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Fluid transport in porous materials is commonly studied in geological samples (soil, sediments
etc.) or idealized systems, but the fluid flow through compacted granular materials, consisting of
substantially strained granules, remains relatively unexplored. As a step towards filling this gap,
we study a model of liquid transport in packings of deformable elastic shells using Finite Element
and Lattice-Boltzmann methods. We find that the fluid flow abruptly vanishes as the porosity of
the material falls below a critical value, and the flow obstruction exhibits features of a percolation
transition. We further show that the fluid flow can be captured by a simplified permeability model
in which the complex porous material is replaced by a collection of disordered capillaries, which
are distributed and shaped by the percolation transition. To that end, we numerically explore the
divergence of hydraulic tortuosity τH and the decrease of a hydraulic radius Rh as the percolation
threshold is approached. We interpret our results in terms of scaling predictions derived from the
percolation theory applied to random packings of spheres.

I. INTRODUCTION

The physics of fluid flow through disordered porous
media is of fundamental importance to a wide range of
engineering and scientific fields including enhanced oil
recovery, carbon capture and storage, contamination mi-
gration in ground-water, water transport, and nutrient
transport in tissues and microbial colonies [1–5]. This
has led to a substantial effort in looking for relationships
between the effective physical transport properties and
the structural properties of porous materials. In spite of
the extensive work that has been done, a full description
of liquid transport in a broad range of material param-
eters is elusive [6]. Experimental studies, especially in
3D systems, are limited because imaging material sam-
ples and resolving fluid flow stream lines are challenging
tasks [7–10]. Numerical studies are most often tackled in
2D due to the high computational burden [11–16]. Even
though a broad range of material porosities in 2D systems
has been covered, a drawback of these studies is that, for
disordered materials, the percolation transition coincides
with the rigidity transition [17]. For 3D systems, simula-
tions are commonly performed for an idealized model of
randomly distributed inter-penetrating objects like cubes
or spheres [18–21]. These systems are good prototypes
to study critical phenomena, but liquid transport in com-
plex geometries depends on boundary condition details;
thus, the relevance of these models for actual materials is
not clear [22]. There is also work done on fluid transport
in geometries obtained from the microtomography of col-
lected materials. However, these studies are performed
usually for a small number of samples and at relatively
high porosity [23, 24].
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In recent years, the interest in granular systems made
of deformable and strongly compacted elastic shells and
membranes increased [25–27]. This class of models is
of interest not only in physics and engineering, but also
increasingly in biological research of small cell clusters
[28, 29], epithelial cells [30], and jammed microbial pack-
ings in confined spaces [4, 31]. Henceforth, in this work,
we focus on a 3D model of granular materials where par-
ticles are represented as elastic spherical shells, with the
volume of these shells kept constant (motivated by exper-
imental work on confined microbial populations [4, 31]).
For such a model of the granular system, we numerically
study a single-phase viscous flow in Darcy’s regime, i.e.
laminar flow with a linear relation between volumetric
flow and pressure gradient. We consider packings in a
broad range of porosities, from the point the packings
start to be mechanically stable (jamming transition [32])
down to the porosities where the liquid transport ceases
to exist (percolation transition [17]). We mainly focus
on a model by Kozeny and Carman [33, 34] — the clas-
sical permeability-porosity framework. First, we briefly
introduce the Kozeny-Carman model. Then, we present
how the key features of the Kozeny-Carman model can
be physically grounded in a percolation theory. Finally,
we present numerical evidence on how different struc-
tural features of granular porous material contribute to
the fluid transport in granular porous media.

Kozeny-Carman Model

Permeability κ measures the ability of fluid to flow
through porous media and it is part of the proportionality
constant in Darcy’s law, the relation between the fluid
volumetric flux U (discharge per unit area) and a pressure
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gradient:

U = −κ
η
∇P(r) (1)

where U is given in units of length/time, η is the
dynamic viscosity of the fluid, and P(r) is the pressure
at the location r. This phenomenological relation is
valid at low Reynolds numbers when the flow is laminar.
For small pressure gradients, we can further assume
∇P = ∆P/L, where L is the linear size of the system.

For low Reynolds number flow in a straight and cylindri-
cal capillary channel, the volumetric flux is given by the
Poiseuille equation:

U = −B
R2

η

∆P

L
(2)

where R is the radius of a capillary, B is a numerical
factor, and L is the length of the capillary. If a capil-
lary occupies only a fraction of the material, the liquid
discharge per area unit is correspondingly lower. Assum-
ing that the capillaries are homogeneously distributed in
the material, the scaling factor is the amount of the void
space in the material, called a porosity φ:

U = −φB
R2

η

∆P

L
(3)

For capillaries that are not straight, Kozeny pointed
out that due to the tortous character of the flow, the
length of the equivalent channels should be 〈λ〉 ≡ τH · L,
where τH is called hydraulic tortuosity, and the fluid dis-
charge needs to be scaled down by it [33]. Carman further
reasoned that it takes τH times more time to discharge
the same amount of fluid through porous media than it
takes for straight capillaries (in a macroscopic direction
of the flow). Thus, the discharge rate should addition-
ally be τH-times smaller [34]. Capillaries are not limited
to just the circular cross-sections. For the general shape
of the capillary, the radius R is commonly replaced by a
hydraulic radius Rh [35] (defined as the ratio of the cross-
sectional area normal to flow to the wetted perimeter of
the flow channels), but sometimes other parameters are
used, for example, the critical pore radius [36].

Thus from Equation 3, the final relation for the capil-
lary flow in a porous material is [34]:

U = −B
φR2

h

τH · η
· ∆P

τH · L
= −B

φR2
h

τ2
H

1

η
∇P (4)

Comparing Equation 1 with Equation 4, a general for-
mula for permeability reads

κ = B
φR2

h

τ2
H

(5)

and is called the Kozeny-Carman equation. Despite be-
ing semi-empirical, Equation 4 is commonly used as a
simple model for the permeability in porous materials.

II. METHODS

A. Packings of Deformable Shells

1. Generation of Compressed Packings

The initial packings of the shells are generated using a
standard jamming, with a periodic boundary conditions
algorithm [32]. Starting from these jammed packings,
more compacted packings are generated by changing a
linear dimension of the simulation box. The changes of
the box size are minute, and less than 0.4% of the size
of an elastic shell. After every box size change, the me-
chanical stresses are relaxed using the FIRE algorithm
[37], see Section VI B fore more details.

2. Shells Mechanics

Every shell is modeled as a membrane using about 5000
triangular finite elements per shell. The ratio of a shell
thickness t to the initial diameter D0 is t/D0 = 0.02,
so bending effects can be neglected and the shell ma-
terial is modeled as an isotropic St. Venant-Kirchhoff
membrane [38, 39]. All of the shells are slightly pres-
surized at the beginning of the simulation, with initial
pressure P0, and filled with an incompressible liquid.
The ratio between P0 and the Young’s modulus of the
shell E is equal to P0/E = 0.0025. The force due to
the shell volume-dependent pressure P(Vshell) on a ver-
tex i is calculated as: F(ri) = ∇ri

(
P(Vshell) · Vshell

)
where Vshell(r1, ..., rNvert) is a function of the Nvert ver-
tices in the mesh and the volume change for the vertex
i is calculated using the tetrahedral volume defined by
the vertex i, its neighboring vertices in the mesh, and
the center of the mass [4, 31]. Once the mechanical
forces are equilibrated, the constant shell volume con-
straint is enforced by varying the shells’ internal pres-
sures. If the volume of a shell is not equal to the preas-
signed value V0, the pressure is adjusted to the new value
Pnew = Pold [1 + (V0 −V) /V]. This inevitably drags
the system out of mechanical equilibrium and the system
needs to be equilibrated again. The protocol continues
until the volumes of the shells reach their preassigned
volumes within 0.1% of accuracy [31].

B. Identification of a Percolating Cluster

To identify clusters that percolate the void space be-
tween the shells, we project a packing of shells onto a 3D
lattice with a lattice constant δ, see Fig. 1a. Every lattice
site that contains a shell’s vertex is considered imperme-
able to the liquid, Fig. 1a. The shells are represented
as finite elements. Thus, for a small enough lattice con-
stants δ, the membrane is permeable to the liquid, i.e.
the liquid can enter the interior of the shell. This prob-
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lem can be overcome by identifying impermeable lattice
sites using triangles defined by vertices rather than by
vertices alone. However, the mid-surface plane is used to
represent the three-dimensional shells in two-dimensional
form, so even though two shells are in contact, there is a
finite gap between their mid-surfaces, Fig. 1b. Thus, be-
low a certain lattice size δc ≈ 0.025, the packings can be
permeable due to this finite gap, and percolating clusters
identified for δ < δc are dubious.

Finally, we look for a percolating cluster using the
connected-component labeling algorithm (implemented
in the scipy.ndimage Python library). The cluster is
said to percolate the system if it contains lattice sites on
the two opposite sides of the simulation box. One of the
characteristic length-scales in the system is the initial di-
ameter of a shell, D0. We choose to express the lattice
sizes, δ, in units of D0. In principle, we would like to
generate a lattice with δ → 0 as we want to estimate a
fluid flow in the continuum limit. However, due to the
aforementioned limitations, the resolution of the lattices
in our study is finite and varies from a coarse one to a fine
one, and it is in the range [0.03, 0.07]. Finally, percola-
tion clusters identified in this way are used for hydraulic
radius and Lattice-Boltzmann calculations.

C. Lattice Boltzmann Simulations

Velocity fields of the fluid flow through the packings
of the shells are solved with the Lattice-Boltzmann (LB)
method [40] using the D3Q19 lattice. This method was
proven to be successful in studies of liquid flow in porous
materials [11–14, 16, 18–21, 23, 24, 41–45]. We use this
method to obtain a solution to the Navier-Stokes equa-
tion for the flow in low Reynolds numbers limit. The LB
method is using a velocity distribution function rather
than velocity and pressure fields and is numerically more
stable than the Finite Element Method at the irregular
boundaries that are inevitable in porous materials [40].
To ensure better numerical stability for the complex ge-
ometry of the pores, we use multiple relaxation times
(MRT) to solve linearized Boltzmann equation with LB
method [46].

Permeability of the packing and the flow field are re-
solved by setting a pressure difference ∆P between two
opposite sides of the simulation box, sufficiently small to
keep the flow in the incompressible and laminar regimes
(Stokes flow). Every simulation is performed for periodic
boundary condition (PBC) in directions perpendicular
to the pressure gradient. In the direction of the pressure
gradient, the system is open and the boundary conditions
are set by pressure difference [23, 24]. No-slip boundary
condition is applied to the solid material boundaries. It
has been found [14, 40] that when the channels carrying
liquid become very narrow (of the order of one lattice
site) LB simulations become unstable and the evaluation
of the stream lines become inaccurate. To deal with this
problem we use an approach proposed by Matyka et al.

(a)

(b)

FIG. 1. Identification of a percolating cluster: (a) A
schematic of a 2D system projected onto a lattice with two
different lattice sizes. Every lattice site that contains any
part of a particle (yellow shapes) is considered to be occupied
and impermeable to liquid (white squares). For the lattice
resolution δ1 and a given configuration, there is no percolating
cluster capable of carrying liquid through the packing, but
there are some unoccupied lattice sites (green squares). For
the lattice size δ2, there is a percolating cluster (blue squares).
There are also some unoccupied lattice sites (green squares)
that do not belong to the percolating cluster. (b) A sketch of
two elastic shells in contact. Shells are represented by mid-
surfaces, so despite the fact that they are in contact, there is
a finite gap between them (δc ≈ 0.025).

[14], where every lattice site on which flow equations are
solved is further refined into M3 smaller cubic elements
(refinement level: M). Strictly speaking, δ̃ = δ/M is a
lattice size of the fluid phase, and throughout this paper
we use M = 3 (unless stated otherwise). Due to com-
putational limitations, LB calculations are performed for
the lattice constant δ = 0.04 (unless stated otherwise).

The flow fields obtained from LB simulations for each
lattice site, u(r), are further used to calculate the per-
meability and the tortuosity. Permeability is calculated

as κ = η · 〈u(r)〉 /∇P , and tortuosity as τH = 〈u(r)〉
〈u(r)x〉 ,

see Section VI D for the formal derivation. Permeability
is given in lattice units (for conversion to physical units
follow Latt [47]). All the LB simulations are performed
with PALABOS (http://www.palabos.org).

The simulated model of the porous material accounts
for deformability and the mechanics of the shell mem-
brane using Finite Element method. The mechanics of
the shells are resolved with∼ 3.75·105 degrees of freedom,
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and some of the LB simulations required up to ∼ 107

lattice points to resolve the fluid velocity field. In turn,
the resolution of the calculation imposes restrictions on
the largest system size that we are able to study. Finite
size effects for the studied systems may result in small
anisotropies in the permeability tensor [15], but recent
studies show that transport in complex porous geome-
tries can be reasonably well captured if the size of the
system is roughly & 10 times larger than the pore size
[23, 41, 48, 49].

III. RESULTS

A. Percolation Transition

In idealized systems, such as random packings of over-
lapping cubes or spheres (and their complementaries,
where the solid material is drilled in random locations,
rather than deposited [50, 51]), the void space between
them undergo a percolation transition [52–56]. Since, in
the vicinity of the percolation threshold, a minute de-
position of solid material can disconnect the percolating
cluster and prevent further liquid transport, the abrupt-
ness of this transition is well understood. The model
studied in this work differs from the aforementioned ones
in that the narrow necks in the percolating cluster de-
cay continuously upon the compaction of the material.
It is however akin to the cherry-pit model [57], where the
sizes of impermeable obstacles are continuously increased
[58] and long-time transport properties vanish at the per-
colation threshold due to an underlying continuum per-
colation transition of the liquid accessible space [58]. To
study this aspect in our model, following the protocol de-
scribed in Section II B, percolating clusters are identified
for three system sizes (N=16, 32, and 50 elastic shells)
and various lattice resolutions, Fig. 2a. The results for
δ = 0.04 are shown in Fig. 2b. As the system gets larger,
the transition becomes steeper, as expected in a first-
order transition case [53, 56, 59]. The steepness of this
transition depends on the system size L, and scales as
∼ L1/ν , where ν is a critical exponent of the correlation
length. In a continuum percolation model, this exponent
is approximately equal ν ≈ 0.88 [60].

Fig. 2c shows that a sharp drop in fluid transport capa-
bilities occurs for different lattice resolutions and that the
percolation threshold shifts towards lower porosity values
as δ decreases — an effect anticipated from the studies
on idealized lattice models [55]. The finite representation
of the elastic shells in the studied model does not allow
for calculations in the continuum limit. It is nevertheless
possible to extrapolate a percolation threshold in the con-
tinuum limit δ → 0. In Fig. 2d, we estimated that for
N=50, the percolation threshold in the continuum limit
is φ∗c(N = 50) = 0.035 ± 0.014, which is consistent with
the values obtained for other granular porous materials
[54–56, 61, 62].

For each system size, the percolation threshold φc for a

finite δ andN is expected to be related to the threshold in
the continuum limit φ∗c as a power-law φc(N)−φ∗c(N) ≡
∆φ(N) ∼ δβ [55]. In Fig. 2d, we estimate the lattice-size
scaling exponent to be β = 1.1 for N=50, and similar
values of β are found for N = 16, 32; cf. Table I. The
value of the exponent β is in good agreement with the
prediction made by Koza et al. [55], where the exponent
is estimated to be β ≈ 1 — yielding an approximate rela-
tion for the lattice-size dependent percolation threshold
that obeys: φc(N)− φ∗c(N) ∼ δ. Additionally, these fits
in the continuum limit are subject to a finite system size
correction that overestimates (in a first order) the ther-
modynamic limit by φ∗c(N) = φ∗c(N → ∞) + CIL

−1/ν ,
where CI ∼ O(1), L ∼ N1/d, and d = 3 [54, 61, 63, 64].
An accurate extrapolation to the thermodynamic limit
requires data for systems spanning many orders of mag-
nitude, but in Section III C and Section III D we show
that transport properties discussed in this work do not
depend on the exact value of φ∗c(N →∞), but rather on
a reduced porosity δφ(δ,N) ≡ φ − φc(δ,N) — a value
that can be well estimated for a given lattice size δ, and
system size N [65]. The model presented in this con-
tribution can be further detailed, but the numerical re-
sults clearly point to common characteristics between the
model studied in this work and previously studied per-
colation models [54–56, 58, 64, 65]. Thus, we use the
formalism of percolation theory in the analysis of fluid
flow obstruction in the vicinity of the critical porosity
value φc, which in this study is φc ≈ 0.15 (unless stated
otherwise).

B. Decrease of Hydraulic Radius Rh with the
Porosity

The hydraulic radius is defined as a ratio of a cross-
section of a liquid carrying channel to its wetted perime-
ter, see Section VI C for more details. Only in relatively
simple cases, such as a laminar flow inside a pipe, can
the hydraulic radius be directly related to the geometry
of the system. In practice, finding this value is problem-
atic because it is difficult to accurately predict a chan-
nel’s shape along the flow stream lines. The situation
gets even more complicated in complex geometries where
percolating channels can merge or branch out. Thus, the
hydraulic radius is commonly approximated by the ratio
of the volume to the wetted area of a cluster carrying the
liquid [66].

Using the percolating clusters identified for the pack-
ings of elastic shells, we estimated the hydraulic radii for
different lattice resolutions as a ratio of the number of
lattice sites belonging to the cluster divided by the num-
ber of surface sites [41, 67]. Using a geometric argument
adapted from references [68, 69], the hydraulic radius is
predicted to vanish linearly at the limit of zero porosity,
see Section VI C. Results corroborating this prediction
can be found in Fig. 3. The results indicate that the



5

(b) (c) (d)

Pr
ob

ab
ilit
y

Pr
ob

ab
ilit
y

compression

(a)

FIG. 2. Percolation transition: (a) Percolating clusters (in blue) and deformable shells (in yellow) in the packing with
periodic boundary conditions as the compaction of the system progresses. For clarity, the smallest system is presented (N=16)
with a lattice resolution δ = 0.04. As the system is more and more compact, the percolating cluster gets smaller and more
tortuous, and eventually disappears at the critical porosity. (b) Percolation probability for three system sizes: N=16, 32, and
50. Dashed lines are sigmoid fits to the numerical data, and binned averages are given by open dots. The lattice-size dependent
percolation threshold φc(N) has been estimated as the porosity value for which percolation probability is equal to 0.5. The
plots represent data for the lattice δ = 0.04. (c) Percolation probabilities for the system size N=50 and varying lattice sizes:
δ = {0.03, 0.04, 0.05, 0.06, 0.07}. As the resolution of the lattice increases, the percolation threshold shifts toward lower porosity
values. (d) We extrapolated the percolation threshold in the continuum limit. Dashed line is a power-law fit, where φ∗c and
the exponent for δ are two fitting parameters. The fitted percolation threshold in continuum limit is φ∗c = 0.035 ± 0.014, and
the exponent is equal to 1.1 ± 0.2. The relation ∆φ ∼ δ1.1 agrees well with the work of Koza et al. [55]. Details of a fitting
procedure can be found in Section VI G.

hydraulic radius decays like:

Rh ∝ φ/(1− φ) (6)

as the porosity goes to 0. If the hydraulic radius was
reaching 0 at the percolation threshold φc, this would
indicate that as the porosity approaches the percolation
threshold φ → φc, most of the fluid flow occurs in the

layer in the vicinity of the percolating cluster’s bound-
ing surface, where the effects of viscosity are significant.
Thus, the liquid transport could be controlled by a no-
slip boundary condition on the cluster’s surface and not
necessarily the complex geometry of the cluster. How-
ever, the hydraulic radius vanishes independently of lat-
tice size, and its value at the percolation threshold is fi-



6

FIG. 3. Hydraulic radius Rh: Hydraulic radius as a func-
tion of porosity φ for the system size N=50. For each of the
identified percolating cluster, the hydraulic radius was cal-
culated as a ratio of the cluster volume to the surface area,
and then normalized by the initial size of an elastic shell D0.
Error bars give one standard deviation. Dashed-lines are the
fits to Rh ∝ φ/(1 − φ) for δ = 0.04. At the jamming point
(φ ≈ 0.4) for monodisperse packings of shells with the size
D0, the numerical data is in agreement with the expected
theoretical value Rh/D0 ≈ 0.14. See Section VI C for more
details.

nite, as one would expect from a percolation theory [70].

C. Tortuosity Divergence at the Percolation
Threshold

Tortuosity underpins the relationship between a trans-
port process and the underlying geometry and topology
of the pores [71]. Recently it has been shown that the
tortuosity depends on material structural properties, and
may vary significantly close to the percolation threshold
[14, 16, 35, 72, 73]. Although percolation ideas have been
proposed in the context of tortuosity in 3D porous mate-
rials [74], they have not been thoroughly tested near the
percolation threshold. In this contribution, we numeri-
cally show a link between the geometry of a percolating
cluster and the liquid transport through porous materi-
als with a complex geometry of pores at the percolation
threshold.

Scaling arguments from Ghanbarian and co-workers
[6, 74, 75] suggest that the tortuosity scales, in the ther-
modynamics limit, with the reduced porosity accord-
ing to τH ∼ δφν(1−D), where ν is a critical exponent
of the correlation length (ν ≈ 0.88 for the continuum

percolation model in 3D), D is the fractal dimension of
the cluster through which the liquid is transported, and
δφ = φ− φc. It was found that the fractal dimension for
the most probable path through which liquid is trans-
ported is approximately D ≈ 1.43 [76–79], implying:

τH ∼ δφ−0.38 (7)

To test this dependence, we evaluated the tortuosity
from the velocity field as described in the Section II C,
and the results are presented in Fig. 4a. Close to the
jamming threshold, δφ ≈ 0.25, we find that the tortuos-
ity is τH ≈ 1.4. This result agrees very well with exper-
imental measurements for the packings of glass beads,
τH ≈

√
2 [66]. For porosities close to jamming, the

numerical results for all three lattice refinement levels
(M=1,2,3) overlap (Fig. 4a) and agree with the volume-
averaged analytic prediction for mono-dispersed spheres
[72, 73] (cf. black line in Fig. 4b). For the porosities close
to the percolation threshold, δφ ≈ 0.0, we can see that
numerical simulations are consistent with the predicted
divergence for the hydraulic tortuosity, Fig. 4a. The in-
crease of tortuosity (and its variance; inset in Fig. 4a)
upon approaching the percolation threshold is caused by
the complex geometry of the percolating cluster rather
than numerical artifacts coming from the increased res-
olution of the liquid phase lattice, cf. Fig. 9 in the Ap-
pendix. However, divergence of a hydraulic tortuosity as
τH ∼ δφ−0.38 is expected in the thermodynamic limit,
i.e. N → ∞. From Equation 25, we can see that for
finite system sizes, where CIL

−1/ν � δφ, the tortuos-
ity is finite and reaches a maximum value at δφ = 0.
This maximum tortuosity scales with the system size as
τmax
H (N |δφ = 0) ∼ N−(1−D)/d ≈ N0.14 (D = 1.43, d = 3,

and recall that N ∼ Ld; see Section VI E for details).
In Fig. 4b, we can see that the maximum tortuosity on
the approach to the percolation threshold increases with
the system size, and we expect that as larger systems are
simulated, these values (in the limit of δφ → 0) will ap-
proach the scaling relation τH ∼ δφ−0.38, denoted by the
black dashed-line in Fig. 4b. In contrast to the relatively
loose packings, for which lattice refinement is not crucial,
lattice refinement for LB calculations is essential for the
packings in the proximity of the percolation transition.
This in turn sets the numerical limitations on the system
size that can be feasibly simulated. A potential solution
to this obstacle could be an evaluation of a geometric
tortuosity [66] and leveraging on the putative relation
between geometric and hydraulic tortuosities [80].

D. Kozeny-Carman Model of Permeability

By construction of the Kozeny-Carman model, the liq-
uid transport through the material is ensured down to
the porosity φ = 0. However, this is not the case for
granular porous materials. To account for this in Equa-
tion 3, the porosity φ is replaced by the reduced porosity,
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(a) (b)
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FIG. 4. (a) Hydraulic tortuoisity calculated for the system size N=50, and lattice resolution δ = 0.04. The fluid flow is solved

on a lattice with three sizes δ̃ = δ/M, where M=1,2, and 3. At higher porosities, φ, all three lattice refinements give similar
results. Closer to the percolation threshold (δφ . 0.1), tortuosity calculations for the liquid phase with a refinement level M=1
break down [14]. For the refinement levels M=2 and 3, the results suggest a divergence of the tortuosity at the percolation
threshold (φc ≈ 0.15 for δ = 0.04). Error-bars are not given for better readability (data with error bars can be found in Fig. 8).
Inset: Log-log plot of the same data. Red envelope gives one standard deviation. Dashed line with a slope −0.38 is given as a
reference for comparison. (b) Hydraulic tortuoisity calculated for three different system sizes: N=16, 32, 50 and the refinement
level M=3. Black dashed line is an expected tortuosity dependence τH ∼ δφ−0.38 in the limit of N → ∞. The black line
provides an analytic prediction from Ahmadi et al. [72, 73] with a parameter B=1.16. Details of a fitting procedure can be
found in Section VI G.

φ→ δφγ = (φ−φc)γ . Exponent γ is sometimes taken ad
hoc to be equal to γ = 1 in references [54, 81–83], how-
ever there is no firm argument supporting this particular
choice. Since this exponent is yet unknown, we try to es-
timate γ from a fit to the numerical data. Knowing γ is
not crucial for highly porous materials, for which δφ ≈ φ,
but it is essential for lower porosities, where the factor
δφγ contributes to the vanishing permeability κ at the
percolation threshold, δφ→ 0.

In Section III A, we found numerically that the per-
colation threshold depends on the resolution of the used
lattice. Moreover, in Section III B we found that the
hydraulic radius reaches 0 at the porosity φ = 0, and
does not strongly depend on the lattices resolution δ. Fi-
nally, in Section III C we found that the tortuosity of
flow stream lines diverges upon the approach of the per-
colation threshold, consistent with the prediction τH ∼
δφ−0.38. Using Equations 5, 6, and 7, we can put together
a relationship between material porosity and permeabil-
ity κ that reads:

κ = Cκ ×
δφγ+0.76φ2

(1− φ)
2 (8)

where Cκ is a constant. A fit of this model is presented in

Fig. 5 (black dashed-line). Results are given for the lat-
tice resolution δ = 0.04, for which the tortuosity diverges
and the flow ceases at porosity φc ≈ 0.15. We can see
in Fig. 5 that Equation 8 captures quite accurately the
change of the material permeability κ in a broad range
of porosities — from the onset of the jamming up to the
percolation threshold, and regardless of the model fitting
method, cf. Fig. 5 and Fig. 10. Depending on the fitting
procedure, the value of the exponent γ varies slightly,
with the average (over four different fitting procedures)
value γ = 0.89 ± 0.15. This is quite close to the value
used ad hoc, γ = 1.0. In the limit of the large porosities,
i.e. where φ� φ∗c , we can approximate δφγ ≈ φγ , which
reduces Equation 8 to a simpler form κ ∼ φ3.59/(1− φ)2

(with γ ≈ 0.83). Interestingly, this approximate form,
with a fractional power close to 3.6, is in good agreement
with recent experimental and numerical work, where this
exponent was estimated to be 3.7 (for porosities such that
φ−φc ≈ φ) [23, 24]. It is worth noting that although the
above model depends on a value of φc (which also encom-
passes finite-size effects), it does not affect the generality
of the model because of two reasons: i) the value of the
hydraulic radius is quite insensitive to the lattice size
used in the calculations; ii) flow tortuosity and dilution



8

of the capillaries is determined by a reduced porosity δφ,
thus Equation 8 should apply for various system and lat-
tice sizes in the vicinity of the percolation threshold even
though the exact percolation thresholds are different.

In this work we compare Equation 8 to a scaling ansatz
κ ∼ δφē, a good guess for the transport properties in
disordered systems and close to the critical point [65].
Halperin et al. [50, 51] showed that there are several
universality classes of porous media where the scaling
exponent ē depends on the model’s details. For exam-
ple, in the so called the Swiss-cheese model, ē ≈ 4.4,
whereas for the Inverted Swiss-cheese model, ē ≈ 2.4.
The relation κ ∼ δφē fits the data in a broad range of
porosities, yellow dashed-lines in Fig. 5 and Fig. 10.
However, the fitted exponent values depend on the fit-
ting procedure and vary in the range of [2.72, 3.88], with
an average value ē = 3.4. Moreover, the estimated perco-
lation threshold (φc) differs noticeably from the estima-
tions made in Fig. 2c. Despite the fact that the power-
law scalings are often very useful, it is not always clear
how the scaling exponents relate to the connectedness of
the pores and the tortuosity of the flow [65]. Addition-
ally, in Fig. 10a and Fig. 10b, we compare our numeri-
cal data to the standard Kozeny-Carman model, where
κ ∼ φ3/(1−φ)2 [2, 34, 69, 81, 84, 85]. This classical model
has been successfully applied to many porous materials
for which φ− φc ≈ φ [2, 69, 86]. Some authors extended
the Karman-Cozeny model by accounting for fractal ge-
ometry of porous materials [35, 84, 85], but these models
still assume permeability down to porosity φ = 0. How-
ever, in this work, we study permeabilities in the range
of the porosities for which the above approximation does
not hold. Therefore, the classical Kozeny-Carman model
performs worse, as shown by the green dashed-line in
Fig. 10a and Fig. 10b.

IV. DISCUSSION & CONCLUSIONS

Our results support a simple model of the fluid flow re-
tardation in deformable granular materials, compressed
from the onset of mechanical stability at the jamming
point down to the percolation threshold. Porous ma-
terial is essentially described as a collection of tortu-
ous and randomly placed capillaries, where, close to the
percolation threshold, tortuosity and capillaries dilution
dominate liquid transport. We have shown that upon
compaction, the void space between pressurized elastic
shells undergoes a sharp system-size dependent transi-
tion. We also find that the hydraulic radius vanishes in
a lattice-resolution independent manner as the porosity
diminishes. Next, using Lattice-Boltzmann simulations,
we have shown that tortuosity of the flow stream lines
abruptly increases at the percolation threshold. In Equa-
tion 5, the effects of the capillaries’ density and tortuosity
are factorized, and this has motivated a substantial re-
search devoted to tortuosity [66, 75]. Combined with a
percolation scaling theory, we were able to support the

Pe
rm

ea
bi
lit
y

FIG. 5. Permeability of deformable elastic shells
packings in Darcy’s regime: Permeability obtained from
Lattice-Boltzmann simulations for the system size N=50, and
lattice resolutions δ = 0.04 and δ̃ = δ/3 for the solid and fluid
phases, respectively. Blue crosses represent permeability for
individual simulations. Black open circles represent binned
averages, and red stars correspond to medians. Permeability
κ is given in lattice units. Dashed lines correspond to three
different models: i) Rh ∼ φ/(φ − 1), τH ∼ δφ−0.38, and the
exponent γ being a fitting parameter; ii) Rh ∼ φ/(φ − 1),
γ = 1.76, and τH ∼ δφ−0.38; iii) power-law ansatz: κ ∼ δφē.
Fitting details can be found in Section VI G.

fractional dependence of tortuosity on the porosity of the
sample. Our work underscores that at higher porosities,
where the fluid flow is not tortuous (τH is mildly vary-
ing for larger φ), the major geometric determinant of the
flow obstruction is the amount of the void space acces-
sible to fluid — captured in the quadratic dependence
on a hydraulic radius Rh. In turn, upon the approach to
the percolation threshold, the complex geometry of liquid
transporting channels ultimately leads to flow hindrance.
Nonetheless, the dilution of the capillaries upon the ap-
proach to the percolation threshold, described by the γ
exponent, remains elusive. We found numerically that
γ ≈ 0.89±0.15, which is close to the ad hoc value γ = 1.0
[54, 81–83], but this value does not have a firm grounding
in the percolation theory. In Section VI F, we present a
simple scaling argument from the percolation theory that
suggests this exponent to be γ = 1.76. If tortuosity is ne-
glected, this would explain our numerical data very well.
However, when the tortuosity contribution is included,
this leads to the decay of the permeability in the vicinity
of the percolation threshold with the exponent close to
2.5, i.e. κ ∼ δφ2.52. Despite the fact that this is close to
the Inverted Swiss-cheese model exponent (ē ≈ 2.4), it



9

does not reproduce the numeral data well, cf. Fig. 5 and
Fig. 10. However, it is worth noting that the scaling ar-
gument given for γ (see Section VI F) is a geometric one,
whereas the liquid transport is a dynamic process, and
the number of hypothetical capillaries may differ from the
number of possible percolating paths. Additionally, the
dynamic universality class for transport properties splits
for lattice and continuum percolation [50, 87], therefore
drawing conclusions from the numerical calculations per-
formed in a discretized domain close to the critical point
requires caution. This intriguing results motivate further
research on the capillary model in the proximity of the
percolation threshold within a framework of the percola-
tion theory. Additionally, this work, alongside the works
of others [41, 75, 83, 88, 89], can be potentially useful
in studying other transport processes like, for example,
electrical conductivity of an electrolyte (as well as the
electrical tortuosity τe — an analog of the hydraulic tor-
tuosity τH in the fluid transport) [66, 75, 90, 91].

Finally, in our work we considered only packings of
identical shells. In Section VI C we can see that poly-
dispersity seems to contribute only a constant factor in
the relation for Rh, Equation 16, without changing its
functional dependence on the porosity φ. Furthermore, in
3D packings of unequal spheres, polydispersity has only a
minor impact on the percolating clusters [54, 92]. There-
fore, Equation 8 may be applicable to other disordered
and compacted systems made of deformable particles.
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VI. APPENDIX

A. Source Code Availability

The source code for the Lattice-Boltzmann calcula-
tions is available on GitHub [93].

B. Generation of Jammed Packings

To generate jammed packings, we randomly place par-
ticles in a cubic box with periodic boundary conditions.
The initial radii of these spherical particles are set such
that the initial volume fraction is about ψ0 = 0.01.

Next, we successively increase or decrease the radii of
the particles, with every change followed by the en-
ergy minimization with the FIRE algorithm [37] and
velocity-verlet integrator [94]. The parameters used in
the FIRE algorithm are: dtFIRE = 0.1, dtmax

FIRE = 1.5,
αFIRE = 0.1, Nmin = 5, fα = 0.99, finc = 1.1, fdec = 0.25.
The termination condition for the FIRE algorithm is:
max
i
|fi| ≤ 10−15.

Initially, for each inflation step, the particle’s radius is
increased following the rule: rnew = rold · (1 + εr), where
initially, εr = 0.01. The forces between particles are
Hertzian: F(R) = − 4

3E
∗
√
R∗R̂h3/2, where h is an over-

lap between particles, R̂ is a unit vector along R, E∗ =
E/2(1− ν2) is an effective Young’s modulus, R∗ = r/2 is
an effective radius, and r is the radius of a particle. In
this work, we use E = 1, ν = 0.5. The pressure in the
simulation box is calculated as: P = − 1

3

∑
α σαα, where

the stress tensor σαβ is obtained from the virial formula:

σαβ = − 1

V
∑
i

∑
i>j r

α
ijF

β
ij, where rαij is the αth compo-

nent of the vector pointing from the center of a particle

j to i, and Fβij is the βth component of the contact force
between particles i and j.

When the pressure of the packing is greater than
P > 2 · Pmin = 2 · 10−8, the parameter εr is halved,
and the particles’ sizes are deflated according the rule:
rnew = rold · (1− εr). When the pressure drops below
Pmin = 10−8, then εr is again halved and the particles
are inflated. The process continues until the pressure P
settles at the value Pmin < P < 2Pmin. If the packing
contains any rattler, the configuration is rejected and the
procedure is repeated. The final configuration provides
positions of soft-spheres particles that are next replaced
by the Finite Element representation. The packings gen-
erated using the described algorithm have been tested in
terms of the number of contacts (Fig. 6) and the finite
size effects on the volume fraction at the jamming point
(Fig. 7) [31, 32].

C. Hydraulic Radius: Geometric Argument [68, 69]

For a packed bed of spherical particles with a particle
size distribution n(Dp), the ith moment of the particle
size distribution is:

µi =

∫ ∞
0

Di
pn(Dp)dDp (9)

If a horizontal cut is made across the packing, one ob-
tains circular disks of the size x, projected on the sec-
tional plane (this assumption holds only approximately
for more compact systems). The size distribution of these
disks is:

f(x) =

∫ ∞
0

P(x|Dp)P(Dp)dDp (10)

Here P(Dp) is the pdf of Dp:
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N
FIG. 6. Average contact number: A mechanically stable
system must have a force balance on each particle. For N
spheres in d dimensions, the number of constraints that has
to be satisfied by the inter-particle forces is d × N. In the
system with periodic boundaries this number is d × N − d.
Additionally, there is one more degree of freedom — a volume
fraction at the jamming — that has to be constrained. Thus,
the counting argument provides the number of constraining
equations that needs to be Nc = d × N − d + 1. According
to Maxwell’s criterion, the number of inter-particle contacts,
N 〈Z〉 /2, must be at least equal to the number of equations
Nc. For frictionless spheres the packing at the jamming point
has exactly this number of contacts: 〈Z〉 = 2d − 2(d − 1)/N;
which, for 3D, the average number of contact per particle is
〈Z〉 = 6− 4/N [32]. The results are in the range of N that is
meaningful for the present work: (10,100). For each N, 100
different packings are generated. Error bars give one standard
deviation.

P(Dp) =
n(Dp)∫

n(Dp)dDp
=

n(Dp)

µ0
(11)

P(x|Dp) is a conditional probability density function that
given a sphere diameter Dp the diameter of a given disc
in a plane cut ranges between x and x + dx. Note that
disks of the same size can originate from spheres of a dif-
ferent size because the disc size depends on the position
at which a sphere is cut.

It has been shown that a plane cut through a random
spheres packing provides a distribution of disks on a plane
that follows [68, 69]:

P(x|Dp) =
x

Dp

√
D2

p − x2
[1−Θ(x−Dp)] (12)

where Θ(·) is the Heaviside function. Substituting Equa-

N
FIG. 7. Distribution of the volume fraction at the jam-
ming threshold ψJ : The position of the maximum of the
jamming volume fraction distribution exhibits finite-size scal-
ing: ψ∗ − ψJ = d0N

−1/dν , where d0 = 0.12 ± 0.03, d = 3,
ν = 0.71 ± 0.08, and ψ∗ = 0.639 ± 0.001 [32]. The asymp-
totic value is plotted as a shaded area. The green dots in the
plot are the average values calculated from 100 independent
simulation. Error bars give one standard deviation.

tion 12 into Equation 10, we get:

f(x) =

∫ ∞
0

n(Dp)

µ0

x

Dp

√
D2

p − x2
[1−Θ(x−Dp)] dDp

(13)
Thus, for a given plane cut, the amount of the surface
occupied by the disks on that plane is given as:

α = Nα
π

4

∫ ∞
0

x2f(x)dx = Nα
π

6

µ2

µ0
(14)

where Nα is the number of discs per unit cross-section
area. Integrating over the whole body, we obtain the
volume of the solid material: V = αL3, where L is a linear
dimension of a body. We can see that α is proportional
to the volume fraction ψ = V/L3, and finally Nα ∝ ψ =
1 − φ, where φ is the material’s porosity. Similarly, the
wetted perimeter per unit area of bed Σ can be obtained
from:

Σ = Nαπ

∫ ∞
0

xf(x)dx = Nα
π2

4

µ1

µ0
(15)

leading to Σ ∼ Nα ∝ 1− φ.
Finally, the hydraulic radius Rh is:

Rh =
1− α

Σ
=

2

3π

φ

1− φ
µ2

µ1
(16)
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For the monodisperse spheres packings, the size distri-
bution in Equation 9 is given by the Dirac delta func-
tion n(Dp) ≡ δ(Dp − D0). This leads to µ2 = D2

0 and

µ1 = D0, which reduces Equation 16 to Rh/D0 = 2
3π

φ
1−φ .

D. Tortuosity Calculation

For the fluid flow, hydraulic tortuosity τH is defined
as:

τH =
〈λ〉
L
≥ 1 (17)

where 〈λ〉 is the mean length of the fluid particles paths
and L is a linear dimension of a porous medium in the
direction of a macroscopic flow. Despite this simple def-
inition, tortuosity is not easy to measure experimentally
and computationally. In real porous media, flow streams
are complicated, as the fluid fluxes continuously change
their sectional area, shape, and orientation, or the flow
streams branch and rejoin. It is also not clear how the
average in Equation 17 should be calculated: over the
whole volume or over the planar cross-section, and if
so, what is the most proper cross-section to do this? It
has been concluded that the proper hydraulic tortuosity
should be calculated as an average in which streamlines
are weighted with fluid fluxes [16, 20, 66]. Thus tortuos-
ity can be calculated as:

τH =

∑
i λ̃iωi∑
i ωi

(18)

where i enumerates discrete streamlines, λ̃i = λi/L, λi is
the length of the ith streamline with the weight ωi = 1/ti,
where ti is a time in which fluid particles move along the
ith streamline [16]. The rationale behind the ωi factor is
to weigh each streamline proportionally to the volumetric
flow associated with a streamline. For the incompressible
flow, ti tells how long it takes for the particles in a given
streamline to travel a distance L in a macroscopic flow
direction. Thus, the average component of the velocity
for that streamline, in a direction of the flow, is propor-
tional to the weight factor 〈vx〉i ∼ ωi. Extending this
idea in the continuous limit, for a cross-section perpen-
dicular to the macroscopic flow, the hydraulic tortuosity
can be formulated as:

τH =

∫
A
ux(r)λ̃(r)dσ∫
A
ux(r)dσ

(19)

where A is a cross-section perpendicular to the axis x,
both integrals are taken over the surface dσ ∈ A, λ̃(r) is
the length of a streamline intersecting with the surface
A at the location r (normalized by L), and ux(r) is the
component of the velocity field at r ∈ A normal to A.
Moreover, it was shown that the cut can be done not
necessarily in a direction of the macroscopic flow but in

principle in any direction [16]. Even though there is free-
dom in the location of where the cut can be done, both
integrals are still difficult to calculate numerically [14].

This numerical problem can be bypassed by noticing
that [16]:

τH =

∫
A
u⊥(r)λ̃(r)dσ∫
A
u⊥(r)dσ

=

∫
V
u(r)dν∫

V
ux(r)dν

(20)

and the r.h.s. can be further simplified as [16]:

τH =
〈u〉
〈ux〉

(21)

This form of tortuosity is particularly handy in numerical
analysis since it requires only solving the flow field with-
out struggling with resolving streamlines [14, 20]. Some
inaccuracies may occur in Equation 21 if eddies exist in
the flow. Although it cannot be assured that such struc-
tures do not occur in complex porous materials, the con-
tribution from eddies to Equation 19 is negligible at low
Reynolds numbers [16].

Finally, the velocity field is found with Lattice-
Boltzmann simulations. Then, τH can be calculated from
the values of the flow at each node in the lattice:

τH =

∑
r u(r)∑
r ux(r)

(22)

where r runs over all lattice nodes [20].

E. Hydraulic Tortuosity: Percolation Theory
Argument

The evolution of the void region between overlapping,
randomly located spheres undergoes a percolation
transition [54, 56]. This transition exhibits a critical
behavior and falls into a continuum percolation univer-
sality class [54, 56, 64]. For porous materials, a porosity
φ acts like the percolation probability in a classical
percolation theory. Above a certain porosity threshold
φc, there exists a cluster that spans the whole system
and facilitates fluid transport. This has been leveraged
to connect tortuosity with material porosity [6, 74, 75].
Here we present an equivalent but simpler argument.

Percolation theory predicts that a mean distance ξ be-
tween any two sites on a cluster is given by a scaling law
[60]:

ξ ∼ |φ− φc|−ν (23)

where ν is a critical exponent of the correlation length.
The total length of a walk λ constructed on that cluster
has a fractal dimension D and reads λ ∼ ξD [95]. At the
percolation threshold, the correlation length ξ diverges
and is the same as the system size. From the definition
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of a tortuosity τH, we have then (close to the percolation
threshold and φ > φc):

τH =
λ

ξ
∼ ξD−1 ∼ |φ− φc|ν(1−D) ≡ δφν(1−D) (24)

For a finite system, there is an additional finite-size cor-
rection that accounts for the shift of the percolation tran-
sition. Taking this into account, the scaling for τH reads:

τH ∼ |φ− φc + CI · L−1/ν |ν(1−D) (25)

where CI is a constant and it is of the order of CI ∼ O(1).
It has been shown that the most probable traveling length
of an incompressible flow on a percolating cluster falls
into the same universality class as the optimal path in
strongly disordered media and the shortest path in the
invasion percolation with trapping [76, 77] — for which
the fractal dimension is D ≈ 1.43 [78, 79]. Finally, tak-
ing the exponent ν ≈ 0.88, one gets a scaling law for
tortuosity (L → ∞): τH ∼ |φ − φc|−0.38 ≡ δφ−0.38. For
finite systems (N < ∞), tortuosity reaches maximum
value at δφ = 0, which scales with the system size as
τmax
H ∼ L−(1−D) = N−(1−D)/d ≈ N0.14, where d = 3 is a

system dimension.
A similar scaling argument was numerically tested for

2D overlapping squares on a Cartesian lattice [16], where
via finite-size scaling analysis, it was shown that the tor-
tuosity in the neighborhood of percolation transition is
controlled by the fractal geometry of a percolating chan-
nel.

F. Scaling Argument for the γ Exponent

Taking a planar cut through the porous material, we
observe nc capillaries distributed over the area of the cut.
If the material is isotropic, the direction of the cut does
not matter, and we can assume that the cut is made
perpendicularly to the direction of fluid transport. This
plane-cut would obviously contain cross-sections of all
the capillaries that are responsible for the liquid trans-
port thorough the material in the given direction. Close
to the percolation threshold, we expect to have a single
capillary in the area that is proportional to ξ2, where ξ
is the correlation length. If that is the case, the expected
number of capillaries penetrating thorough the material
is nc ∝ L2/ξ2, where L is the linear size of the body.
ξ is related to the exponent of the correlation length
(ν ≈ 0.88) as ξ ∼ δφ−ν . Therefore, we have a power-
law relation between the number of capillaries and δφ
which reads nc ∼ δφ2ν ≈ δφ1.76.

G. Parameters fitting procedure

Parameters fitting and standard deviation estimations
are done with a non-linear least squares method from the
scipy Python library.

1. Extrapolating percolation threshold to the continuum
limit

In Fig. 2d, we extrapolate a percolation threshold down
to the continuum limit φ∗c , i.e. δ → 0. To that end, we fit
a sigmoid function to the percolation probability data in
Fig. 2c. Next, for different δ we take a porosity at which
the percolation probability is equal to 1/2 as a percola-
tion threshold. Finally, we fit a power-law dependence:
φc − φ∗c = CN · δβ . The fitting results are in Table I
(row: Fig. 2d). Parameters are obtained as a result of

minimization of the function: Error ∝
∑

i

(
φnum

c,i − φfit
c,i

)2
,

where φnum
c,i is a percolation threshold estimated from the

numerical data, and φfit
c,i is estimated from the power-law

dependence for varying φ∗c , CN , and β.

2. Fitting power-law dependences for tortuosity

We fit a power-law dependency for tortuosity data ob-
tained from Lattice-Boltzmann simulations. The relation
has a functional form τH = Cτ (φ− φc)−0.38, where there
are only two fitting parameters: φc and a constant fac-
tor Cτ . Porosity φ is a value known from Finite Ele-
ments simulations, and the exponent −0.38 is predicted
from a percolation theory, see Section VI E. We per-
form a non-linear fit by minimizing the error function:

Error ∝
∑

i

(
τnum
i − τfit

i

)2
, where the index i runs over

all experimental samples, τnum
i is a numerical tortuosity

from LB simulations for the system i, whereas τfit
i is a

fit to the power-law dependency. The results are given
in the Table I (row: Fig. 4b).

3. Parameters estimation for permeability

Fits are done for three different permeability rela-
tions: i) κ = Cκ(φ − φc)

γ+0.76φ2(1 − φ)−2, ii) κ =
Cκ(φ − φc)

2.52φ2(1 − φ)−2, and iii) κ = Cκ(φ − φc)
ē.

In Fig. 5, Fig. 10a, and Fig. 10b, the percolation thresh-
old is a fitting parameter φc, whereas in Fig. 10c and Fig.
10d, the percolation threshold is held fixed and estimated
(for N=50) from the equation φc(δ) = 0.035 + 3.67 · δ1.1,
where δ = 0.04 and the numerical parameters are taken
from the fit in Fig. 2d. Fits are done for two differ-

ent error functions i) Error ∝
∑

i

(
log κnum

i − log κfit
i

)2
in Fig. 5 and Fig. 10a and Fig. 10c, and ii) Error ∝∑

i

(
κnum

i − κfit
i

)2
in Fig. 10b and Fig. 10d. κnum

i is a
permeability value obtained from LB simulations for the
ith packing, whereas κfit

i is a value for a given set of pa-
rameters. The results of these fits are in Table I.
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Figure Formula Fitting Parameters Error Function Parameter Values

Fig. 2d φc(δ,N)− φ∗c(N) = CN · δβN CN ,φ∗c(N), βN
∑

i

(
φnum

c,i − φfit
c,i

)2
C16 = 3.70± 0.9
C32 = 3.77± 0.7
C50 = 3.67± 1.0

φ∗c(16) = 0.064± 0.010
φ∗c(32) = 0.053± 0.020
φ∗c(50) = 0.035± 0.014

β16 = 1.2± 0.2
β32 = 1.0± 0.1
β50 = 1.1± 0.2

Fig. 4b τH = Cτ (φ− φc)−0.38 Cτ ,φc
∑

i

(
τnum
i − τfit

i

)2
φc = 0.124± 0.004

Fig. 5
κ = Cκ(φ− φc)γ+0.76φ2(1− φ)−2 Cκ,φc,γ

∑
i

(
log κnum

i − log κfit
i

)2 φc = 0.146± 0.003
γ = 0.83± 0.17

κ = Cκ(φ− φc)2.52φ2(1− φ)−2 Cκ,φc
∑

i

(
log κnum

i − log κfit
i

)2
φc = 0.101± 0.038

κ = Cκ(φ− φc)ē Cκ,φc,ē
∑

i

(
log κnum

i − log κfit
i

)2 φc = 0.115± 0.053
ē = 3.61± 0.30

Fig. 10a
κ = Cκ(φ− φc)γ+0.76φ2(1− φ)−2 Cκ,φc,γ

∑
i

(
log κnum

i − log κfit
i

)2 φc = 0.146± 0.003
γ = 0.83± 0.17

κ = Cκ(φ− φc)2.52φ2(1− φ)−2 Cκ,φc
∑

i

(
log κnum

i − log κfit
i

)2
φc = 0.101± 0.038

κ = Cκ(φ− φc)ē Cκ,φc,ē
∑

i

(
log κnum

i − log κfit
i

)2 φc = 0.115± 0.053
ē = 3.61± 0.30

Fig. 10b
κ = Cκ(φ− φc)γ+0.76φ2(1− φ)−2 Cκ,φc,γ

∑
i

(
κnum

i − κfit
i

)2 φc = 0.150± 0.002
γ = 0.86± 0.14

κ = Cκ(φ− φc)2.52φ2(1− φ)−2 Cκ,φc
∑

i

(
κnum

i − κfit
i

)2
φc = 0.060± 0.066

κ = Cκ(φ− φc)ē Cκ,φc,ē
∑

i

(
κnum

i − κfit
i

)2 φc = 0.120± 0.001
ē = 3.88± 0.18

Fig. 10c
κ = Cκ(φ− φc)γ+0.76φ2(1− φ)−2 Cκ,γ

∑
i

(
log κnum

i − log κfit
i

)2 φc(fixed) = 0.141
γ = 0.91± 0.13

κ = Cκ(φ− φc)2.52φ2(1− φ)−2 Cκ
∑

i

(
log κnum

i − log κfit
i

)2
φc(fixed) = 0.141

κ = Cκ(φ− φc)ē Cκ,ē
∑

i

(
log κnum

i − log κfit
i

)2 φc(fixed) = 0.141
ē = 2.72± 0.14

Fig. 10d
κ = Cκ(φ− φc)γ+0.76φ2(1− φ)−2 Cκ,γ

∑
i

(
κnum

i − κfit
i

)2 φc(fixed) = 0.141
γ = 0.97± 0.16

κ = Cκ(φ− φc)2.52φ2(1− φ)−2 Cκ
∑

i

(
κnum

i − κfit
i

)2
φc(fixed) = 0.141

κ = Cκ(φ− φc)ē Cκ,ē
∑

i

(
κnum

i − κfit
i

)2 φc(fixed) = 0.141
ē = 3.50± 0.17

TABLE I. Fitting parameters for a percolation threshold in the continuum limit φ∗c , tortuosity τH, and permeability κ that are
investigated in this paper. In Fig. 10c and Fig. 10d, φc is fixed, so no standard deviations are given.
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FIG. 8. The same numerical data as in Fig. 4 — with error
bars.
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                  M=1                                         M=2                                          M=3

FIG. 9. Tortuosity calculated for three different δ and different lattice refinement levels: LB simulations are
performed on percolating clusters that are detected for three different lattice sizes: δ = [0.03, 0.04, 0.05], and N = 50. The flow

fields are resolved on lattices with a size δ̃ = δ/M, where M = 1, 2, 3 are lattice refinement levels [14]. Tortuosity increases as
the refinement level increases, consistent with previous studies [14]. The same behavior is observed for all δ. This suggests
that the abrupt increase of τH close to the percolation threshold is caused by the fractal geometry of the percolation cluster
rather than by artifacts of the numerical methods. Each data-point is an average from about 100 simulations. τH is given
as a function of δφ, where lattice size dependent percolation threshold was estimated from the fits in Fig. 2d, and Table I:
{φc(0.03) = 0.113, φc(0.04) = 0.141, φc(0.05) = 0.171}. Error-bars are not shown for better readability.
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FIG. 10. Permeability obtained from Lattice-Boltzmann simulations for the system size N=50, the lattice resolution δ = 0.04,
and the lattice size for the fluid phase δ̃ = δ/3. Symbols are the same as in Fig. 5; blue crosses represent permeability for
individual simulations, black open circles represent binned averages, red stars are median values, and dashed lines correspond
to different models. Permeability κ is given in lattice units. Fitted parameters are given in Table I. In Fig. 10a and Fig. 10b,
φc is a free parameter, whereas in Fig. 10d, φc is fixed at φc = 0.141 (see Section VI G 1). Classical Kozeny-Carman model
(κ ∼ φ3/(1− φ)2) is given for a comparison in Fig. 10a and Fig. 10b. Error functions used in a fitting procedure are given in
Table I.
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