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We map a class of well-mixed stochastic models of biochemical feedback in steady state to the
mean-field Ising model near the critical point. The mapping provides an effective temperature,
magnetic field, order parameter, and heat capacity that can be extracted from biological data
without fitting or knowledge of the underlying molecular details. We demonstrate this procedure on
fluorescence data from mouse T cells, which reveals distinctions between how the cells respond to
different drugs. We also show that the heat capacity allows inference of absolute molecule number
from fluorescence intensity. We explain this result in terms of the underlying fluctuations and
demonstrate the generality of our work.

I. INTRODUCTION

Positive feedback is ubiquitous in biochemical networks
and can lead to a bifurcation from a monostable to a
bistable cellular state [1–4]. Near the bifurcation point,
the bistable state often reflects a choice between two ac-
cessible but opposing cell fates. For example, in T cells,
the distribution of doubly phosphorylated ERK (ppERK)
can be bimodal [4]. ppERK is a protein that initiates cell
proliferation and is implicated in the self/non-self deci-
sion between mounting an immune response or not [4, 5].

The bifurcation point is similar to an Ising-type critical
point in physical systems such as fluids, magnets, and
superconductors, where a disordered state transitions to
one of two ordered states at a critical temperature [6].
In fact, universality tells us that the two should not just
be similar, they should be the same: because they are
both bifurcating systems, both types of systems should
exhibit the same critical scaling exponents and therefore
belong to the same universality class [6]. Although this
powerful idea has allowed diverse physical phenomena to
be united into specific behavioral classes, the application
of universality to biological systems is still developing [7–
14].

Biological tools such as flow cytometry, fluorescence
microscopy, and RNA sequencing allow reliable exper-
imental estimates of abundance distributions, inspiring
researchers to seek to apply insights from statistical
physics to biological data. In particular, recent stud-
ies have demonstrated that biological systems on many
scales, from molecules [15], to cells [16–21], to popula-
tions [22–24], exhibit signatures consistent with physical
systems near a critical point. However, some of these
studies have come under scrutiny because some of the
signatures, particularly scaling laws, can arise far from
or independent of a critical point [25–27]. Part of the
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problem is that the identification of appropriate scaling
variables from data can be ambiguous, and one is often
left looking for scaling relationships in an unguided way.

Typical approaches to the interpretation of abundance
distributions include fitting to either detailed mechanis-
tic models of the underlying reaction scheme, or to an
effective description of the data such as a Gaussian or
lognormal mixture model. The former approach is usu-
ally difficult to parameterize and difficult to generalize
to other systems. The latter approach often suffers from
numerical issues (the likelihood is unbounded and the
expectation-maximization algorithm can lead to spuri-
ous solutions [28]). Moreover, the vicinity of a bifurca-
tion point is precisely where a mixture analysis is most
likely to fail. In contrast, mapping to a statistical physics
framework is expected to be universal, in the sense that
the precise microscopic details of a broad range of bio-
chemical models are unimportant near the bifurcation
point, as they are coarse-grained rather than particular
reaction parameters.

Here we provide a framework for mapping well-mixed
stochastic models of biochemical feedback to the mean-
field Ising model and apply it to published data on T cells.
This allows us to extract effective thermodynamic quan-
tities from experimental data without needing to fit to a
parametric model of the system. This makes the theory
applicable to a broad class of biological datasets without
worrying about model selection or goodness-of-fit crite-
ria. The theory provides insights on how T cells respond
to drugs and reveals distinctions between one type of
drug response and another. Furthermore, we find that
one of the thermodynamic quantities (the heat capacity)
provides a novel way to estimate absolute molecule num-
ber from fluorescence level in bifurcating systems. We
demonstrate that our results can be extended to cases
where feedback is indirect and discuss further extensions,
including to spatiotemporal dynamics.



2

Number of molecules, n
0 50 100 150 200 250

F
or
ci
n
g,

f n
−
n

-30

-20

-10

0

10

20

30

40

stable
unstable

(b)Schlögl
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FIG. 1: Setup and behavior of the model. (a) We consider
well-mixed stochastic biochemical networks described by an
effective feedback function fn. (b) Feedback produces either
one or two stable steady states. (c) The molecule number
distribution is peaked around these states or flat at the bifur-
cation point. (d) Mapping to the Ising model reveals that the
effective reduced temperature drives the distribution to the
unimodal (θ > 0) or bimodal (θ < 0) state (see c), while the
effective field h biases the distribution toward high (h > 0)
or low (h < 0) molecule number. Parameters: H = 3 and
nc = 100 in b, c, and d; h = 0 in b and c; and θ = 0 in d (see
also Appendix A).

II. RESULTS

We consider a reaction network in a cell where X is the
molecular species of interest, and the other species A, B,
C, etc. form a chemical bath for X [Fig. 1(a)]. The re-
actions of interest produce or degrade an X molecule,
can involve the bath species, and in principle are re-
versible. We allow for nonlinear feedback on X, meaning
that the production of an X molecule in a particular re-
action might require a certain number of X molecules as
reactants. This leads to an arbitrary number of reactions
of the form

jrX + Y +
r

k+r−−⇀↽−−
k−r

(jr + 1)X + Y −r , (1)

where in the rth reaction, jr are stoichiometric inte-
gers describing the nonlinearity, k±r are the forward (+)
and backward (−) reaction rates, and Y ±r represent bath
species involved as reactants (+) or products (−). A sim-
ple and well-studied special case of Eq. 1 is Schlögl’s sec-
ond model [29–36], in which X is either produced spon-
taneously from bath species A, or in a trimolecular re-
action from two existing X molecules and bath species
B (i.e., R = 2, j1 = 0, j2 = 2, Y +

1 = A, Y +
2 = B, and

Y −1 = Y −2 = ∅).
We assume that molecules are well-mixed and that the

numbers of bath molecules are constant. The latter as-

sumption is equivalent to integrating out all species but
X, such that the feedback on X arises directly from X
itself (Eq. 1). However, in general the feedback will be
indirect, with X regulating dynamic species in the bath
that in turn regulate X (this is almost certainly the case
in the T cells we study here). Therefore, we consider this
more general case later in Section II D and show that the
results discussed below remain unchanged.

The master equation for the probability of observing
n molecules of species X according to Eq. 1 is

ṗn = bn−1pn−1 + dn+1pn+1 − (bn + dn)pn, (2)

where bn =
∑R
r=1 J

+
rn and dn =

∑R
r=1 J

−
rn are the total

birth and death propensities, and J+
rn = k+r n

+
r n!/(n−jr)!

and J−rn = k−r n
−
r n!/(n − jr − 1)! are the forward and

backward propensities of each reaction pair. Here n±r are
the numbers of molecules of the bath species involved
in reaction r, and the factorials account for the number
of ways that X molecules can meet in a reaction. The
steady state of Eq. 2 is [37, 38]

pn = p0

n∏
j=1

bj−1
dj

=
p0
n!

n∏
j=1

fj , (3)

where p−10 =
∑∞
n=0(1/n!)

∏n
j=1 fj is set by normaliza-

tion. In the second step of Eq. 3 we define an effective
birth propensity fn ≡ nbn−1/dn corresponding to spon-
taneous death with propensity n [Fig. 1(a)]. In general,
fn is an arbitrary, nonlinear feedback function governed
by the reaction network. For the Schlögl model, it is
fn = [aK2 + s(n − 1)(n − 2)]/[(n − 1)(n − 2) + K2],
where we have introduced the dimensionless quantities
a ≡ k+1 nA/k

−
1 , s ≡ k+2 nB/k

−
2 , and K2 ≡ k−1 /k

−
2 . As

a ubiquitous example we also consider the Hill function
fn = a + snH/(nH + KH) with coefficient H. Impor-
tantly, the inverse of Eq. 3,

fn =
npn
pn−1

, (4)

allows calculation of the feedback function from the dis-
tribution [39], as utilized when analyzing the experimen-
tal data later in Section II B.

The quantity fn−n determines the dynamic stability:
there can be either one or two stable states n∗ [Fig. 1(b)],
and the transition from a monostable to a bistable regime
occurs at a bifurcation point [Fig. 1(c) inset]. These
deterministic regimes correspond stochastically to uni-
modal and bimodal distributions pn, respectively, with
maxima at n∗, while the bifurcation point corresponds
to a distribution that is flat on top [Fig. 1(c)].

A. Ising mapping and scaling exponents

To understand the scaling behavior near the bifurca-
tion point, we expand the stability condition fn∗−n∗ = 0
to third order around a point nc satisfying f ′′nc

= 0. This
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choice of nc eliminates the quadratic term in the dynamic
forcing fn − n, equivalent to eliminating the cubic term
in an effective potential as in Ginzburg–Landau theory
[40]. Defining the parameters

m ≡ n∗ − nc
nc

, h ≡ 2(fnc
− nc)

−f ′′′nc
n3c

, θ ≡ 2(1− f ′nc
)

−f ′′′nc
n2c

,

(5)
the expansion fnc

+f ′nc
(n∗−nc)+f ′′′nc

(n∗−nc)3/3!−n∗ = 0

becomes h − θm −m3/3 = 0. This expression is equiv-
alent to the expansion of the Ising mean field equation
m = tanh[(m + h)/(1 + θ)] for small magnetization m,
where θ = (T − Tc)/Tc is the reduced temperature, and
h is the dimensionless magnetic field [40]. Therefore, in
our system we interpret m as the order parameter, θ as
an effective reduced temperature, and h as an effective
field. Explicit expressions for nc, θ, and h in terms of the
biochemical parameters and vice versa are given for the
Schlögl and Hill models in Appendix A.

We see in Fig. 1(c) and (d) that nc determines where
the distribution is centered, that θ drives the system to
the unimodal (θ > 0) or bimodal (θ < 0) state, and
that h biases the system to high (h > 0) or low (h < 0)
molecule numbers. Note that unlike in the Ising model,
even when h = 0 an asymmetry persists between the
high and low states [see the purple distribution in Fig.
1(c)]. The reason is that in the master equation (Eq.
2), unlike in Ginzburg–Landau theory, fluctuations scale
with molecule number, such that the high state is wider
than the low state.

The equivalence between our system and the Ising
mean-field equation near the critical point (Eq. 5) implies
that our system has the same scaling exponents β = 1/2,
γ = 1, and δ = 3 as the Ising universality class in its
mean-field limit [40]. For completeness, we verify in Ap-
pendix B that these scalings are indeed obeyed by the
Schlögl and Hill models.

However, Eq. 5 does not explicitly determine the value
of the exponent α. The reason is that, unlike β, γ, and
δ, the exponent α depends on the entire distribution pn,
not just the maxima. Specifically, α concerns the heat
capacity, C|h=0 ∼ |θ|−α, which depends on the entropy
S and thus pn. The equilibrium definition C = T∂TS
generalizes to a nonequilibrium system like ours when
one uses the Shannon entropy S = −kB

∑
n pn log pn [41].

Since T = (1 + θ)Tc, we have C = (1 + θ)∂θS, or

C

kB
= −(1 + θ)

∞∑
n=0

pn(1 + log pn)

(
ψn −

∞∑
j=0

pjψj

)
, (6)

where ψn ≡ (1/2)f ′′′nc
n2c
∑n
j=1(j − nc)/fj . Eq. 6 follows

from performing the θ derivative using the expression in
Eq. 3, the expansion below Eq. 5, and the definition of
θ (Eq. 5). We see in Fig. 2(a) that when h = 0, C
exhibits a minimum at θ∗. We see in Fig. 2(b) that θ∗

vanishes as the system size increases, nc → ∞. This
implies that C|h=0 ∼ |θ|0 to sub-quadratic order in θ,
or α = 0, again consistent with the Ising universality
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FIG. 2: (a) Heat capacity (Eq. 6) is minimized at the bi-
furcation point, corresponding to exponent α = 0. (b) The
location of the minimum approaches θ∗ → 0 as nc → ∞, as
expected. Parameters: H = 3, nc = 500, and h = 0.

class in its mean-field limit. Interestingly, whereas C
is discontinuous in the mean-field Ising model [40] and
constant in the van der Waals model of a fluid [6], it is
minimized here; nevertheless, in all cases α = 0. Note
from Fig. 2(a) that C is negative near θ = 0; negative
heat capacity is a well-known feature of nonequilibrium
steady states [42–44].

B. Application to immune cell data

To demonstrate the utility of our theory, we apply it
to published data from T cells [4]. In these experiments,
chemotherapy drugs inhibit the enzymes MEK and SRC
in the biochemical networks of the cells. The inhibition
results in bimodal (low dose) or unimodal (high dose)
distributions of ppERK abundance, which is measured
as fluorescence intensity I by flow cytometry. The dis-
tributions are shown for a range of drug doses in Fig.
3(a) and (b) (the insets show distributions of log inten-
sity for clarity). Experimental details are given in the
original publication [4] and are summarized in Appendix
C, along with the drugs and dose amounts.

First, we compute the feedback function f from each
distribution using Eq. 4 (see Appendix D). Fig. 3(c) and
(d) show the corresponding forcing functions [compare
to Fig. 1(b)]. As expected, in each case we see that the
forcing function transitions from two stable states to one
stable state as the drug is applied.

Then, we compute Ic (the analog of nc in units of flu-
orescence intensity), θ, and h from the feedback func-
tion using Eq. 5 (see Appendix D). These quantities are
shown as a function of drug dose in Fig. 3(e)-(g). We
see that the behavior is different depending on whether
MEK inhibitor (MEKi) or SRC inhibitor (SRCi) is ap-
plied. Specifically, MEKi decreases Ic, increases θ, and
decreases h; whereas SRCi only decreases h, leaving the
other quantities unchanged. Thus, the effective thermo-
dynamic quantities can differentiate cellular responses to
different perturbations, such as the application of differ-
ent drugs.

Furthermore, the mapping provides an intuitive inter-
pretation of the drug responses. MEKi causes a transi-
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FIG. 3: Application of the theory to immune cell data. Upon
administration of either (a) MEK or (b) SRC inhibitor, exper-
imental distributions of T cell ppERK fluorescence intensity
are unimodal (bimodal) for high (low) doses. Insets show dis-
tributions of log intensity for clarity. (c, d) Feedback functions
calculated from the experimental distributions correspond-
ingly exhibit either one or two stable states. (e-g) Effective
thermodynamic quantities calculated from the data vary with
drug dose in distinct ways for each drug. The results in (c-g)
corroborate those in [4], but with a much simpler framework
that has three parameters instead of five and requires no fit-
ting or prior biological knowledge of the system. Error bars:
standard error from filter windows 25 ≤ W ≤ 35 (see Ap-
pendix D).

tion from a bimodal to a unimodal state in the expected
way: by increasing the reduced temperature θ from a
negative to a positive value [Fig. 3(f)]. In the process, Ic
decreases [Fig. 3(e)], meaning that the unimodal state is
shifted to lower molecule number, near the lower mode
of the bimodal state [Fig. 3(a) inset]. In contrast, SRCi
causes a transition from a bimodal to a unimodal state
in a different way: by decreasing the field while leaving
θ and Ic unchanged [Fig. 3(e)-(g)]. In essence, the distri-
bution remains bimodal and unshifted, except that the
field causes the high mode to diminish in weight [Fig.
3(b) inset]. Interestingly, the mean dose-response curves
are similar for the two drugs [4], but our mapping elu-
cidates precisely how the transitions are different at the

distribution level. Related conclusions were drawn in [4],
but those conclusions relied on fitting the distributions
to a five-parameter Gaussian mixture model, which is ex-
pected to fail near the bifurcation point. Here we use only
three parameters and no fitting, and we emerge with an
intuitive interpretation in terms of thermodynamic quan-
tities.

Finally, we note that for both drugs the effective field
is negative at all doses [Fig. 3(g)]. The reason is that
the fluorescence distributions have long tails (which is
why they are often easier to visualize in log space); see
Fig. 3(a) and (b). In the theory, a long tail is indistin-
guishable from a low-molecule-number bias in the peak,
which corresponds to h < 0. We address the possible ori-
gins and implications of the long tails in the Discussion
(Section III).

C. Estimation of molecule number

We now apply the theory to compute the heat capac-
ity from the T cell data. Specifically, we compute C us-
ing Eq. 6 (see Appendix D) for all drugs and doses used
in the experiments [4] (Appendix C). Unlike the other
thermodynamic quantities, C requires a conversion from
fluorescence intensity to molecule number because it de-
pends explicitly on the distribution pn (Eq. 6). Therefore
we compute C for various values of the conversion factor
I1, where n = I/I1. The results are shown in Fig. 4. We
see that irrespective of I1 over four orders of magnitude,
the data closest to h = 0 (yellow) exhibit a global mini-
mum in C at θ = 0, as expected from Fig. 2(a). However,
we also see that the depth of the minimum agrees with
that of the theory only for the particular choice I1 ≈ 0.1
[Fig. 4(c)].

To obtain a more precise estimate of I1, we plot the
sum of squared errors between the data and the theory
as a function of I1 in Fig. 4(e). We focus on the bi-
furcation region by considering only values of θ within
−∆θ ≤ θ ≤ ∆θ, and we find that our results are not
sensitive to the choice of ∆θ [Fig. 4(f)]. This procedure
(see the details in Appendix D) results in an estimate of
I1 = 0.5 ± 0.2, as seen in Fig. 4(f). This value of I1 corre-
sponds to n̄∗ = 170,000± 70,000 ppERK molecules in the
high mode averaged across all cases with no inhibitor. It
is possible to compare this value with previous measure-
ments on these cells. In two separate experiments, it was
estimated that there are approximately 100,000 [5] and
214,000 [45] ERK molecules per cell, and that only about
50% of these molecules are doubly phosphorylated during
T cell receptor activation [5] (see Appendix D). These
considerations give a range of roughly 50,000−107,000
ppERK molecules, which is consistent with our estimate
of 170,000 ± 70,000. The agreement is especially no-
table given that T cell protein abundances generally span
six orders of magnitude, from tens to tens of millions of
molecules per cell [45].

Why does the heat capacity extract the conversion be-
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FIG. 4: Estimation of molecule number by comparing heat
capacity between theory and experiments. (a-d) Rough es-
timate of fluorescence-to-molecule-number conversion factor
I1 (see titles) obtained by comparing depths of theory and
experimental minima. “Hill” refers to the theoretical curve
produced by Hill-function feedback as in Eq. A9. Different
symbols correspond to different drugs. See Appendix C for
drugs (shape) and doses (size). (e) More precise estimate ob-
tained from plotting sum of squared errors (SSE) for data
within −∆θ ≤ θ ≤ ∆θ and fitting to parabola (see Appendix
D for details). Here ∆θ = 0.05. (f) Estimate is insensitive
to value of ∆θ. Theory parameters: H = 4, h = 0, and
nc = Īc/I1, where Īc = 730 is the average value across all
experiments.

tween fluorescence intensity and molecule number? As
mentioned above, α is the only exponent that is a func-
tion of pn instead of just its maxima. This means that the
plot of C vs. θ contains information not only about means
or modes, but also about fluctuations. The notion that
fluctuation information is essential for converting from
intensity to molecule number can be seen with a simpler
example: a Poisson distribution. Here we would have
σ2
I/Ī

2 = σ2
n/n̄

2 = 1/n̄ = I1/Ī. From this relation it is
clear that information about not only the mean (Ī) but
also the fluctuations (σ2

I ) in intensity is necessary and
sufficient to infer the conversion factor I1. In our case,
the heat capacity is extracting similar information, but
for a bifurcating system.

D. Generalization to indirect feedback

In the T cells, it is well known that ppERK does not
apply feedback to its own activation directly, but rather
indirectly via upstream components [4, 5, 46]. Therefore,
we seek to determine the extent to which the above re-
sults are sensitive to our assumption in the theory that
the feedback is direct. To this end, we construct a mini-
mal extension of the model in Eq. 1 in which the feedback
is indirect:

∅ k1−⇀↽−
k2

X, 2X
k3−⇀↽−
k4

D,

D
k5−→ D +A, A

k6−→ A+X, A
k7−→ ∅,

D
k8−→ D +B, B +X

k9−→ B, B
k10−−→ ∅. (7)

Here X is produced, is degraded, and reversibly dimerizes
(first line); the dimer D produces a species A that pro-
duces X and is degraded (second line); and the dimer also
produces a species B that degrades X and is degraded
(third line). Eq. 7 is an extension of Eq. 1 because there
are multiple stochastic variables (X, D, A, and B), there
are irreversible reactions, and X feeds back on itself in-
directly through D, A, and B instead of directly.

The deterministic steady state of Eq. 7 is

0 = ṅ/k2 = c0 − n∗ + c2n
2
∗ − c3n3∗, (8)

where c0 ≡ k1/k2, c2 ≡ k3k5k6/(k2k4k7), c3 ≡
k3k8k9/(k2k4k10), and the molecule numbers of D, A,
and B have been eliminated in favor of n∗ by setting their
own time derivatives to zero. Because Eq. 8 is cubic in
n∗, we see immediately that it has the same form as the
expanded Ising mean field equation h − θm −m3/3 = 0
(see Eq. 5). Specifically, defining m = (n∗ − nc)/nc
as in Eq. 5, the choice nc = c2/(3c3) eliminates the
term quadratic in m and implies θ = 3c3/c

2
2 − 1 and

h = 9c0c
2
3/c

3
2− 3c3/c

2
2 + 2/3. It immediately follows that

this model has the same exponents β = 1/2, γ = 1, and
δ = 3 as the mean-field Ising universality class.

To test whether the heat capacity for this model ex-
hibits the same features as that for the direct feedback
model in Fig. 2(a), we compute the steady state marginal
distribution pn using stochastic simulations [47] of Eq. 7.
Specifically, we set k3/k4 = 1/nc and k5/k7 = k8/k10 = 1
to ensure that the numbers of D, A, and B molecules,
respectively, are on the order of nc. We then set k4/k2 =
k7/k2 = k10/k2 = ρ, where ρ is a free parameter that
determines whether the degradation timescales of D, A,
and B, respectively, are faster (ρ > 1) or slower (ρ < 1)
than that of X. These conditions, along with the defini-
tions of nc, θ, and h above, constitute nine equations for
nine reaction rates, plus k2 which sets the units of time.
Solving these equations yields expressions for the rates in
terms of nc, θ, h, and ρ that we use in the simulations.

Fig. 5(a) shows the heat capacity C as a function of
θ for h = 0, nc = 100, and ρ = {0.1, 1, 10}, where
C = (1 + θ)∂θS is computed from the entropy S =
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FIG. 5: Verification that indirect feedback does not qualita-
tively change modeling assumptions or results. (a) C and θ
calculated from extended model with indirect feedback. (b) C
and θ inferred assuming the feedback is direct (Eq. 4). Com-
pare with Fig. 2(a). Parameters: nc = 100 and h = 0.

−kB
∑
n pn log pn by numerical derivative. We see that

for all ρ values, the curves exhibit a minimum at θ = 0,
implying α = 0, and they rise more steeply for negative
than for positive θ as in Fig. 2(a).

We then investigate whether Eq. 1 remains valid as a
coarse-grained description of the extended model in Eq.
7. To answer this question, we infer values of nc, θ, h,
and C directly from the simulation data pn using the
same protocol as for the experimental data. That is,
we compute fn via Eq. 4, and then compute θ, h, and
C from its derivatives at nc according to Eqs. 5 and 6,
where nc satisfies f ′′nc

= 0. As with the experimental
data (see Appendix D), derivatives are calculated using
a Savitsky-Golay filter [48], although here we apply the
filter directly to fn and perform the analysis directly in
n space, not log space.

Fig. 5(b) shows the result of this procedure for the in-
ferred heat capacity C as a function of the inferred θ. We
see that, as with the exact C and θ [Fig. 5(a)], the data
exhibit a minimum at θ = 0 and rise more steeply for neg-
ative than for positive θ. Note that the values of C and
θ are different in (a) and (b), which is expected because
the shape of pn is not quantitatively the same in the two
models of Eqs. 1 and 7; nonetheless, the shape of the C
vs. θ curves remains the same. We have checked that
the inferred values of nc and h are distributed around
their known values of 100 and 0, respectively, and that
the shape persists across a range of filter window sizes.

These results suggest that the main findings above are
not sensitive to our assumption that feedback is direct,
and therefore that we are justified in using Eq. 1 as a
coarse-grained model to analyze the T cell data.

III. DISCUSSION

We have employed the fact that a feedback-induced bi-
furcation exhibits the scaling properties of the mean-field
Ising universality class to provide a simple prescription
for modeling and analyzing biological data. Contrary to
existing mixture-model approaches, our method is most
valuable near the bifurcation point, which is where bi-

ologically significant cell-fate decisions are expected to
take place. Our approach provides the effective order pa-
rameter, reduced temperature, magnetic field, and heat
capacity from experimental distributions without fitting
or needing to know the molecular details. By applying
the approach to T cell flow cytometry data, we discov-
ered that these quantities discriminate between cellular
responses in an intuitive, interpretable way, and that the
heat capacity allows estimation of the molecule number
from fluorescence intensity for a bifurcating system. By
generalizing the theory to include indirect feedback, we
demonstrated the capacity to model realistic signaling
cascades where indirect feedback is common. Our ap-
proach should be applicable to other systems observed
to undergo a pitchfork-like bifurcation and the associ-
ated unimodal-to-bimodal transition in abundance dis-
tributions, but not to systems which have an absorbing
or extinction state, as they are expected to fall under a
different universality class [49, 50].

The theory assumes only birth-death reactions and ne-
glects more complex mechanisms such as bursting [51, 52]
or parameter fluctuations [53, 54]. These mechanisms are
known to produce long tails and may be responsible for
the long tails observed in the experimental data [Fig.
3(a) and (b)]. Cell-to-cell variability (CCV) may also
contribute to the long tails, as it is known to be present
in T cell populations [55]. Our theory neglects CCV and
instead assumes that the distribution of molecule num-
bers across the population is the same as that traced out
by a single cell over time. Although CCV may play an
important role, one generically expects the role of intrin-
sic fluctuations to be amplified near a critical point, and
models that ignore CCV have been shown to be sufficient
to explain both the bimodality [3] and variance proper-
ties [56] of ppERK in T cells. Moreover, the fact that our
theory provides an estimate of the molecule number that
is consistent with other estimates suggests that intrinsic
fluctuations play a large role. Distinguishing between in-
trinsic fluctuations and long-lived CCV is an important
topic for future work.

Our work provides key tools that can be used for a
broader exploration of biological systems. The approach
is applicable to any experimental dataset that exhibits
unimodal and bimodal abundance distributions, and
could lead to a unified picture of diverse cell types and
environmental perturbations in terms of effective thermo-
dynamic quantities. At the same time, several extensions
of our work are natural. For example, the dynamics of the
theory could be probed to investigate the consequences of
critical slowing down for driven or dynamically perturbed
systems with feedback. Alternatively, the theory could
be generalized to systems that are not well-mixed, such
as intracellular compartments or communicating popula-
tions, to investigate space-dependent universal behavior
and its biological implications.
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IV. DATA AVAILABILITY

Data and code for all figures and the MIFlowCyt
record are available at
https://github.com/AmirErez/UniversalImmune.
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Appendix A: Mapping for Schlögl and Hill models

Here we provide the mapping from nc, θ, and h to the
biochemical parameters and vice versa for the Schlögl
and Hill models. For the Schlögl model, the feedback
function is

fn =
aK2 + s(n− 1)(n− 2)

(n− 1)(n− 2) +K2
. (A1)

The condition f ′′nc
= 0 is satisfied by

nc =
3

2
+

1

6

√
3(4K2 − 1). (A2)

The parameters θ and h are given by Eq. 5, where

fnc =
(3a+ s)K2 − s

4K2 − 1
, (A3)

f ′nc
= (s− a)K2

(
3

4K2 − 1

)3/2

, (A4)

f ′′′nc
= −6(s− a)K2

(
3

4K2 − 1

)5/2

. (A5)

These expressions are inverted to write the biochemical
parameters a, s, and K in terms of nc, θ, and h:

K2 =
1

4
(3x2 + 1), (A6)

s =
3n3c(θ + h) + ncx

2 + x3

3n2cθ + x2
, (A7)

a =
(3x2 + 1)[3n3c(θ + h) + ncx

2 + x3]− 4x5

(3x2 + 1)(3n2cθ + x2)
, (A8)

where x ≡ 2nc − 3.

Similarly, for the Hill model we have

fn = a+ s
nH

nH +KH
, (A9)

nc = K

(
H − 1

H + 1

)1/H

, (A10)

fnc
= a+

(
H − 1

2H

)
s, (A11)

f ′nc
=

(H2 − 1)s

4Hnc
, (A12)

f ′′′nc
= − (H2 − 1)2s

8Hn3
c

, (A13)

K = nc

(
H + 1

H − 1

)1/H

, (A14)

s = nc
16H

(H2 − 1)[(H2 − 1)θ + 4]
, (A15)

a = nc
(H − 1)[(H + 1)2(θ + h) + 4]

(H + 1)[(H2 − 1)θ + 4]
. (A16)

In the Hill model, H is an additional free parameter.

Appendix B: Scaling exponents β, γ, and δ

Here we verify that the stochastic Schlögl and Hill
models have the scaling exponents β, γ, and δ of the
mean-field Ising universality class. Specifically, we ex-
pect m = ±(−3θ)β for h = 0 and θ < 0, with β = 1/2;
χ = θ−γ or χ = (−2θ)−γ for θ > 0 or θ < 0, respectively,
with γ = 1, where χ ≡ (∂hm)h=0 is the dimensionless
susceptibility; and m = (3h)1/δ for θ = 0, with δ = 3.
Fig. 6 computes these quantities from the parameters
and maxima of pn for the Schlögl and Hill models using
the mapping in Eq. 5. We see that the scalings hold, as
expected.

Appendix C: Experimental methods

The experimental data analyzed in Fig. 3, along with
a detailed description of the experimental methods, have
been published previously [4]. In this section we briefly
summarize the experimental system and methods. The
drugs and dose ranges used Figs. 3 and 4 are listed in
Table I.

The data investigate inhibition of the antigen-driven
MAP kinase cascade in primary CD8+ mouse T cells.
A natural way to stimulate T cells is to load a peptide
(a fragment of an antigenic protein that the T cells are
programmed to recognize) onto antigen-presenting cells.
We achieve this by incubating RMA-S cells with anti-
gen at 37 oC. At the same time, we harvest the spleen
and lymph nodes of a RAG2−/− OT1 mouse which has
T cells specific only to the ovalbumin peptide with the
amino acid sequence SIINFEKL. When we mix the OT1
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Schlögl, m < 0
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FIG. 6: Scaling exponents β, γ, and δ for biochemical feed-
back models agree with those of mean-field Ising universality
class. Parameters: H = 3 and nc = 500.

T cells with the antigen-loaded RMA-S cells, we expose
the OT1 T cells to their activating peptide. In response,
the T cells activate their receptors through a SRC Fam-
ily kinase (Lck). This triggers an enzymatic cascade,
which in turn actives Ras-Raf-MEK-ERK leading to dou-
ble phosphorylation of ERK, rendering it capable of com-
municating with the nucleus. By waiting for 10 minutes,
the signaling reaches steady state and the distribution of
the abundance of doubly phosphorylated ERK (ppERK)
is the readout.

To measure the abundance of ppERK, we use fluo-
rescence cytometry. Specifically, we introduce ppERK-
targeted antibodies that are pre-conjugated with a flu-
orescent dye. Because antibodies selectively attach to
their target molecule with negligible false-positives, the
fluorescence intensity of the dye is proportional to the
abundance of ppERK. To measure the intensity, approx-
imately 30,000 cells per sample are passed one-by-one
through a microfluidic device where they encounter a se-
ries of excitation lasers. Each cell yields one intensity
value, and the histogram provides an estimate of the dis-

Drug Inhibits Dose range (nM) Shape in Fig. 4

PD325901 MEK 0.09−1000 Up triangle

AZD6244 MEK 2.4−5000 Down triangle

Trametinib MEK 0.5−1000 Right triangle

Dasatinib SRC 0.09−1000 Circle

Bosutinib SRC 0.5−1000 Square

PP2 SRC 24−50,000 Diamond

TABLE I: Drugs and dose ranges of experimental data [4].
Doses are spaced logarithmically. Fig. 3 uses PD325901 and
Dasatinib. Fig. 4 uses all drugs.

tribution of ppERK abundance across the population.
We assume that the distribution across the population
is a fair representation of the steady-state distribution
of ppERK abundance of a single cell. This is reasonable
(and is the accepted practice) since while the cells are
alive and the experiment is taking place, they are in a
dilute suspension (approximately 30,000 cells in 100 µL),
not close enough together to influence each other.

Appendix D: Experimental data analysis

We calculate the forcing functions and the effective
thermodynamic quantities Ic, θ, h, and C from an ex-
perimental intensity distribution using the following pro-
cedure. First, we set n = I/I1 to convert p(I) to pn,
where the intensity of one molecule I1 converts from in-
tensity I to molecule number n. We will see below that
only C will depend on the value of I1.

Next, because the experimental distributions are long-
tailed, we convert Eq. 5 to log I space for numerical sta-
bility. Here we provide the necessary conversions be-
tween functions of n from the theory, and functions of
` ≡ log I from the experiments, as the probability dis-
tributions over n and ` do not have the same functional
forms [57]. In what follows, prime denotes the derivative
of a function with respect to its argument (n for f ; and
` for q, Q, and φ). ` and n are related as

` = log(I1n), n =
e`

I1
. (D1)

We denote the distribution of ` as q(`). Approximating
n as continuous, probability conservation requires

q(`) =
pn

d`/dn
= npn. (D2)

Using Eq. D2, the feedback function (Eq. 4) is

fn =
npn
pn−1

= (n− 1)
npn

(n− 1)pn−1
= (n− 1)

q(`)

q(˜̀)
, (D3)

where, using Eq. D1,

˜̀= log[I1(n− 1)] = log(I1n) + log(1− ε) ≈ `− ε. (D4)

The last steps define ε ≡ 1/n and assume that for most
values of n with appreciable probability we have ε � 1.
Therefore Eq. D3 becomes

fn = n(1− ε) q(`)

q(`− ε) ≈ n(1− ε) q(`)

q(`)− εq′(`) =
n(1− ε)
1− εq′/q

≈ n(1− ε)
(

1 + ε
q′

q

)
≈ n

[
1 + ε

(
q′

q
− 1

)]
= n+

q′

q
− 1, (D5)

where we have kept to first order in ε. Defining φ(`) ≡
fn − n, from Eq. D5 we have

φ(`) = fn − n =
q′

q
− 1 = Q′. (D6)
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In the last step we define Q(`) ≡ −` + log q so that φ
is computed as a total derivative, which we find more
numerically stable. The φ(`) are the forcing functions
plotted in Fig. 3(c) and (d).

The point nc is defined by f ′′nc
= 0. Eq. D1 implies

∂n = I1e
−`∂`, (D7)

such that the condition f ′′nc
= 0 becomes

0 = ∂2nf = ∂2n(φ+ n) = ∂2nφ = (I1e
−`∂`)

2φ

= I1e
−`∂`(I1e

−`∂`φ) = I21e
−` (−e−`φ′ + e−`φ′′

)
= (I21e

−`)2 (φ′′ − φ′) . (D8)

Therefore, we define a point `c by

φ′′(`c) = φ′(`c). (D9)

Numerically we enforce Eq. D9 by writing it as 0 =
∂` (φ′ − φ), and therefore

`c = argmax` (φ′ − φ) . (D10)

Then

Ic = e`c , nc =
e`c

I1
(D11)

from Eq. D1.
Derivatives of f with respect to n at nc are related in

a straightforward way to derivatives of φ with respect to
` at `c. First, the zeroth derivative is, by Eq. D6,

fnc = φ(`c) + nc, (D12)

where nc is defined in Eq. D11. Then, using Eq. D7, the
first derivative is

f ′nc
= ∂n[φ+ n]nc

= ∂n[φ]nc
+ 1 =

[
(I1e

−`∂`)φ
]
`c

+ 1

= I1e
−`cφ′(`c) + 1 =

φ′(`c)

nc
+ 1. (D13)

Finally, by a similar procedure, the third derivative is

f ′′′nc
=

1

n3c
[φ′′′(`c)− 3φ′′(`c) + 2φ′(`c)]

=
1

n3c
[φ′′′(`c)− φ′(`c)] , (D14)

where the second step uses Eq. D9. Using Eqs. D11-D14,
θ and h (Eq. 5) become

θ =
2(1− f ′nc

)

−f ′′′nc
n2c

=
−2φ′(`c)

φ′(`c)− φ′′′(`c)
, (D15)

h =
2(fnc

− nc)
−f ′′′nc

n3c
=

2φ(`c)

φ′(`c)− φ′′′(`c)
. (D16)

Note that they do not depend on I1.
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FIG. 7: Demonstration of analysis procedure for 3.4 nM of
MEK inhibitor PD325901. Parameters: L = 100 and W =
25.

To estimate the derivatives in Eqs. D15 and D16, we
apply a Savitsky-Golay filter to the experimental q(`)
[48]. Savitsky-Golay filtering replaces each data point
with the value of a polynomial of order J that is fit to
the data within a window W of the point. Since we re-
quire three derivatives of φ(`) (Eqs. D15 and D16), which
depends on the first derivative of q(`) (Eq. D6), we use
the minimum value J = 4. Thus, the procedure requires
the adjustable parameter W/L, where L is the number
of log I bins. We find that L = 100 and W = 25 suffice
[Figs. 3, 4, and 5(b)], and that results are robust to W/L.

The analysis is demonstrated for an example experi-
mental distribution in Fig. 7. In summary, we:

1. plot q(`) from the data using L bins [Fig. 7(a),
black];

2. filter q(`) using window W [Fig. 7(a), red];

3. compute φ(`) using Eq. D6 [Fig. 7(b)];

4. compute `c using Eq. D10 [Fig. 7(c)];

5. compute Ic, θ, and h from `c, φ, and its derivatives
using Eqs. D11, D15, and D16;

6. compute pn from the data using I1; and

7. compute C/kB from pn, θ, nc (Eq. D11), f ′′′nc
(Eq.

D14), and fn (Eq. D5) using Eq. 6.

Fig. 7(d) shows that Ic falls between the maxima as ex-
pected, and that θ and h are negative corresponding to
a distribution that is bimodal and skewed to the left,
respectively.

To estimate the value of I1, consider χ2, defined as

χ2 =

N∑
i=1

1

σ2
i

[
Ci
kB
− C(θi)

kB

]2
, (D17)
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where N is the number of data points, Ci/kB is the value
of the heat capacity for each data point, C(θi)/kB is the
predicted value of the heat capacity at the location θi of
that data point, and σ2

i is the variance for data point i.
Under the simplifying assumption that σ2

i takes the same
value σ2 for all data points, we have χ2 = s/σ2, where
s is the sum of squared errors plotted in Fig. 4(e). As
a function of I1, χ2 should scale quadratically near its
minimum,

χ2 =
(I1 − Ī1)2

σ2
I1

+ const, (D18)

where the location and curvature of the minimum give
the best estimate Ī1 and error in the estimate σI1 , re-
spectively [58]. In terms of s we have

s = σ2 (I1 − Ī1)2

σ2
I1

+ s∗, (D19)

where s∗ is the minimal value. The value σ2 is, by def-
inition, the average squared deviation of the data from
the theory [58],

σ2 =
1

N

N∑
i=1

[
Ci
kB
− C(θi)

kB

]2
=
s∗

N
, (D20)

here evaluated at the minimum s∗. Inserting this result
into Eq. D19, we obtain

s = s∗
[

(I1 − Ī1)2

Nσ2
I1

+ 1

]
. (D21)

We see that if I1 deviates from Ī1 by σI1 , then s is larger
than its minimal value by a factor of 1 + N−1. This
criterion, illustrated by the black line in Fig. 4(e), is used
to determine σI1 .

Fig. 4(e) is restricted to data whose θ values are less
than or equal to ∆θ = 0.05 in magnitude, of which there
are N = 20 points. As ∆θ increases, N increases, and
the minimum of s also becomes less sharp. These effects
compensate, yielding an estimate of I1 whose value and
error are insensitive to ∆θ, as seen in Fig. 4(f). Averaged
across ∆θ values, we find I1 = 0.5 and σI1 = 0.2, as
reported in the main text.

We compare our estimate of ppERK molecule number
to two previous studies. In [5], it was estimated that
there are 100,000 ERK molecules per cell (see Results in
[5]). From [45], we estimate that there are 214,000 ERK
molecules per cell. Specifically, from the Excel file as-
sociated with Fig. 1 in [45], we sum the mean number
(column I) of ERK1 (also called MAPK3, row 2345) and
ERK2 (also called MAPK1, row 874) to obtain 214,000
molecules to three significant digits. In [5], it was esti-
mated that 50% of ERK molecules are doubly phospho-
rylated during T cell receptor activation (see caption of
Fig. S2 in [5]).
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