Eq. (53) and its solution, Eq. (2), may describe the time-

evolution of perturbations in other types of hydrodynamic instabilities such as 

the Kelvin-Helmholtz instability with or without the stabilizing mechanisms 

mentioned above. We hope to investigate this possibility in the future. 

(iv) From our discussion of isogrowth perturbations it should be clear that this is a 

general phenomenon not limited to viscosity: Any concave curve for 𝛾& will 

admit two different wavenumbers 𝑘� and 𝑘� that have the same growth rate 𝛾&. 

As another example, one can write the DR for RT with surface tension, which 

is a quadratic equation in 𝛾 (see Ref. [17]), as a cubic equation in 𝑘, 𝑘� − 𝑘+J𝑘 +

Swuàw

tv
= 0, and obtain from it the pair 𝑘� and 𝑘� which have the same growth 

rate 𝛾 between 0 and 𝛾�/�  where 𝛾�/�J ≡ 2𝑔𝐴𝑘+/3√3, 𝑘+ being the cut-off 

wavenumber given by 𝑘+J ≡ (𝜌J − 𝜌H)𝑔/𝑇(P). In all cases if one wants to 

achieve 𝜂(𝑡)ué ≈ 𝜂(𝑡)uê one must further impose the condition  Ḟj
Fj
= 𝛾&. 

(v) To treat the viscous RM instability we followed Richtmyer’s incompressible 

approach: The shock is an impulsive acceleration giving �̇�* = 𝜂*Δ𝑉kA 
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followed by	𝑔 = 0, an approach whose power should be amply clear to the 

reader. The exact (but still incompressible) treatment requires Laplace-

inverting Eq. (43) which, again, we believe can be done analytically only for 

the four cases A-D mentioned above. For RM there is no distinction between 

the approximate and a hybrid model because the exact result 𝛾& = 0 is already 

captured by the approximate model. Furthermore, since 𝛾'/~~. = −2𝜈𝑘J and 

Λ(0) = 2𝜈𝑘J is an exact result (see Appendix A), we are guaranteed that the 

approximate model gives the correct asymptote, as reported earlier [28]. Exact 

and approximate RM results were compared in Fig. 5. 

          Another model for the viscous RM instability can, in limited cases, 

perform better than our approximate model during the early brief period when 

approximate and exact results are different. That model [31, 32] misses the 

asymptotic value completely and can in fact go negative at late times [28, 41]. 

At early times it does well for cases where 𝜇H ≈ 𝜇J but when 𝜇H ≈ 0 or 𝜇J ≈ 0 

it is completely wrong because it predicts no viscous effect. This means that for 

cases C and D studied in this paper, where there is only one viscous fluid, that 

model would predict inviscid (!) RM growth. Physical intuition, let alone exact 

results, lead us to expect that viscosity in only one fluid is sufficient for viscous 

behavior. A more recent comparison can be found in Ref. [42]. 

(vi) A similar shortcoming can be found in the nonlinear model of Sohn [43]. This 

is quite disappointing since the inviscid ingredients of that model have 

performed well. Sohn [43] built a model for nonlinear bubbles in viscous RT 

and RM instabilities by adding viscosity to Goncharov’s nonlinear, inviscid 
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model [44] which, in turn, was an extension of Layzer’s 𝐴 = 1 inviscid model 

[45]. Although there are more modern, inviscid, nonlinear models [46], 

Layzer’s model and Goncharov’s extension of it to arbitrary	𝐴 have proved 

highly useful and compared well with numerical simulations, particularly when 

limited to the bubble part of the instability. Sohn’s further extension [43] to 

viscous fluids was indeed the natural next step. We have performed two-

dimensional (2D) numerical simulations (results to be presented elsewhere) 

showing that Sohn’s nonlinear viscous model is acceptable in many cases, but 

not in others. Its failure is similar to that of Carles and Popinet [31, 32] although 

a completely different technique (originated by Layzer) is used in the nonlinear 

model. As we have shown [47], Layzer’s model can be solved analytically by 

choosing 𝜂* = 𝜂∗ ≡ 1/(1 + 𝑐)𝑘 where 𝑐 = 1 for 3D (three-dimensional) and 

𝑐 = 2 for 2D perturbations. The same choice solves Sohn’s viscous model. We 

find, however, that for case D, for example, when 𝜇J = 0, Sohn’s model 

predicts inviscid evolution for 𝜂(𝑡) no matter what the value of 𝜇H, a 

shortcoming similar to that of Carles and Popinet and a clearly unphysical 

behavior. This shortcoming does not occur for the single-fluid case, case A, and 

in Ref. [28] we presented the nonlinear analytic solution for that case. The 

nonlinear extension to arbitrary Atwood number remains for a future 

investigation. 

(vii) Another application left for the future is the approximate equivalence between 

viscosity and material strength (denoted by 𝑌), both being properties that 
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suppress growth. We advocated [28] a relationship between these two 

properties: 

 𝑌/𝜇 = 2f𝑔𝑘𝐴/3                   (60a) 

                  and 

 𝑌/𝜇 = 2|�̇�*|𝑘/3                   (60b) 

for RT and RM respectively. In the exact, hybrid, or approximate expressions given in this 

paper one can replace 𝜇H or 𝜇J by 𝑌H or 𝑌J using the above relationships and arrive at 

formulas describing, approximately, RT or RM growth suppressed by material strength. 

As discussed in Ref. [28] this is only a crude (but useful – see Ref. [48]) equivalence hence 

one need not distinguish between exact, hybrid, and approximate expressions – simple 

approximate results will do. The equivalence appears to hold up even in nonlinear jet 

formation [49]. Turbulence generated by RT and RM instabilities have been studied in 

detail [50-52] in fluids with no viscosity or strength; questions on how they will be affected 

by such physical properties are left for the future. 

(viii) Finally compressibility which, we believe, is the hardest fluid property to 

incorporate into RT and RM instabilities, is also left for a future study. At 

present there is no treatment which parallels Richtmyer’s work, albeit for linear 

perturbations, but which includes compressibility and viscosity in even one 

fluid, let alone two. At present the only available approach is numerical 

simulations and we hope to present such results in the future; we believe that 

the already rich and interesting phenomena that occur in RT and RM 

instabilities are further enriched when fluid properties such as viscosity, 

strength, and compressibility are taken into account. 
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APPENDIX A: Λ(𝛾) and Λ(0) 

         For completeness we provide the exact expression for Λ(𝛾) in Eq. (18). It has the 

dimensions of a growth rate 𝛾, which appears also in the wavenumbers 𝑞H and 𝑞J defined 

in Eq. (19). 

         Λ(𝛾) = 4𝑘 ÷(S)
É(S)

 ,                   (A1) 

         𝑁(𝛾) = −𝜌H𝜌J𝛾 + 𝑘(𝜇J − 𝜇H)[𝜌J(𝑘 − 𝑞H) − 𝜌H(𝑘 − 𝑞J)]   

                               +𝑘J(𝜇J − 𝜇H)J(𝑘 − 𝑞J)(𝑘 − 𝑞H)/𝛾,        (A2) 

         D(𝛾) = (𝜌H + 𝜌J)[𝜌J(𝑘 − 𝑞H) + 𝜌H(𝑘 − 𝑞J)].         (A3) 

         The above form was given by Prosperetti [30]. For a derivation and early history see 

Chandrasekhar [17]. 

         Some care must be exercised to show that Λ(0) = 2𝜈𝑘J, where 𝜈 ≡ (𝜇J + 𝜇H)/(𝜌J +

𝜌H), because as 𝛾 → 0 	𝑞H,J → 𝑘 and there are “0/0” terms. These are evaluated following 

L’Hôpital’s rule using  ú�È
úS
= zÈ

J�È|È
= H

J�È�È
. After repeated applications of that rule (we omit 

the rather lengthy but straightforward steps) one finds Λ(0) = 2𝜈𝑘J. This completes the 

proof that the asymptotic RM value 𝜂(∞) = 𝜂* + �̇�*/2𝜈𝑘J is exact for any value of 𝜇- and 

𝜌-, as claimed in Ref. 28. 

         Although Hide adopted a different approach to derive the approximate DR (Eq. (14)) 

his result is equivalent to letting Λ(𝛾) → Λ(0) in the exact DR, Eq. (18). We should point 

out that the exact DR given in Refs. [17] and [21], in its standard form, differs from Eq. 

(18) by multiplicative factors. This is discussed by Menikoff et al. [53] who treated the 
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initial-value problem in a general form. In special cases such as 𝜌H = 0 or 𝜇H = 0 these 

factors can vanish and the relationship between the two forms becomes ill-defined. This 

was another reason why we went through the standard derivation to arrive at Eqs. (20) and 

(22), in addition to identifying which constraint (continuity of tangential velocity, i.e. no-

slip condition) one must give up when one of the fluids has no viscosity. 

         Hide’s approximation being an upper bound for 𝛾&, the largest root of the exact DR 

[21], 𝛾&
/~~. may be denoted by 𝛾&

û~~U, . A lower bound 𝛾&0�üU,  is given by another quartic 

equation (Eq. (11) in Ref. [27]). The closeness of these two bounds (Fig. 2 in Ref. [27]) 

explains the success of Hide’s approximation. One can solve that second quartic equation 

for 𝛾&0�üU,  and use the average (𝛾&
û~~U, + 𝛾&0�üU,)/2 as an improved estimate for 𝛾&

/~~.. 

Successive approximations using Newton’s method quickly converge [27], and a first 

iteration has been recently reported [54]. 

         Finally, one should not underestimate the following usage of Hide’s explicit 

approximation. The exact DR reduces to a quartic equation only for the four cases (Eqs. 

(13a)-(13d)) discussed in this paper. For the general case the exact DR, 𝛾J + 𝛾Λ(𝛾) −

𝑔𝑘𝐴 = 0, must be solved numerically. All numerical techniques for finding the zeros of an 

expression call for a “first guess” and 𝛾&
/~~. provides an excellent one: By trying values 

slightly less than 𝛾&
/~~. one quickly finds the numerical value of 𝛾&U�/+., and indeed this 

was the method we used to find 𝛾&U�/+.	needed in Fig. 11. 

 

APPENDIX B: Derivation of Eq. (35) 

         We now outline the derivation of Eq. (35) for case C, 𝜇H = 0. Eq. (39) is derived 

similarly for case D, 𝜇J = 0. These two cases are more general than the single-fluid case 
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A treated in Ref. [29] but more specific than the completely general case (arbitrary 𝜇H	and 

𝜇J) treated in Refs. [30], [54], and [55] which must be solved numerically. 

         The general solution, Eq. (22) in Ref. [30], can be written down in terms of its 

Laplacian transform 𝜂½(𝑠): 

 𝜂½(𝑠) = H
P
a𝜂* +

PḞj&tuvFj
Pw&P¾(P)'tuv

d         (B1) 

where Λ is given by Eq. (23) of Ref. [30] and reproduced here as Eq. (A1) above after 

replacing the growth rate γ by s, the parameter for the Laplace transform. 

         Our notation follows mostly that of Carrier and Chang [29] since we are essentially 

extending their one-fluid treatment to two-fluids, plus keeping all �̇�* terms. We will 

perform several checks in the intermediate steps. 

         Let 𝜓�- (𝑥, 𝑦, 𝑡) be the stream function in fluid 𝑖 and assume all 𝑥-dependence to be 

given by 𝑒-u�, i.e. 𝜓-(𝑥, 𝑦, 𝑡) = 𝑒-u�𝜓-(𝑦, 𝑡). Denote differentiation w.r.t. a variable like 

𝑥, 𝑦, or 𝑡 by the subscript of that variable and D ≡ ú
ú�

, as in ∇J𝜓 = 𝜓�� + 𝜓�� = (−𝑘J +

𝐷J)𝜓. 

         Momentum conservation reads 

 ∇J𝜓.- = 𝜈-∇J∇J𝜓-.         (B2) 

The 𝑥 and 𝑦 components of the velocity are given by 𝜓�� = 𝐷J𝜓 and −𝜓�� = −𝑖𝑘𝐷𝜓 

respectively. Continuity of the normal velocity at the interface reads 

                                  𝜂. ≡ �̇� = −𝜓��H (𝑦 = 0) = −𝜓��J (𝑦 = 0),                  (B3) 

i.e. �̇� = −𝑖𝑘𝜓�H = −𝑖𝑘𝜓�J at 𝑦 = 0. 

         The tangential stresses must be continuous across the interface. Since 

 𝜏��- = 𝜇-[𝜓���- − 𝜓���- ]         (B4) 
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we have 

 𝜓���J = 𝜓���J  at 𝑦 = 0.         (B5) 

         Without surface tension the normal stresses must also be continuous: −𝜏�� = 𝑝 +

2𝜇𝜓��� = 𝑝(0,0, 𝑡) + 𝜌𝜓�. − 𝜌𝑔𝑦 − 𝜇[𝜓��� − 𝜓���] in each fluid. Remembering that 

𝜇H = 0 for case C, it follows that at the interface, 𝑦 = 𝜂, 

                      𝜌H𝜓�.H − 𝜌H𝑔𝜂 = 𝜌J𝜓�.J − 𝜌J𝑔𝜂 − 𝜇J[𝜓���J − 𝜓���J ]       (B6) 

which can be written as 

                      𝜌J𝜓.J − 𝜌H𝜓.H + 𝑖(𝜌J − 𝜌H) a
t
u
d 𝜂 + 𝜇J[𝑘J + 𝐷J]𝜓J = 0       (B7) 

with 𝜓H,J evaluated at 𝑦 = 0. 

         We now take the Laplace transform of the above equations, denoting the Laplace 

transform of a quantity by a tilde (~) above it. From Eq. (B2) with 𝜈H = 0 we have 

 𝜓!H = 𝐴H(𝑠, 𝑘)𝑒u�         (B8) 

while in fluid 2 with 𝜈J = 𝜇J/𝜌J Eq. (B2) reads 

                             𝑠(𝐷J − 𝑘J)𝜓!J − 𝜈J(𝐷J − 𝑘J)(𝐷J − 𝑘J)𝜓!J = 0.      (B9) 

The solution can be written in the following form: 

 𝜓!J = 𝐴J(𝑠, 𝑘)𝑒'u� + 𝐵J(𝑠, 𝑘)𝑒'�w�        (B10) 

where 𝑞J ≡ (𝑘J + P
�w
)H/J. Since 𝜓J satisfies Eq. (B5) at 𝑦 = 0 the functions 𝐴J and 𝐵J are 

related via the requirement 𝐷(𝐷J + 𝑘J)𝜓!J = 0 at 𝑦 = 0, with the result 

 𝐵J = 'Ju£

�w(Juw&
y
�w
)
𝐴J,       (B11) 

so that Eq. (B10) reads 

 𝜓!J(𝑠, 𝑘, 𝑦) = "𝑒'u� − Ju£UW#w$

�w(Juw&
y
�w
)
%𝐴J.       (B12) 
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Finally, a relationship between 𝐴H and 𝐴J can be found by using Eq. (B3) which reads 

𝜓!�H = 𝜓!�J at 𝑦 = 0, with the result 

 𝐴J = −(2𝑘J + P
�w
)(�w

P
)𝐴H.       (B13) 

Substituting (B13) in (B12) we have 

                   𝜓!J = &−(1 + Juw�w
P
)𝑒'u� + Ju£�w

P�w
𝑒'�w�'𝐴H.      (B14) 

         Note that 𝜓!H (Eq. (B8)) and 𝜓!J (Eq. (B14)) now satisfy continuity of the normal 

velocity 𝐷𝜓 at 𝑦 = 0, i.e. 𝐷𝜓!J = 𝐷𝜓!H = 𝑘𝐴H, as well as continuity of the tangential stress 

at 𝑦 = 0 which reads 𝐷(𝐷J + 𝑘J)𝜓!J = 0, for any 𝑠, implying any time. These are the same 

conditions used in the eigenvalue treatment [17]. 

         The next step is to transform Eq. (B7) using ℒ[𝜓.(𝑡)] = 𝑠ℒ[𝜓(𝑡)] − 𝜓(𝑡 = 0) =

𝑠𝜓! − 𝜓(0). We get 

               𝜌J)𝑠𝜓!J − 𝜓J(0,0)*− 𝜌H)𝑠𝜓!H − 𝜓H(0,0)* 

																																																							+𝑖(𝜌J − 𝜌H) a
t
u
d 𝜂½ + 𝜇J(𝑘J + 𝐷J)𝜓!J = 0,      (B15) 

evaluated at 𝑦 = 0. The initial values 𝜓H,J(0,0) are related to �̇�* ≡ �̇�(𝑡 = 0) from Eq. 

(B3): 

                       �̇�* = −𝑖𝑘𝜓�H(0,0) = −𝑖𝑘J𝜓H(0,0) = 𝑖𝑘J𝜓J(0,0)     (B16) 

where 𝜓H(0,0) = −𝜓J(0,0) follows from assuming zero initial vorticity. 

         From Eq. (B8) 𝜓!H(𝑦 = 0) = 𝐴H. From Eq. (B14) 𝜓!J(𝑦 = 0) = &−1 − 2 u
w�w
P
+

2 u
£�w
P�w

'𝐴H(𝑠, 𝑘) and (𝑘J + 𝐷J)𝜓!J(𝑦 = 0) = &−2𝑘J − �uë�w
P

+ Ju£

�w
+ �uî�w

P�w
'𝐴H. 

Substituting these expressions in Eq. (B15) we get 

									&−𝑠(𝜌J + 𝜌H) − 4𝑘J𝜇J +
�u£|w
�w

− �uë�w|w
P

+ �uî�w|w
P�w

'𝐴H = 
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																																																																																− -(zw&z{)Ḟj
uw

− -t(zw'z{)F+
u

.               (B17) 

         Next, we substitute for 𝐴H(𝑠, 𝑘) by transforming Eq. (B3): 

 𝑠𝜂½ − 𝜂* = −𝑖𝑘𝜓!�H(𝑦 = 0) = −𝑖𝑘J𝐴H.       (B18) 

Substituting Eq. (B18) in Eq. (B17) and collecting terms we have 

 𝑠𝜂½ − 𝜂* =
tuvFj&PḞj

Pw&J�ww(H&v)uw(�w'u)�w'tuv
.       (B19) 

         We now pause to compare the above equation with Eq. (B1). Consistency requires 

that 𝑠Λ(𝑠) = 2𝜈JJ(1 + 𝐴)𝑘J(𝑞J − 𝑘)𝑞J, so we study Λ(𝛾) given in Eq. (A1) in the limit 

𝜇H → 0, meaning 𝑞H → ∞. In this limit we need keep only terms proportional to 𝑞H in 𝑁 

and	𝐷: 

                                    𝑁 → −𝑘𝜇J[𝜌J +
u|w(u'�w)

P
]𝑞H, 

                                    𝐷 → −𝜌J(𝜌J + 𝜌H)𝑞H. 

The 𝑞H factors in 𝑁 and 𝐷 cancel out and Λ = 4𝑘𝑁/𝐷 is finite and we verify that 𝑠Λ(𝑠) 

indeed equals the middle term in the denominator of Eq. (B19). This is an independent, 

non-trivial check of our calculations at this intermediate stage. 

         The final stage is to invert Eq. (B19) to find 𝜂(𝑡). First, note that for the classical 

inviscid case Λ → 0 and the denominator in Eq. (B19) becomes 𝑠J − 𝑔𝑘𝐴 (𝑞J diverges 

only as 1/√𝜇J while 𝜈J~𝜇J → 0 hence the middle term vanishes). Writing 𝑠J − 𝑔𝑘𝐴 =

(𝑠 − 𝛾&)(𝑠 − 𝛾') with 𝛾± = ±f𝑔𝑘𝐴 and using partial fractions the result of the inversion 

is Eq. (6). For the viscous case using the approximation Λ(𝑠) = 2𝜈𝑘J = 𝑐𝑜𝑛𝑠𝑡., the same 

procedure leads to Eq. (2) in which 𝛾± are given by the two solutions to Eq. (14). 

         The steps are more complicated with the exact kernel appearing in the denominator 

of Eq. (B19). We define 𝑍 ≡ �w
,
= a1 + P

�wuw
d
H/J

 and write Eq. (B19) as 



 

 

47 

                      𝑠𝜂½ − 𝜂* =
vÌwFj&(

y
�w
w�ë

)Ḟj

Çë&JvÇw'J(H&v)Ç&H'vÌw
                  (B20) 

with 𝑄J ≡ 𝑔/𝜈JJ𝑘� as before (Eq. (21)). Note that the denominator in the above equation 

is the same as the l.h.s of Eq. (20) with 𝛾 ↔ 𝑠. In that equation this 4th-order polynomial is 

set equal to zero because Eq. (20) stands for 𝐷𝑒𝑡(𝑀) = 0, the condition necessary for 

solving the set of equations (3 in this case, 4 in the general case) capturing the continuity 

and other conditions imposed on the eigenfunctions, as is done in a typical eigenvalue 

problem [17] leading to a dispersion relation like Eq. (20), 𝐷(𝑧) = 0. Here, however, we 

set the same polynomial equal to zero for a purely mathematical purpose: We set 𝑍� +

2𝐴𝑍J − 2(1 + 𝐴)𝑍 + 1 − 𝐴𝑄J = 0 so that we can find its four roots 𝑍-, 𝑖 = 1 − 4, write 

the polynomial as a product of 4 factors, and write Eq. (B20) as 

            𝜂½ = Fj
P
+

ð̇j
�w
w�ë

&ÁÅwðjy

(Ç'Ç{)(Ç'Çw)(Ç'Ç£)(Ç'Çë)
.                          (B21) 

Clearly, 𝑍- = 𝑍-(𝐴,𝑄J). We do so to use partial fractions, 

                                        H
∏ (Ç'ÇÈ)ë
È.{

= ∑ H
ÉÃ(ÇÈ)(Ç'ÇÈ)

�
-ÊH       (B22) 

where the derivative 𝐷Ð(𝑧) = 2(2𝑍� + 2𝐴𝑍 − 1 − 𝐴). Thus isolated, each term in the sum 

can be inverted using well-known results from Laplace transforms. The roots satisfy the 

following relations: 

 ∑ H
ÉÃ(ÇÈ)

�
-ÊH = 0,     (B23a) 

 ∑ ÇÈ
ÉÃ(ÇÈ)

�
-ÊH = 0,     (B23b) 

 ∑ ÇÈ
w

ÉÃ(ÇÈ)
�
-ÊH = 0,     (B23c) 

and 
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 ∑ ÇÈ
£

ÉÃ(ÇÈ)
�
-ÊH = 1.     (B23d) 

         Eq. (B21) reads 

 𝜂½ = Fj
P
+ ∑

ð̇j
�w
w�ë

&ÁÅwðjy

ÉÃ(ÇÈ)(Ç'ÇÈ)
�
-ÊH .       (B24) 

The inverse of the first term, 𝜂*/𝑠, is simply 𝜂*. In the remaining terms we have to invert 

expressions like 1/(𝑍 − 𝑍-) and 1/𝑠(𝑍 − 𝑍-), using the definition of 𝑍 in terms of 𝑠 (see 

above). We use 

     ℒ'H a H
Ç'ÇÈ

d = 𝑘√𝜈Jℒ'H ¶
H

fP&�wuw'u√�wÇÈ
» = 

														𝑘√𝜈J𝑒'�wu
w. & H

√/.
+ 𝑘√𝜈J𝑍-𝑒�wu

wÇÈ
w.𝑒𝑟𝑓𝑐(−𝑘√𝜈J𝑍-√𝑡)'.     (B25) 

Note that the first term above, containing 1/√𝜋𝑡, is independent of 𝑍- and hence will drop 

out when forming the sum over 𝑖 and using Eq. (B23a). 

         Somewhat more complicated is the inversion of 1/𝑠(𝑍 − 𝑍-) terms. Using 

 ℒ'H at(P)
P
d = ∫ 𝑓(𝑢)𝑑𝑢.

*                   (B26) 

where 𝑓(𝑡) ≡ ℒ'H(𝑔(𝑠)), we need to integrate over the r.h.s. of Eq. (B25), i.e. evaluate an 

integral of the form 

 𝐼 ≡ ∫ 𝑒2û𝑒𝑟𝑓�𝑎√𝑢�𝑑𝑢
.
* .     (B27a) 

Transforming √𝑢 = 𝑥 and integrating by parts, the result is 

       𝐼 = U3X

2
erf	(𝑎√𝑡) − /

2√/w'2
erf	(√𝑎J − 𝑏√𝑡).     (B27b) 

Since 𝑒𝑟𝑓𝑐(𝑧) ≡ 1 − erf	(𝑧) we have 
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        ℒ'H a H
P(Ç'ÇÈ)

d = 𝑘J𝜈J𝑍- ∫ 𝑒uw�w�ÇÈw'H�û[1 − 𝑒𝑟𝑓�−𝑘√𝜈J𝑍-√𝑢�]𝑑𝑢
.
* =     

					𝑘J𝜈J𝑍- "
U�

w�wa6È
wW{dX'H

uw�w�ÇÈ
w'H�

− ∫ 𝑒uw�w�ÇÈw'H�û.
* erf�−𝑘√𝜈J𝑍-√𝑢� 𝑑𝑢% = 

ÇÈ
ÇÈ
w'H

a𝑒u�w�ÇÈw'H�. − 1d + ÇÈ
ÇÈ
w'H

𝑒uw�w�ÇÈw'H�. erf�𝑘√𝜈J𝑍-√𝑡� −
ÇÈ
w

ÇÈ
w'H

erf�𝑘√𝜈J√𝑡�.   (B28) 

         Using Eqs. (B25) and (B28) we can now invert Eq. (B24) to obtain 

     𝜂(𝑡) = 𝜂* + 𝐴𝑄J𝜂* ∑
H

ÉÃ(ÇÈ)
�
-ÊH 7 ÇÈ

ÇÈ
w'H
8 `𝑒uw�w�ÇÈw'H�.𝑒𝑟𝑓𝑐�−𝑘√𝜈J𝑍-√𝑡� −

1−𝑍-𝑒𝑟𝑓(𝑘√𝜈J√𝑡)e +
Ḟj
uw�w

∑ ÇÈ
ÉÃ(ÇÈ)

𝑒uw�w�ÇÈw'H�.�
-ÊH 𝑒𝑟𝑓𝑐�−𝑘√𝜈J𝑍-√𝑡�.                    (B29) 

We have used 𝑒𝑟𝑓𝑐(−𝑧) = 2 − 𝑒𝑟𝑓𝑐(𝑧) = 1 + erf	(𝑧). 

         As a check, note that Eq. (B24) can be written as 

 𝑠𝜂½ − 𝜂* = ∑ vÌwFj&PḞj/�wwuë

ÉÃ(ÇÈ)(Ç'ÇÈ)
�
-ÊH  .      (B(30) 

The l.h.s. of the above equation is the Laplace transform of �̇�(𝑡). Therefore 

�̇�(𝑡) =9
1

𝐷Ð(𝑍-)

�

-ÊH

"𝐴𝑄J𝜂*ℒ'H 7
1

𝑍 − 𝑍-
8 +

�̇�*
𝜈JJ𝑘�

ℒ'H 7
𝑠

𝑍 − 𝑍-
8% 

= ∑ ÇÈ
ÉÃ(ÇÈ)

�
-ÊH [𝐴𝑄J𝜂*𝑘J𝜈J + (𝑍-J − 1)�̇�*]𝑒u

w�w�ÇÈ
w'H�.𝑒𝑟𝑓𝑐(−𝑘√𝜈J𝑍-√𝑡).    (B32) 

The same result is obtained by differentiating Eq. (B29), using the “sum rules” given in 

Eqs. (B23a)-(B23d). Integrating the above equation is another way of deriving Eq. (B29). 

         Eq. (B29) can be simplified. The coefficient of the term erf	(𝑘√𝜈J√𝑡) is 

 ∑ ÇÈ
w

ÉÃ(ÇÈ)(ÇÈ
w'H)

�
-ÊH = ∑ H

ÉÃ(ÇÈ)(ÇÈ
w'H)

�
-ÊH        (B33) 

where we have subtracted and added 1 to the numerator 𝑍-J and used Eq. (B23a). To 

simplify further we adopt a technique pioneered by Prosperetti [56] and here give only the 

essential elements for the problem at hand. The basic idea is to factor the 6th order 
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polynomial 𝐷(𝑍)(𝑍J − 1). In Prosperetti’s notation, 𝑐- = 𝑍- for i=1-4 and choose 𝑐: =

−𝑐ç = 1. With 𝐷(𝑍) given by Eq. (20) we have 𝑃ç,: = 2𝐷(1) = −2𝐴𝑄J and 𝑃ç,ç =

−2𝐷(−1) = −2[4(1 + 𝐴) − 𝐴𝑄J]. Now, from Ref. [56], 

                     0 = 𝑆ç(0) = ∑ H
<í,È

ç
-ÊH = ∑ H

ÉÃ(ÇÈ)(ÇÈ
w'H)

�
-ÊH + H

<í,î
+ H

<í,í
     (B34) 

from which 

       ∑ H
ÉÃ(ÇÈ)(ÇÈ

w'H)
�
-ÊH = H

JvÌw
+ H

J[�(H&v)'vÌw]
= J(H&v)

vÌw[�(H&v)'vÌw]
       (B35) 

to be used in Eq. (B33). 

         The last term in Eq. (B29) that can be simplified by this technique is ∑ ÇÈ
ÉÃ(ÇÈ)(ÇÈ

w'H)
�
-ÊH , 

the coefficient of the -1 term in Eq. (B29). We use [56] 

             0 = 𝑆ç(1) = ∑ ÇÈ
ÉÃ(ÇÈ)(ÇÈ

w'H)
�
-ÊH + Çî

<í,î
+ Çí

<í,í
               (B36) 

from which 

                ∑ ÇÈ
ÉÃ(ÇÈ)�ÇÈ

w'H�
�
-ÊH = − Çî

<í,î
− Çí

<í,í
= − H

<í,î
+ H

<í,í
= 

																							 H
JvÌw

− H
J[�(H&v)'vÌw]

= J(H&v)'vÌw
vÌw[�(H&v)'vÌw]

.           (B37) 

         The rest of the terms in Eq. (B29) cannot be simplified by Prosperetti’s technique 

because	𝑍- appears in the exponential as well as the complimentary error function  𝑒𝑟𝑓𝑐. 

Substituting Eqs. (B33), (B35, and (B37) in Eq. (B29) and collecting terms we arrive at 

𝜂(𝑡)/𝜂* =
J(H&v)U,Ä+(u√�w.)

�(H&v)'vÌw
+ ∑ ÇÈ

ÉÃ(ÇÈ)
�
-ÊH Ë vÌw

ÇÈ
w'H

+ Ḟj
Fjuw�w

Í 𝑒�ÇÈw'H�uw�w.𝑒𝑟𝑓𝑐(−𝑍-𝑘√𝜈J𝑡) 

(B38) 

which is the result given in Eq. (35). It is instructive to set 𝑡 = 0	in the above equation and 

check that indeed 𝜂(𝑡 = 0) = 𝜂* and �̇�(𝑡 = 0) = �̇�*, two arbitrary constants of the initial-
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value problem. Much more work is required to show that the above expression reduces to 

the inviscid result, Eq. (6), in the limit 𝜈J → 0. 

 

 

 

 

 

 

 

        This work was performed under the auspices of the U. S. Department of Energy by 

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 

 

REFERENCES 

 [1] Lord Rayleigh, “Investigation of the character of the equilibrium of an incompressible 

heavy fluid of variable density,” Scientific Papers (Dover, New York, 1965), Vol.2. 

[2] G. I. Taylor, “The instability of liquid surfaces when accelerated in a direction 

perpendicular to their plane. I,” Proc. R. Soc. London, Ser. A 201, 192 (1950). 

[3] R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids,”  

Commun. Pure Appl. Math. 13, 297 (1960). 

[4] E. E. Meshkov, “Instability of the interface of two gases accelerated by a shock wave,” 

Izv. Akad. Nauk SSR, Mekh. Zhidk. Gaza 5, 151 (1969) [Fluid Dyn. 4, 101 (1960)]. 



 

 

52 

[5] J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, “Laser Compression of Matter 

to Super-High Densities: Thermonuclear (CTR) Applications,” Nature (London) 239, 139 

(1972). 

[6] J. D. Lindl, Inertial Confinement Fusion (Springer-Verlag, New York, 1998). 

[7] L. F. Wang, W. H. Ye, X. T. He, et al., “Theoretical and simulation research of 

hydrodynamic instabilities in inertial-confinement-fusion implosions,” Science China-

Phys., Mech. & Astronomy 60, 1674 (2017). 

[8] H. F. Robey, J. O. Kane, B. A. Remington, et al. “An experimental testbed for the study 

of hydrodynamic issues in supernovae,” Phys. Plas. 8, 2446 (2001). 

[9] Y. Zhou, “Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, 

turbulence, and mixing. I,” Phys. Rep. 720-722, 1 (2017). 

[10] Y. Zhou, “Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, 

turbulence, and mixing. II,” Phys. Rep. 723-725, 1 (2017). 

 [11] R. E. Rosensweig, Y. Hirota, S. Tsuda, and K. Raj, “Study of audio speakers 

containing ferrofluid,” J. Phys.: Condens. Matter 20, 204147 (2008). 

[12] C. Harig, P. Molnar, and G. A. Houseman, “Rayleigh-Taylor instability under a shear 

stress free top boundary condition and its relevance to removal of mantle lithosphere from 

beneath the Sierra Nevada,” Tectonics 27, TC6019 (2008). 

[13] C. R. Weber, D. S. Clark, A. W. Cook et al., “Inhibition of turbulence in inertial-

confinement-fusion hot spots by viscous dissipation,” Phys. Rev. E 89, 053106 (2014). 

[14] T. M. Willey, K. Champley, R. Hodgin et al., “X-ray imaging and 3D reconstruction 

of in-flight exploding foil initiation flyers,” J. App. Phys. 119, 235901 (2016). 



 

 

53 

[15] T. G. Theofanous, “Aerobreakup of Newtonian and viscoelastic liquids,” Ann. Rev. 

Fl. Mech. 43, 661 (2011). 

[16] A. A. Blinova, M. M. Romanova, and R. V. E. Lovelace, “Boundary between stable 

and unstable regimes of accretion. Ordered and chaotic unstable regimes,” Mon. N. Roy. 

Astron. Soc. 459, 2354 (2016). 

 [17] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University 

Press, London, 1968). 

[18] K. O. Mikaelian, “Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov 

instabilities,” Phys. Rev. E 47, 375 (1993). 

[19] K. O. Mikaelian, “Richtmyer-Meshkov instabilities in stratified fluids,” Phys. Rev. A 

31, 410 (1985). 

[20] W. J. Harrison, “The influence of viscosity on the oscillations of superposed fluids,” 

Proc. Math. Soc. (London) 6, 396 (1908). 

[21] R. Bellman and R. H. Pennington, “Effects of surface tension and viscosity on Taylor 

instability,” Q. Appl. Math. 12, 151 (1954). 

[22] K. O. Mikaelian, “Rayleigh-Taylor instability in finite-thickness fluids with viscosity 

and surface tension,” Phys. Rev. E 54, 3676 (1996). 

[23] J. V. Uspensky, Theory of Equations (McGraw-Hill, New York, 1948), Chap. V. 

[24] R. Hide, “The character of the equilibrium of an incompressible heavy viscous fluid 

of variable density: an approximate theory,” Proc. Camb. Philos. Soc. 51, 179 (1955). 



 

 

54 

[25] W. H. Reid, “The effects of surface tension and viscosity on the oscillations of 

superposed fluids,” Proc. Camb. Philos. Soc. 57, 415 (1961). 

[26] A. J. Willson, “On the stability of two superposed fluids,” Proc. Cambridge Philos. 

Soc. 61, 595 (1965). 

[27] R. Menikoff, R. C. Mjolsness, D. H. Sharp, and C. Zemach, “Unstable normal mode 

for Rayleigh-Taylor instability in viscous fluids,” Phys. Fluids 20, 2000  (1977). 

[28] K. O. Mikaelian, “Shock-induced interface instability in viscous fluids and metals,” 

Phys. Rev. E 87, 031003 (2013). 

[29] G. F. Carrier and C. T. Chang, “On an initial value problem concerning Taylor 

instability of incompressible fluids,” Q. Appl. Math. 16, 436 (1959). 

[30] A. Prosperetti, “Motion of two superposed viscous fluids,” Phys. Fluids 24, 1217 

(1981). 

[31] P. Carles and S. Popinet, “Viscous nonlinear theory of Richtmyer-Meshkov 

instability,” Phys. Fluids 13, 1833 (2001). 

[32] P. Carles and S. Popinet, “The effect of viscosity, surface tension and non-linearity 

on Richtmyer-Meshkov instability,” Eur. J. Mech. B/Fluids 21, 511 (2002). 

 [33] S. M. Bakhrakh et al., “Hydrodynamic instability in strong media,” Lawrence 

Livermore National Laboratory Report No. UCRL-CR-126710, 1997 (unpublished). 

[34] S. Atzeni and J. Meyer-ter-Vehn, “The physics of Inertial Fusion,” Oxford 

University Press, Oxford, 2004). 



 

 

55 

[35] K. O. Mikaelian, “Freeze-out and the effect of compressibility in the Richtmyer-

Meshkov instability,” Phys. Fluids 6, 356 (1994). 

[36] F. Quirion, M. -C. Asselin, and G. G. Ross, “Propagation of interfacial waves in 

microgravity,” Chem. Soc. Rev. 23, 275 (1994). 

[37] J. Boussinesq, Théorie de l’écoulement tourbillonnant et tumultueux des liquids dans 

les lits rectilignes a grande section, Gauthier-Villars et fils, Paris, 1897), Vol. 1. 

[38] H. G. Lee and J. Kim, “A comparison study of the Boussinesq and the variable 

density models on buoyancy-driven flows,” J. Eng. Math. 75, 15 (2012). 

[39] K. O. Mikaelian, “Boussinesq approximation for Rayleigh-Taylor and Richtmyer-

Meshkov instabilities,” Phys. Fluids 26, 054103 (2014). 

[40] N. Schneider and S. Gauthier, “Vorticity and mixing in Rayleigh-Taylor Boussinesq 

turbulence,” J. Fluid Mech. 802, 395 (2016). 

[41] K. O. Mikaelian, “Comment on “The effect of viscosity, surface tension and non-

linearity on Richtmyer-Meshkov instability” [Eur. J. Mech. B Fluids 21 (2002) 511-

526]”,” Eur. J. Mech. B/Fluids 43, 183 (2014). 

[42] Y. B. Sun, J. J. Tao, R. H. Zeng, and X. T. He, “Effects of viscosity and elasticity on 

the Richtmyer-Meshkov instability,” Phys. Rev. E 98, 033102 (2018). 

[43] S. –I. Sohn, “Effects of surface tension and viscosity on the growth rates of 

Rayleigh-Taylor and Richtmyer-Meshkov instabilities,” Phys. Rev. E 80, 055302 (2009). 

[44] V. N. Goncharov, “Analytical model of nonlinear, single-mode, classical Rayleigh-

Taylor instability at arbitrary Atwood numbers,” Phys. Rev. Lett. 88, 134502 (2002). 



 

 

56 

[45] D. Layzer, “On the instability of superposed fluids in a gravitational field,” 

Astrophys. J. 122, 1 (1955). 

[46] Q. Zhang and W. Guo, “Universality of finger growth in two-dimensional Rayleigh-

Taylor and Richtmyer-Meshkov instabilities at all density ratios,” J. Fluid Mech. 786, 47 

(2016). 

[47] K. O. Mikaelian, “Analytic approach to nonlinear Rayleigh-Taylor and Richtmyer-

Meshkov instabilities,” Phys. Rev. Lett. 80, 508 (1998). 

[48] A. López Ortega, M. Lombardini, D. I. Pullin, and D. I. Meiron, “Numerical 

simulations of the Richtmyer-Meshkov instability in solid-vacuum interfaces using 

calibrated plasticity laws,” Phys. Rev. E 89, 033018 (2014). 

[49] An-Min He, Jun Liu, Chao Liu, and Pei Wang, “Numerical and theoretical 

investigation of jet formation in elastic-plastic solids,” J. App. Phys. 24, 185902 (2018). 

[50] I. W. Kokkinakis, D. Drikakis, D. L. Youngs, and R. J. R. Williams, “Two-equation 

and multi-fluid turbulence models for Rayleigh-Taylor mixing,” Int. J. Heat & Fl. Flow 

56, 233 (2015). 

[51] B. Thornber, D. Drikakis, D. L. Youngs, and R. J. R. Williams, “The influence of 

initial conditions on turbulent mixing due to Richtmyer-Meshkov instability,” J. Fluid 

Mech. 654, 99 (2010). 

[52] M. Hahn, D. Drikakis, D. L. Youngs, and R. J. R. Williams, “Richtmyer-Meshkov 

turbulent mixing arising from an inclined material interface with realistic surface 

perturbations and reshocked flow,” Phys. Fluids 23, 046101 (2011). 



 

 

57 

[53] R. Menikoff, R. C. Mjolsness, D. H. Sharp, C. Zemach, and B. J. Doyle, “Initial 

value problem for Rayleigh-Taylor instability of viscous fluids,” Phys. Fluids 21, 1674 

(1978). 

[54] C. Xie, J. Tao, and J. Li, “Viscous Rayleigh-Taylor instability with and without 

diffusion effect,” Appl. Math. Mech. Engl. Ed. 38, 263 (2017). 

[55] R. A. Axford, “Initial value problems of the Rayleigh-Taylor instability type,” Los 

Alamos Scientific Laboratory Report LA-5378 (1973) (unpublished). 

[56] A. Prosperetti, “Viscous effects on small-amplitude surface waves,” Phys. Fluids 19, 

209 (1976). 

 

 

 

 

Figure Captions 

Fig. 1. 𝑌 vs. 𝑋, the normalized growth rate 𝑌 defined as 𝛾(�w
tw
)H/� vs. normalized 

wavenumber 𝑋 defined as 𝑘(�w
w

t
)H/�, for 3 values of the Atwood number: 𝐴 = 0.1, 0.5, 

and 1.0. This is case C, 𝐴| = 1 (𝜇H = 0). The continuous thick lines are exact results 

calculated from the first solution 𝑍H of Eq. (20) and related to 𝑌 by 𝑌 = 𝑋J(𝑍J − 1). 

The dashed lines are approximate results from Eq. (16). This figure is for the larger 

growth rate 𝛾&. The flat horizontal dashed line, intersecting the 𝐴 = 1.0 curve, 

illustrates “isogrowth” rates where 𝑌 is the same at 𝑋 = 𝑋� and 𝑋 = 𝑋�, the subscripts 
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<  and  > indicating values less than and greater than, respectively, 𝑋�/�(≈
H
J
) defined 

as the location where 𝑌 has its maximum value 𝑌�/�. Isogrowth modes are discussed 

in Sec. IV.D. 

Fig. 2. Same as Fig.1 for the smaller growth rate 𝛾'. The exact solutions, from the second 

solution 𝑍J of Eq. (20), exist for 𝑋 > 𝐴H/�. The continuous and dashed lines are 

similarly ordered. 

Fig. 3. Exact (thick continuous line) and approximate (dashed) results for the RM 

instability,  𝑔 = 0, case C. We plot the smaller growth rate 𝛾' normalized by 𝜈J𝑘J vs. 

Atwood number 𝐴, obtained from Eqs. (26) and (27) which are exact and approximate, 

respectively. We do not plot the larger growth rate 𝛾& because both treatments yield 

𝛾& = 0 when 𝑔 = 0. 

Fig. 4 The RT growth factor 𝜂(𝑡)/𝜂* as a function of the non-dimensional time 𝑡f𝑔𝑘𝐴 for 

case C, 𝐴| = 1, starting with �̇�* = 0. The Atwood number 𝐴 is kept fixed at 𝐴 = 0.5 

and four values for the Reynolds number (Eq. (29a)) are considered: 𝑅𝑒 = 𝑅𝑒«x = 2, 

5, 10, and ∞. These are exact results based on Eq. (35). 

Fig. 5 The RM growth factor 𝜂(𝑡)/𝜂* as a function of the non-dimensional time Δ𝑉𝑘𝐴𝑡 

for case C, 𝐴| = 1. The Atwood number 𝐴 is kept fixed at 𝐴 = 0.5 and four values for the 

Reynolds number (Eq. (29b)) are considered: 𝑅𝑒 = 𝑅𝑒« = 2, 5, 10, and ∞. The exact 

results, using Eq. (48), are shown as thick continuous lines, and approximate results (Eq. 

(44)) as dashed lines. Both asymptote to 1 + 𝑅𝑒/2. Compare with Fig. 4. 

Fig. 6 The RT growth factor 𝜂(𝑡)/𝜂* vs. 𝜏 ≡ 𝜈𝑘J𝑡 for 𝐴 = 0.9  and  𝑅𝑒«x = 1. The upper 

curve has 𝜇H = 𝜇, 𝜇J = 0  (hence 𝐴| = −1) while the lower curve has  𝜇H = 0, 𝜇J = 𝜇 
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(hence 𝐴| = +1). These are exact results calculated from Eqs. (39) and (35) 

respectively. The approximate result (not shown) does not distinguish between these 

two cases and is closer to the upper curve. 

Fig. 7 Same as Fig. 4 with �̇�* = �̇�*+,-.. = −(tuv
ST
)𝜂*; now the growth factors asymptote to 

zero. 

Fig. 8 Variations on �̇�* for the problem displayed in Figs. 4 and 7 with 𝑅𝑒 = 5. The curve 

labelled 1 has �̇�* = 0 and is the same as the one appearing in Fig. 4. Curve 2 has �̇�* =

�̇�*+,-.. and appears in Fig. 7 also. Curve 3 has �̇�* = 2�̇�*+,-.. and is essentially the negative 

of curve 1. Curve 4 has �̇�* = −�̇�*+,-.. and is essentially double curve 1. All are exact 

results using Eq. (35). 

Fig. 9 The smaller, normalized RT growth rate 𝛾'/𝜈J𝑘J for case C, 𝐴| = 1, as a function 

of the Atwood number 𝐴 for three values of the Reynolds number 𝑅𝑒«x = 2, 5, and 10. 

We use 𝛾' = −𝑔𝑘𝐴/𝛾& for both exact (solid lines) and approximate (dashed) results 

based on 𝛾&U�/+. and 𝛾&
/~~,��. respectively. 

Fig. 10 Comparison of exact, approximate, and hybrid models for the case 𝐴| = 1,𝐴 =

0.5, and 𝑅𝑒 = 𝑅𝑒«x = 2, 5,	and 10. Nine curves are displayed in this figure. The exact 

results (thick continuous lines) are based on Eq. (35). The hybrid results (dotted) use 

Eq. (2) with 𝛾& = 𝛾&U�/+. and 𝛾' = −𝑔𝑘𝐴/𝛾&; they can be barely distinguished from 

the exact results. The approximate results (dashed) use the same equations with 𝛾& =

𝛾&
/~~,��. = −𝜈𝑘J + f𝑔𝑘𝐴 + 𝜈J𝑘�; they overestimate the growth factor by 30%-40% 

after 7 e-foldings. 
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Fig. 11 Growth factors for the case 𝐴| = 2/3, 𝐴 = 1/6 and 𝑅𝑒«x = 2.5 (a) or 1.0 (b), 

starting with �̇�* = 0. The horizontal axis is 𝜏 ≡ 𝜈𝑘J𝑡. Exact, hybrid, and approximate 

results are plotted as red solid lines, blue solid, and black dashed lines respectively. 

This is a case not covered by any of the four special cases listed in Eqs. (13a)-(13d) 

and exact results must be found numerically using Eq. (31). 

Fig. 12 Growth factor 𝜂(𝑡)/𝜂* in a system where 𝜌H = 1	𝑔/𝑐𝑚�, 𝜌J = 3	𝑔/𝑐𝑚�, 𝜇H = 0, 

𝜇J = 1	𝑝𝑜𝑖𝑠𝑒, and 𝑔 = 1000	𝑐𝑚/𝑠J, plotted as a function of time in seconds for two 

isogrowth wavenumbers: 𝑘 = 𝑘� ≈ 3.8	𝑐𝑚'H and 𝑘 = 𝑘� ≈ 21.2	𝑐𝑚'H, which share 

the same growth rate 𝛾& = 40	𝑠'H (see text). In the top figure (a) �̇�* = 0 and the 𝑘� 

mode grows faster in both the exact treatment (solid red lines) and the approximate 

treatment (dashed black lines). In the bottom figure (b) �̇�* = 𝜂*𝛾& and the two 𝑘� and 

𝑘� modes collapse into one for both treatments (there are four curves in figure (b) also). 

With �̇�* = 𝜂*𝛾& the evolution is purely exponential 𝑒ST. with the same 𝛾& at the two 

widely separated wavenumbers 𝑘� and 𝑘� - See the dashed horizontal line in Fig. 1. 

We do not show hybrid results because they are undistinguishable from the exact 

results. 
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67 

 

                                                                 Fig. 7 
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