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Small scale characteristics of turbulence such as velocity gradients and vorticity fluctuate rapidly in magnitude
and oscillate in sign. Much work exists on the characterization of magnitude variations, but far less on sign
oscillations. While averages performed on large scales tend to zero because of the oscillatory character, those
performed on increasingly smaller scales will vary with the averaging scale in some characteristic way. This
characteristic variation at high Reynolds numbers is captured by the so-called cancellation exponent, which
measures how local averages tend to cancel out as the averaging scale increases, in space or time. Past
experimental work suggests that the exponents in turbulence depend on whether one considers quantities in
full three-dimensional space or uses their one- or two-dimensional cuts. We compute cancellation exponents
of vorticity and longitudinal as well as transverse velocity gradients in isotropic turbulence at Taylor-scale
Reynolds number up to 1300 on 81923 grids. The 2D cuts yield the same exponents as those for full 3D,
while the 1D cuts yield smaller numbers, suggesting that the results in higher dimensions are more reliable.
We make the case that the presence of vortical filaments in isotropic turbulence leads to this conclusion. This
effect is particularly conspicuous in magnetohydrodynamic turbulence, where an increased degree of spatial
coherence develops along the imposed magnetic field.

PACS numbers: Valid PACS appear here
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I. INTRODUCTION

Small scale motions in fluid turbulence such as veloc-
ity gradients and vorticity exhibit fluctuations of positive
and negative signs, both in space and time. If oscillations
in sign continue to occur no matter how small a spatial
or temporal interval is probed, a form of singularity can
be said to exist. Even the smallest amount of averag-
ing will cancel out the signal. This behavior is known as
sign-singularity1–3. For all physical signals, this cancel-
lation tendency occurs only over some range of averaging
scales.

Mathematically the idea is made clear with the intro-
duction of a signed measure µi(l) at some scale l:

µi(l) =

∫
Qi(l)

drf(r)∫
Q(L)

dr|f(r)|
(1)

where Qi(l) denotes a hierarchy of disjoint subsets of size
l covering the entire domain Q(L) of size L, and f(r) is
a scalar field with a zero mean value. The denominator
is chosen to bound µi(l) between [−1, 1], thus making it
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a signed probability measure. The sum of the absolute
values of all the signed probability measures gives rise to
the partition function χ(l) defined as

χ(l) =
∑
Qi(l)

|µi(l)|. (2)

Since χ(l) = 1 if f(r) is sign-definite, sign-singularity is
readily reflected in non-unity χ(l), which is possible only
when cancellations of opposite signs occur in the numer-
ator of Eq. 1. Therefore, to measure the propensity of
the quantity considered to cancel out when averaged over
a region of space or an interval of time, the “cancellation
exponent” κ is defined1,2 via

χ(l) ∼ l−κ (3)

Clearly, sign-definite signals have κ = 0.
To help understand the properties of cancellation ex-

ponent, we show in Fig. 1 simple one-dimensional signals
of square wave, sinusoidal wave and standard Wiener
process (Brownian motion) as well as their partition
functions. In Fig. 1 (a) for the square wave extend-
ing from x = 0 to 2n (where n is an integer), the
signed measure µi(l) is zero when l is even, and ±1/(2n)
when l is odd. Since the number of disjoint subsets at
size l is (2n)/l, following Eq. 2 the partition function
χ(l) =

∑
Qi(l)

|µi(l)| = (2n)/l × 1/(2n) = 1/l for odd
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FIG. 1. Signals of (a) a square wave with magnitude of unity;
(b) a sinusoidal wave y(x) = sin

(
(2π/100)x

)
with a period of

100; (c) a standard Wiener process (Brownian motion) where
the inset shows the ratio of step-wise increment and unit step
size. For brevity, in (a) and (b) we show only a few periods of
the signal. Partition functions (χ(l)) of signal (a-c) are shown
in (d-f). Dashed lines mark power-law behaviors.

values of l, and zero otherwise. As a result, plotting χ(l)
as a function of odd numbers of l only, Fig. 1 (d) shows
that the cancellation exponent κ = 1, which is known to
be the case for non-differentiable signals3. In Fig. 1 (b)
for the sinusoidal wave with a period of 100, the integral
in the numerator of Eq. 1 vanishes when the interval size
l takes multiples of the period and χ(l) is zero. Indeed,
very small values of χ(l) are seen in Fig. 1 (e) for l equal
to any integral multiple of the period. Since finite nu-
merical accuracy prevents the occurrence of exact zero,
the small values of χ(l) appear as deep valleys. Further-
more, the signed measure µi(l) depends strongly on the
interval size l, resulting in large variations of χ(l). The
envelope, as expected, has a slope of −1. In Fig. 1 (c) for
the standard Wiener process (Brownian motion), the ra-
tio of the stepwise increment and step size (shown in the
inset) is highly oscillatory, and is known4 to correspond
to κ = 0.5. A good match with κ = 0.5 can be seen in
Fig. 1 (f).

The examples constructed above show that even sim-
ple signals can be sign-singular. In fact, sign-singularity
is ubiquitous in nature, such as in more sophisti-
cated signals in magnetohydrodynamics (MHD)5–7, solar
activities8–11, geomagnetic field12, helical flows13, rotat-
ing turbulence14 and aspects of classical turbulence1–3.
As an example, Fig. 2 shows line traces of longitudinal

velocity gradient ∂u/∂x and vorticity component ωz =
∂u/∂y−∂v/∂x from direct numerical simulations (DNS)
of isotropic turbulence with a Taylor-scale Reynolds num-
ber Rλ = 400. Both quantities oscillate strongly in sign,
with vorticity exhibiting ostensibly greater intermittency
than the longitudinal velocity gradient. We will discuss
both signals in more detail in Sect. IV.

(a) (b)

x x

FIG. 2. Line traces of (a) longitudinal velocity gradient ∂u/∂x
and (b) vorticity component ωz = ∂v/∂x − ∂u/∂y from a
simulation of isotropic turbulence at Rλ = 400 on a 20483

grid.

An unresolved question in the study of cancellation
exponents is whether and how different types of calcu-
lation methods affect the results. In particular, such
a question naturally arises when sign cancellations are
measured along lines (one-dimensional, 1D), in planar
intersections (2D) or over three-dimensional (3D) vol-
umes. While some theoretical results connect lower di-
mensional results with those in three dimensions (see,
e.g., Mandelbrot15, Sreenivasan16, Vainshtein et al.3),
it is not clear that they should work for real quantities
in arbitrary flows. Experimental data analysis suggests
that measurements over spatial extent of different dimen-
sions are different. Past 2D measures of cancellation ex-
ponent for vorticity were larger, with κ = 0.853, than
1D measures, κ = 0.451 and κ = 0.617. These differ-
ences indicate that 1D measures are “blind” to struc-
tures with dimensions higher than two, and assessment
in higher dimensions might be quite necessary for tur-
bulent quantities3. However, partly due to difficulties
of experimentally making measurements in 3D, a thor-
ough comparison of cancellation exponents measured in
all three dimensions has not been made. It follows that
the underlying causes of the differences by measures of
different dimensions have not been clearly identified.

One objective of this paper is to examine systemati-
cally how cancellation exponents measured in all three
different dimensions differ. We use data from DNS of
homogeneous isotropic turbulence, and compute cancel-
lation exponents using 1D, 2D and 3D measures; indeed,
quantifying sign oscillations in simulations can be more
versatile than in experiments because of access in the
latter to all the quantities of interest. In addition, the
isotropic nature of turbulence in our simulations alle-
viates issues of large-scale anisotropy in experiments18.
Since the term “cancellation exponent” was introduced
about 25 years ago, great advances in computing power
has now allowed us to examine the effects of Reynolds
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number as well, up to Rλ = 1300 on 81923 grids19. This
is an important issue.

Three small-scale quantities—vorticity, longitudinal
and transverse velocity gradients—are considered in this
study. All three are found to have the same cancel-
lation exponent of 2/3 when measured in 2D and 3D,
but 1D values are much smaller for transverse velocity
gradients and vorticity, while they are close to 2/3 for
longitudinal velocity gradient even in 1D. For vorticity,
there exists a relation between the cancellation exponent
and the characteristic exponent for first order velocity
increment3,17,20, and κ is expected to be close to 2/3.
As a result, a cancellation exponent value of 2/3 in 2D
and 3D confirms dimensions higher than 1D are indeed
necessary for quantifying sign cancellations, at least for
vorticity. Our work suggests that the use of 1D measure
in past experiments may be why κ is underestimated,
but it becomes necessary to understand this better. We
provide an explanation from the perspective of the geom-
etry of small-scale motions, and suggest the differences
in cancellation exponents in different dimensions result
from the prevalence of coherent structures in some pre-
ferred direction. The basic idea is that coherent struc-
tures are mostly composed of events of the same sign, and
therefore 1D measures of sign oscillation, if taken along
such structures, do not record effective sign cancellations
and tend to give lower values of cancellation exponents.
In comparison, the neighborhoods of coherent structures
contain events of opposite signs, where sign cancellations
occur in all directions. To demonstrate the idea, we con-
sider MHD turbulence at low magnetic Reynolds num-
bers where the diffusion of the magnetic field is much
stronger than the advective transport21. We observe that
the substantial elongation of the vortical structures along
the magnetic field is accompanied by a strong reduction
of sign cancellations when 1D measure is used. This re-
sult suggests that a similar explanation holds also for
vorticity in isotropic turbulence22,23.

The rest of the paper is organized as follows. In Sec. II
we outline the computational method and discuss mea-
sures in different dimensions. Our main results are pre-
sented in Sec. III, where we show cancellation exponents
measured in 1D, 2D and 3D for vorticity, longitudinal and
transverse velocity gradients. In Sec. IV, we show visu-
alizations and cancellation exponents for low-Rm MHD
turbulence, and discuss the relationship between elon-
gated structures and reduced values of cancellation ex-
ponents. Finally, in Sec. V we present the conclusions
and discuss the implications of the work.

II. COMPUTATIONAL METHOD

We perform DNS of the incompressible Navier-Stokes
equations

∂u/∂t+ (u · ∇)u = −∇(p/ρ) + ν∇2u + f (4)

where u is the solenoidal velocity field (∇ · u = 0), p
is pressure, ρ is fluid density, ν is the kinematic viscos-
ity and f is the forcing term that maintains a stationary
state24,25. We use Fourier pseudo-spectral calculations26

on a periodic domain of size (2π)3 with an explicit sec-
ond order Runge-Kutta integration in time. A combina-
tion of phase-shifting and truncation is used to reduce
aliasing errors, where the highest resolved wavenumber
kmax =

√
2N/3 and N is the number of grid points in

one dimension. Typical spatial resolution, expressed by
kmaxη, is around 1.5 in past simulations aimed at higher
Reynolds numbers27. Recently Yeung et al.28 pointed
out that at higher Reynolds number, more stringent spa-
tial and temporal resolution are necessary. For the data
analysis in this paper, we have used datasets with im-
proved resolution of kmaxη ≥ 2 over a wide range of
Taylor-scale Reynolds number Rλ = 140 to 1300, as sum-
marized in Table I.

Rλ 140 240 400 650 1300
kmaxη 5.6 5.6 2.7 2.7 2
N 1024 2048 2048 4096 8192
NR 8 14 16 12 6

TABLE I. Data sets of isotropic turbulence used in the anal-
ysis. Rλ is the Taylor-scale Reynolds number. Spatial reso-
lution is denoted by kmaxη. N is the number of grid points
along each side of the cubic domain. NR denotes the number
of realizations used for ensemble-averaging.

For MHD turbulence, motions of electrically-
conducting fluids under an external magnetic field
B0 produce a current, which induces a secondary
fluctuating magnetic field b, and also gives rise to the
Lorentz force that modifies the momentum equation.
At low magnetic Reynolds number (Rm), the induced
fluctuating magnetic field is quickly diffused away by
strong magnetic diffusion and is therefore much weaker
(i.e. |b| � |B0). Moreover with the quasi-static
approximations at Rm � 1, we only need to consider
how the velocity field is affected by the magnetic field.
Specifically the momentum equation becomes

∂u/∂t+ (u · ∇)u =− (1/ρ)∇(p+B2
0/2µ) + ν∇2u

− (σ/ρ)[(B0 · ∇)2(∇−2u)] (5)

which can be readily transformed to Fourier space. Nu-
merically the Lorentz term (the last term in Eq. 5)
is treated exactly via an integrating factor. Unlike in
isotropic turbulence, forcing is not applied in low-Rm
MHD turbulence simulations to avoid interference with
the physics of the Lorentz force, which acts at all scales.
The turbulence field is initialized with a model energy
spectrum, and is then allowed to take on Navier-Stokes
dynamics during its decay. The magnetic field is applied
to an initially isotropic turbulence state when the non-
Gaussian feature of the velocity field is well developed.
More details of the simulations can be found in Zhai &
Yeung21.
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One key element of the analysis is to compare cancella-
tion exponents κ obtained from 1D, 2D and 3D measures.
As a result the meanings of Qi(l) and Q(L) in Eq. 1 de-
pend on the dimensionality of the measure: Qi(l) can
come from line segments (1D), square areas (2D) and
cubes (3D), all with edge length of l; Q(L) can come
from box length L, side area L2 and volume L3. The
use of 2D domain decomposition29 in the simulations
poses computational challenges for 2D and 3D measures
as data needed for evaluating Eq. 1 may be distributed
among multiple processors, but strategies such as prefix
sums30 have been adopted to reduce computation and
communication loads. To allow for direct comparisons
with experiments3, 2D measures are recovered through
the application of Stokes theorem. Taking vorticity com-
ponent as an example, the circulation ΓA(l) of the ve-
locity field v around a closed loop s surrounding an area
A = l2 is

ΓA(l) =

∮
vds =

∫
A

ω · ndA (6)

If the circulation scales as 〈|ΓA(l)|q〉 ∼ lαq (where q is any
real number), it is shown in Ref. [3]that αq = (2− κ)q−
(D −Dq)(q − 1), where the space dimension D = 3 and
Dq is the generalized dimension15,31. For q = 1, clearly
κ = 2− α1.

III. CANCELLATION EXPONENTS IN
HOMOGENEOUS ISOTROPIC TURBULENCE

(a) (b)

l/η l/η

χ(l) κ

FIG. 3. (a) Partition function and (b) cancellation exponent
κ (see Eqs. 2 and 3) for measures of 1D (�), 2D (4) and 3D
(©). Horizontal dashed line marks 2/3, and solid line marks
0.639 as a result of log-normal correction for intermittency
with the exponent µ = 0.25. Data are ensemble averaged at
Rλ = 650, 40963.

Since cancellation exponents are simply the scaling ex-
ponents of the partition function, it is instructive to plot
both quantities side by side, as shown in Fig. 3 for vor-
ticity measured in 1D and 2D cuts as well in 3D in homo-
geneous isotropic turbulence at Rλ = 650. In the spirit
of the inertial range, the scaling of the partition function

is sought in a certain range of scales. Instead of fitting
straight lines in the log-log plots of χ(l), the plateau re-
gions in the local slopes −d log [χ(l)]/d log (l) are used
to obtain the value of cancellation exponent. For small
values of l/η viscosity smooths the signals and weakens
sign cancellations rendering χ(l) close to 1, as confirmed
in Fig. 3 (a). Figure 3 (b) shows that plateaus indeed
exist for 2D and 3D measures at around 50 < l/η < 400,
which is consistent with the inertial range identified in
previous work32. Furthermore 2D and 3D measures give
similar values of κ ≈ 2/3, larger than what one may infer
from the 1D measure, which does not show a convincing
scaling in the first place.

The relationship between cancellation exponent and
other scaling exponents in turbulence3,17 can be used to
explain the value of 2/3. Following Vainshtein et al.,3,
we consider the generalized structure function at order
q where q is any real number. In the inertial range,
〈|∆u|q〉 ∼ lζq and the scaling exponent ζq is related to
the cancellation exponent κ by

ζq = (1− κ)q − (D −Dq)(q − 1) (7)

where dimension of spaceD = 3 andDq is the generalized
dimension15,31. For q = 1, we have

ζ1 = 1− κ (8)

If the effects of intermittency were neglected, Kol-
mogorov’s hypothesis33 gives ζ1 = 1/3 and thus κ = 2/3;
whereas refined similarity hypothesis34 gives ζ1 = 0.361
and κ = 0.639 (using lognormal correction with inter-
mittency exponent µ = 0.2535). We use lognormality as
an example of intermittency models without necessarily
endorsing it. It is clear from Fig. 3 (b) that cancella-
tion exponents κ ≈ 2/3 measured in 2D and 3D are in
good agreement with the relations above, but not for the
1D measure. In short, our data suggests that cancella-
tion exponents obtained from 2D and 3D measures are
consistent with theoretical expectations.

To see whether measurements of different dimensions
have an effect on other small scale quantities, we per-
form similar calculations for longitudinal and transverse
velocity gradients and show the cancellation exponents
in Fig. 4. While transverse velocity gradients behave
similarly to vorticity, longitudinal velocity gradients are
seen to have the same cancellation exponents κ ≈ 2/3
for all three dimensions. To interpret the value of 2/3
of the longitudinal velocity gradient using 1D measure,
we note4 that the Hölder exponent α (for the first order
structure function) of the velocity increment is related
to the cancellation exponent of the velocity derivative κ1
as κ1 = 1 − α. Again by the Kolmogorov hypothesis33,
the Hölder exponent α = 1/3 and κ1 = 2/3. Fig. 4 (a)
suggests that this relation holds in 2D and 3D. The close
similarity of cancellation exponents in transverse velocity
gradients (Fig. 4 (b)) and in vorticity (Fig. 3) is perhaps
not surprising, as vorticity is composed of algebraic com-
binations of transverse velocity gradients.
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(a) (b)

l/η l/η

κ

FIG. 4. Cancellation exponent κ of (a) longitudinal velocity
gradients and (b) transverse velocity gradients for measures
of 1D (�), 2D (4) and 3D (©). Horizontal dashed and solid
lines mark 2/3 and 0.639, respectively, as in Fig. 3. Data are
ensemble averaged at Rλ = 650, 40963.

D κ experimental method

1 0.45
1D cuts of one vorticity component
behind cylinder wake1

1 0.6
velocity difference over variable time interval
∆u/∆t in atmospheric flow1,17

2 0.85 2D circulation data behind cylinder wake3,18

TABLE II. Cancellation exponent κ for vorticity obtained
from past experiments, using 1D (D = 1) and 2D (D = 2)
measurements.

It is helpful now to comment on the past data. Table II
lists the cancellation exponents κ of vorticity measured
in past experiments with a brief summary of the experi-
mental method. The lower value of κ = 0.45 is likely due
to the use of 1D measure, as reproduced in Fig. 3. The
data for κ = 0.6 comes from atmospheric flow measure-
ments where velocity differences over variable sampling
time interval (i.e. ∆u/∆t) were actually measured1. Yet,
the data were interpreted as vorticity statistics by Vain-
shtein et al.17, who considered the one-dimensional case
and invoked Taylor’s hypothesis. Strictly speaking, the
κ = 0.6 result is a confirmation of the relation between
the Hölder exponent of a signal and its derivative4, sim-
ilar to results of κ ≈ 2/3 in longitudinal velocity gradi-
ents in Fig. 4 (a), rather than vorticity. The κ = 0.85 re-
sult measured from 2D circulation data behind a cylinder
wake18 is qualitatively consistent with a larger cancella-
tion exponents by 2D and 3D measures from our numer-
ical simulations (Fig. 3), but our numerical simulations
do not have the anisotropy of the cylinder wake.

We also study the Reynolds number dependence of
cancellation exponents. Figure 5 shows cancellation ex-
ponents computed for vorticity, longitudinal and trans-
verse velocity gradients using 1D, 2D and 3D measures,
from Rλ = 140 to 1300. A more extensive scaling range
appears at the higher Reynolds number, as one should
expect, and coincides with the inertial range reported

previously32. The general observation is that 2D and 3D
cancellation exponents for vorticity and transverse ve-
locity gradients give similar values but larger than 1D
measure, which does not show convincing plateaus. In
contrast, for longitudinal velocity gradients, measures of
different dimensions give similar cancellation exponents.
We note that the plateau is not perfect, but the values
oscillate around κ ≈ 2/3, perhaps due to a conspicuous
bottleneck effect36.

IV. CANCELLATION EXPONENT IN LOW-Rm MHD
TURBULENCE

The results so far suggest that 1D measures of can-
cellation exponent of vorticity take smaller values than
those obtained from 2D and 3D measures, and the ques-
tion is why. Vainshtein et al.3 argued that 1D measure is
“blind” to certain types of geometric structures. Martin
et al.7 also argued that coherent turbulence structures are
“smooth regions embedded in a highly fluctuating field”
and as a result “their presence and characteristics will
influence the statistical properties of the scale-dependent
changes of the sign”. Both arguments suggest a connec-
tion between cancellation exponents and the structures
of turbulent motions.

Consider a turbulent structure of any sign-oscillating
quantity that has considerable coherency in one dimen-
sion (say, the x-direction). Such a structure can be a 1D
filament or a flat sheet that extends in the x-direction.
It is expected that signals of the same sign are embed-
ded in the coherent structure, whereas signals of opposite
signs can be found in the neighborhood of the structure
(if signals of the same sign are found in the neighborhood
as well, the increased degree of coherency would extend
beyond one dimension). When a 1D measure is used to
quantify sign oscillations along the coherent structure,
the persistence of the same sign reduces sign cancella-
tions, leading to a smaller cancellation exponent. In con-
trast, 2D and 3D measures have more room in other di-
mension(s) for cancellation to take place, thus resulting
in larger cancellation exponents.

Following this reasoning, the prevalence of vortex fila-
ments in high Reynolds number isotropic turbulence may
be thought to lead to differences in cancellation expo-
nents measured in 1D versus higher dimensions. How-
ever, sign oscillation measures are taken along the coor-
dinate axis while vortex filaments are randomly oriented
in space. As a result there is only a fraction of coherent
filaments that align with the grid axis in any realization
and affect the cancellation exponent in the way described
above. It is not clear if the use of many more realizations
will solve this problem, but we can clarify if our rea-
soning is right. To this end, we consider low-Rm MHD
turbulence in which the vortex structures are forced to be
along a chosen coordinate axis—since vortical structures
are known to grow preferentially along the magnetic field
direction37,38.
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FIG. 5. Reynolds number dependence of cancellation exponents for vorticity (frames a-c), longitudinal velocity gradients
(frames d-f), and transverse velocity gradients (frames g-i). From left to right, different columns denote measures in 1D, 2D
and 3D; with Reynolds number Rλ increasing in the direction of the arrow for 140, 240, 400, 650 and 1300. Horizontal dashed
and solid lines mark 2/3 and 0.639, respectively, as in Fig. 3.

As noted earlier in Sec. II, if we assume Rm � 1, the
induced secondary magnetic field is much weaker than
the uniform mean magnetic field B0, and we only need
to focus on how the velocity field is affected by the mag-
netic field. As the magnetic field is applied to isotropic
turbulence, integral length scales grow strongly along the
magnetic field direction while the small scales of turbu-
lence depart from local isotropy. Specifically, the velocity
gradients are weakened in the direction of the magnetic
field while the vorticity component becomes stronger and
elongated. Zhai & Yeung21 have shown that an elongated
domain is critical for alleviating confinement effects that
arise from the use of periodic domains. Yet to focus on
how elongated vortical structures affect the cancellation
exponents measured in different dimensions, we use re-
sults on cubic domains of size (2π)3 on 20483 grids , with
the magnetic field in the x direction.

Figure 6 shows the evolution of normalized enstrophy
density Ω = |ω|2 as well as the cancellation exponents of
ωx and the average of exponents of ωy and ωz. The time
is normalized by the ratio between integral length scale
L and root-mean-square velocity U , both computed at
the instant of the application of the magnetic field (top
row). At t/(L/U) = 0, small vortex filaments are space-

filling, and similar values of cancellation exponents for
ωx and averaged ωy and ωz confirm that isotropy holds
to an acceptable level. At this low Rλ = 98, cancellation
exponents are qualitatively similar to those observed at
Rλ = 140 for forced isotropic turbulence (compare the
first row for vorticity in Fig. 5). As turbulence decays,
vortical structures become increasingly elongated along
the magnetic field direction (x-direction). Moreover as
the flow evolves the range of scales (measured by the
ratio l/η) decreases because η increases in time. The
most notable change is that the 1D result of cancellation
exponent for ωx becomes significantly smaller than those
for 2D and 3D measures (middle column). Yet the lack
of any plateau in κ suggests that ωx is not sign-singular.
For completeness, we note in the right column that for
ωy and ωz, a clear plateau is only seen for 1D measure
at intermediate and large scales. The inflections of the
curves by 2D and 3D measures mimic those in Fig. 5,
but better-defined plateaus may form at higher Reynolds
numbers.

The example of low-Rm MHD turbulence confirms that
increased degree of coherence in turbulent structures can
effectively reduce sign cancellations when the 1D measure
along a specific direction is used. The coherent struc-
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FIG. 6. Frames (a-d): visualization of normalized enstrophy density Ω/〈Ω〉 = 5 in MHD turbulence with the magnetic field
along the x-direction (vertical); frames (e-h) cancellation exponent of the x-component vorticity ωx; frames (i-l): averaged
cancellation exponent of ωy and ωz. Measures used are 1D (�), 2D (4) and 3D (©). From top to bottom, t/(L/U) = 0, 12,
24 and 36.

tures in low-Rm MHD turbulence are sheets elongated
preferentially along one direction, whereas they are fila-
ments for vorticity in isotropic turbulence. To examine
the degree of coherency in one-dimension for longitudi-
nal and transverse velocity gradients in isotropic turbu-
lence, we show in Fig. 7 the probability density func-
tions (PDF) of the interval length (L) over which two
one-dimensional signals retain their sign in one direc-
tion. The PDF of L/L0 (the interval length normalized
by the domain size L0) in Fig. 7 (a) shows that, at higher
Reynolds number, it is less likely for both longitudinal
and transverse velocity gradients to maintain the same
sign over extended scales, which is in agreement with the
notion that turbulence tends to rupture coherent struc-

tures. When normalized on the length L/η, Fig. 7 (b)
shows that it is more likely for transverse velocity gradi-
ents to form longer coherent structures than longitudinal
gradients. Therefore, as longitudinal velocity gradients
are more fragmented, the less coherent structures in 1D
longitudinal velocity gradients have minimal effects on
cancellation exponents measured in 1D, 2D and 3D.

V. DISCUSSION AND CONCLUSIONS

We have revisited the concept of cancellation ex-
ponents using high-resolution DNS of homogeneous
isotropic turbulence up to Rλ = 1300 on 81923 grids.
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(a) (b)

L/L0 L/η

✏✏✏✏✏✏✏✏✮
✲

FIG. 7. PDFs of the interval length of two signals over which
the signal retains the same sign in one dimension. Solid curves
denote longitudinal velocity gradients and dashed curves de-
note transverse velocity gradients. Arrows point along in-
creasing Rλ = 140 (red), 400 (blue) and 1300 (green). In (a)
L is normalized by the domain length (L0) while in (b) it is
normalized by the Kolmogorov length scale (η).

A highlight of this work is the computation of cancella-
tion exponents in 1D and 2D cuts and their comparisons
with those of the full 3D quantities. The 3D measures are
hardly attainable in experiments. This work has allowed
us to resolve conflicts in previous data and finally allow
a direct assessment on whether measures of dimensions
higher than unity are needed to measure cancellation ex-
ponents for turbulence processes3. Specifically, our re-
sults show that the answer depends on the quantity in
question. For vorticity and transverse velocity gradients,
2D and 3D measures of cancellation exponents are close
to κ ≈ 2/3, and larger than the 1D measure. However,
longitudinal velocity gradients have similar cancellation
exponents of κ ≈ 2/3 regardless of the dimensionality of
the measure. By invoking connections to exponents of
generalized structure functions3, we show that for vor-
ticity the cancellation exponent should indeed be close
to 2/3; this reveals that the 1D measure is not sufficient.
Results from simulations provide more insight on past ex-
perimental work. Specifically, in past experiments that
quantify sign-oscillations in vorticity, the lower value of
κ = 0.45 is likely due to the fact that 1D measure was
used; on the other hand, a value of κ = 0.6, close to
2/3, obtained for longitudinal velocity gradients suggests
that it is not as sensitive to the dimensionality. The
suspected reason for the discrepancies for quantities in
different directions, as well as 1D, 2D and 3D measures,
is the existence of persistent coherent structures.

To better understand the reasons underlying these dif-
ferences, we have analyzed cancellation exponents of vor-
ticity in low-Rm MHD turbulence. Compared to forced
isotropic turbulence where vortex filaments are randomly
oriented in space, in low-Rm MHD turbulence vortical
structures grow preferentially along the magnetic field
direction. As a result, better alignment of elongated co-
herent structures with the direction of 1D measure al-

lows us to assess whether increased degree of coherency
leads to weakened sign-cancellation. Quantitatively, 1D
measures of cancellation exponents are substantially re-
duced as elongated coherent vortical structures grow in
the form of 1D filaments or 2D sheets, as confirmed by
qualitative visualizations. It is thus very plausible that
in homogeneous isotropic turbulence elongated vortical
structures in the form of filaments are responsible for
smaller cancellation exponents measured in 1D. In com-
parison, structures of longitudinal velocity gradients are
more fragmented, leading to similar cancellation expo-
nents regardless of the dimensionality of the measure.

We briefly discuss two implications of this work. First,
our results suggest that 1D measures can give misleading
results for certain oscillatory quantities in 3D. In com-
parison, measurements in 2D and 3D yield more robust
results that are less biased by the presence of structures
with an increased degree of spatial coherence. As a re-
sult, interpretation of experimental results obtained us-
ing 1D measures requires extra caution14, and higher or-
der measures should be preferred as a rule. The reason
may well be that longitudinal gradients contain purely
1-D information (of u and x), in contrast to transverse
gradients and vorticity components which contain data
from at least in two dimensions. Second, the demonstra-
ble correlation between the structures and cancellation
exponents allows the use of cancellation exponent as a
convenient tool to monitor geometrical changes. For ex-
ample, we may expect that the variations in cancellation
exponents may be useful to monitor when geometrical
changes in magnetospheric substorms9 and solar flares11

are of interest.
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