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We study mode locking in a canonical model of gradient frequency neural networks under periodic
forcing. The canonical model is a generic mathematical model for a network of nonlinear oscillators
tuned to a range of distinct frequencies. It is mathematically more tractable than biological neuron

models and allows close analysis of mode-locking behaviors.

Here we analyze individual modes

of synchronization for a periodically forced canonical model and present a complete set of driven
behaviors for all parameter regimes available in the model. Using a closed-form approximation, we
show that the Arnold tongue (i.e., locking region) for k : m synchronization gets narrower as k and
m increase. We find that numerical simulations of the canonical model closely follow the analysis
of individual modes when forcing is weak, but they deviate at high forcing amplitudes for which
oscillator dynamics are simultaneously influenced by multiple modes of synchronization.

I. INTRODUCTION

Mode locking is a general phenomenon found in non-
linear physical and biological systems. It refers to the
synchronization of oscillations (or modes), with k cycles
of one oscillation locked to m cycles of another where k
and m are natural numbers [1-3]. Under periodic forc-
ing, nonlinear systems resonate not only at the forcing
frequency but also at its harmonics, subharmonics, and
integer ratios. In neuroscience, mode locking is observed
in periodically stimulated neurons such as squid giant ax-
ons [4, 5], heart cells [6, 7], and pyloric pacemaker neu-
rons [8], which show multiple ratios of locking for varying
stimulation frequencies and amplitudes. The dynamics
of mode locking has been studied in neuron models of
various levels of biophysical detail and abstraction, such
as the Hodgkin—Huxley model [9, 10], the FitzHugh-
Nagumo model [11, 12], the Izhikevich model [13], and
the integrate-and-fire model [14, 15].

Mode locking has been suggested to be an important
mechanism for auditory neural processing. Acoustic sig-
nals such as speech and music include a wide range
of frequencies that carry functionally relevant informa-
tion. The auditory system transforms them into spa-
tiotemporal patterns of neural activities by processing
them through tonotopically organized neural networks
[16]. It has been shown that auditory neurons mode-
lock to acoustic stimulation [17, 18], and human auditory
brainstem responses include various mode-locking ratios
to stimulus frequenices [19]. Mode locking in the audi-
tory system was recently proposed as a basis for the per-
ception of pitch [20], harmony [21, 22], tonality [23, 24],
and rhythm and meter [25-27], which have been tradi-
tionally related to frequency ratios (see Section IV B for
more discussion).

In this paper, we study mode locking in a canoni-
cal model of a gradient frequency neural network (abbr.
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GrFNN, pronounced “griffin”), which is a generic math-
ematical model of tonotopically organized nonlinear neu-
ral oscillators [28, 29]. It is a canonical model in the
sense that a family of biophysically detailed models can
be transformed to it via a near-identity change of vari-
ables if they satisfy certain assumptions [30]. Thus, the
canonical model retains the general properties shared by
the detailed models while being mathematically more
tractable. The canonical model provides a mathematical
framework for building individual realizations with dif-
ferent architectures. Individual GrFNN models can have
multiple layers of oscillators that are driven by external
signals and connected to other oscillators in the same
and/or different layers, and the connections can be ei-
ther fixed or plastic (e.g., [22, 27]). GrFNN models have
been used to explain auditory neurophysiological data
[31, 32] as well as behavioral data on music perception
[22, 24, 27].

Here we perform a dynamical systems analysis of the
canonical model under periodic forcing. To analyze
driven behaviors closely, we study individual oscillators
that are driven by a common signal but are not coupled
to each other [33]. Our previous analysis of phase lock-
ing (or 1:1 locking) to external forcing showed that the
canonical model has multiple parameter regimes that ex-
hibit distinct autonomous and driven behaviors [29]. The
goal of the present study is to identify the conditions for
stable mode locking for different parameter regimes of
the canonical model, and for mode-locking ratios other
than 1:1. Unlike biological neuron models, the canon-
ical model allows separate analysis of individual mode-
locking ratios because they are represented by different
terms in the equation. Below we first describe the canon-
ical model and explain the methods of analysis. Then, we
will present the analysis of individual modes and compare
it to the numerical simulations of the canonical model.

II. MODEL AND METHODS

A. Canonical Model of



Gradient Frequency Neural Networks

A gradient frequency neural network (GrFNN) is a net-
work of neural oscillators tuned to a range of distinct
frequencies. A canonical model of GrFNNs consisting of
oscillators poised near an Andronov—Hopf bifurcation or
a Bautin bifurcation [28] is given by
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where z; is the complex-valued state of the ith oscillator
in the network (Z = 1, veey N), a; = Oél'—Fiwi, bz = ﬂ1i+i51i,
d; = Poi +162; (a4, wi, Pris 014, B2i, d2i € R; the roman
i denotes the imaginary unit), and RT; is the sum of in-
put terms (see below). The parameters «;, 814, and SBa;
determine the intrinsic amplitude dynamics of the ith
oscillator; w; is its natural frequency; d1; and do; deter-
mine the dependence of intrinsic frequency on amplitude;
and e > 0 represents the strength of coupling in the sys-
tem [34]. As a generic model of neural oscillations, the
canonical model represents periodic spikes of neurons as
sinusoidal oscillations in the complex plane.

The input to the ith oscillator x; can include both an
external signal s;(¢) and coupling from other oscillators,

N
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where ¢;; is the coupling coefficient [28]. A GrFNN
model can include multiple layers of oscillators, and each
oscillator can be connected to other oscillators in the
same and/or different layers [22, 27]. Here we assume
x; = 8;(t) (i.e., no coupling between oscillators) to focus
on the dynamics of periodically forced oscillators. We
drop the subscript i since we analyze individual oscilla-
tors driven by external forcing in isolation. Also, for the
simplicity of analysis, we assume that the intrinsic fre-
quency of an oscillator does not depend on its amplitude
(i.e., 815 = 02; = 0). Then, Eq. (1) is rewritten as
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Since the last intrinsic term (with the coefficient Ss)
is a geometric series of high-order terms, the system is
bounded only when 2 < 0 and |z| < 1/4/e.

RT is a sum of resonant terms, which are monomials
that capture different modes of synchronization of the
oscillator and the input. When input frequency is not
known, the canonical model includes all possible reso-
nant monomials. Depending on the actual relationship
between the oscillator’s natural frequency and the input
frequency, only some of the terms in RT become reso-
nant and affect the long-term dynamics of the oscillator
while the influence of other terms is averaged out over
long time scales (see [28] for more detailed discussions).

A form of RT for an external signal z(¢) including a
single (but unknown) frequency [28] is given by
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Note that RT is expressed as a product of two geometric
series which converge when |z| < 1/4/€ and |z| < 1//€
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respectively. Each monomial in RT, which can be ex-
pressed as
k4+m—2 o
Rl =€ 2 aFzm1,

where k£ and m are natural numbers, represents a differ-
ent mode of synchronization in the integer ratio of k : m.
Thus, the resonant monomial for k¥ = 1 and m = 1 (phase
locking) is z, a linear term of the signal only. This term
dominates oscillator dynamics when the ratio of the os-
cillator’s natural frequency and the signal frequency is
close to 1:1.

In this paper, we first analyze individual modes of syn-
chronization separately by examining a canonical oscilla-
tor with a single resonant monomial for & : m locking,
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where z(t) = Fel“o! is an external sinusoidal signal. An
analysis of phase locking (kK = 1, m = 1) is given else-
where [29], and here we focus on harmonic (k > 2, m = 1)
and subharmonic locking (k = 1, m > 2). Then, we com-
pare the analysis of individual modes with the behavior
of canonical oscillators when RT includes the infinite se-
ries of resonant monomials in Eq. (3).

B. Analysis of Mode Locking Behavior

To analyze mode locking of a canonical oscillator, we
transform Eq. (4) to the polar coordinates of (r, ),
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where z = 7e'?, 1) = m¢ — kwot is the relative phase,
and Q = mw — kwg is the frequency difference. The
existence of a stable fixed point in (r, %) indicates that
the oscillator can mode-lock to the input signal in the
k : m ratio, with k£ cycles of the oscillator locked to m
cycles of the signal.
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FIG. 1. Autonomous amplitude vector field defined by Eq. (5)
when F' = 0 for (a) the critical Hopf regime, (b) the supercrit-
ical Hopf regime, (c) the supercritical DLC regime, and (d)
the subcritical DLC regime. Filled and empty circles indicate
stable and unstable fixed points respectively. Arrows indicate
the direction of flow.

The goal of this analysis is to determine the conditions
for stable mode locking, which depend on three factors:
intrinsic parameters («, 81, f2, and €), input parameters
(@ and F), and the ratio of mode locking (k and m).
A previous analysis of the canonical model revealed that
the regimes of intrinsic parameters can be categorized
into four groups that exhibit qualitatively distinct au-
tonomous and driven behaviors [29]. As shown in Fig. 1
and Table I, each group of parameter regimes has am-
plitude vector fields of a distinct topology. The first
group, represented by the critical Hopf regime (a0 = 0,
B1 < 0), has the spontaneous amplitude of zero (i.e.,
r = 0 is the sole attractor when F = 0) due to dr/dt
decreasing monotonically as a function of r [Fig. 1(a)].
(As discussed above, 82 < 0 for all regimes.) The sec-
ond group, represented by the supercritical Hopf regime
(a > 0, B1 < 0), has a nonzero spontaneous amplitude
with dr/dt increasing off the origin and decreasing at
higher amplitudes [Fig. 1(b)]. The last two groups in-
clude one regime each. The supercritical double limit cy-
cle (or DLC') regime (o < 0, 81 > 0 with a positive local
maximum in dr/dt) has two spontaneous amplitudes, one
zero and one nonzero [Fig. 1(c)]. The subcritical DLC
regime (« < 0, 81 > 0 with a negative local maximum in
dr/dt) has a sole attractor at zero for autonomous behav-
ior, but unlike the critical Hopf regime, it shows bistable
driven behavior because of the ‘hump’ in the vector field
[Fig. 1(d)].

Here we examine the mode-locking behavior of canon-
ical oscillators in the four representative parameter
regimes, for different ratios of mode locking. As shown
below, harmonic locking (k > 2, m = 1) does not require
a new analysis because it exhibits qualitatively the same
dynamics as phase locking (k = 1, m = 1). Thus, the

present analysis focuses on subharmonic locking (k = 1,
m > 2).

The analysis of individual modes is organized as fol-
lows. For each subharmonic ratio of interest, we examine
the four regimes of intrinsic parameters listed above as
to whether a canonical oscillator mode-locks to a given
sinusoidal signal of frequency wy and amplitude F'. This
is done by identifying the regions of the (2, F') space
where stable nonzero fixed points (r*,¢*) exist (the sta-
bility regions are called Arnold tongues). The methods
for analysis and numerical simulation are given below.

1. Stability analysis of fixed points

For a given frequency difference {2 and input amplitude
F', we examine whether a canonical oscillator mode-locks
to the external input or not by performing a stability
analysis of fixed points. First, we get fixed points (r*, ¢*)
by solving the steady-state equations 7 = 0 and ) = 0
for Eq. (5). By eliminating ¢*, we get
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which is expanded into a polynomial equation of r* of
the order eight if m < 4 or 2m if m > 5. We solve this
equation by numerical root finding. Then, we determine
the linear stability of each fixed point (i.e., if it is a stable
or unstable node, a stable or unstable spiral, or a saddle
point) by evaluating the Jacobian matrix of Eq. (5) [29,
35].

(a + B+

2. Stability of zero

It is obvious from Eq. (4) that z = 0 is always a fixed
point for m > 2 regardless of the external input . This is

TABLE I. Groups of intrinsic parameter regimes with distinct
autonomous and driven behaviors. 82 < 0 for all regimes.

Group o 51 Local extrema® Regime

1 0 0 None -
0 - 7 Critical Hopf
_ 0 » -
— + ” -

2 0 + Positive max -
+ 0 ” -
+ - 7 Supercritical Hopf
+ + i -

3 - + Negative min, Supercritical DLC

positive max
4 — + Negative min, Subcritical DLC

negative max

& Local extrema of dr/dt in the autonomous amplitude vector
field defined by Eq. (5) when F =0 (see Fig. 1).



an important difference from m = 1 for which zero is not
a fixed point unless F' = 0. Since phase is indeterminate
at zero, the stability of the zero solution only requires
r* = 0 to be attracting. Also, the linear stability analy-
sis at zero may be indecisive when the linear coefficient
« is zero. Thus, the linear stability analysis described
above is not always adequate for determining the stabil-
ity of the zero solution. We examine each case closely
and choose appropriate methods of analysis as described
in Section IITB.

8. Calculation of Arnold tongue boundary

An Arnold tongue is the region of a parameter space
in which a forced system mode-locks to the input at a
certain integer ratio [36, 37]. In this paper, we identify
Arnold tongues for canonical oscillators in the input pa-
rameter space (Q, F). The stability analysis described
above finds Arnold tongues by examining a dense array
of points in (€2, F) for the existence of stable nonzero
fixed points. Additionally, we corroborate this analysis
by identifying the border of Arnold tongues with an al-
ternative method.

We cannot solve Eq. (6) analytically, but we can show
how many real roots it has by treating them as intersec-
tions of the following two functions,
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where X = r*2. Note that %; depends on the intrinsic

parameters only whereas y» depends on the input pa-
rameters. We identify the border of Arnold tongues for
subharmonic locking by numerically calculating the fre-
quency difference 2 for which y; and y, are tangent to
each other. This is the border for the existence of fixed
point(s), but it is also the border for stable mode lock-
ing because, as shown in Section III B, there is always
one stable fixed point if one or more fixed points exist.
The Arnold tongues for harmonic locking have the same
properties as those for phase locking, a detailed analysis
of which is given elsewhere [29].

4. Numerical integration

In addition to the steady-state analyses described
above, we used numerical integration to examine non-
steady state trajectories and to confirm analytic results.
We used the GrFNN Toolbox [38] to solve the canonical
model by the Runge-Kutta fourth order method with a
fixed time step. The time step for each simulation was
chosen so that the sampling rate is twenty times the high-
est frequency in the model (either the input frequency or
the highest natural frequency).

To identify the Arnold tongues for the canonical model
with the infinite-series RT, we ran a one-layer GrFNN

model multiple times for different forcing amplitudes and
computed the average instantaneous frequencies of the
oscillators after initial transients. This gave us a two-
dimensional matrix of average instantaneous frequencies,
with the dimensions of natural frequency w and forcing
amplitude F. A point in the (w, F') space was deemed
part of an Arnold tongue (1) if the average instanta-
neous frequency was close to an integer ratio of the input
frequency, and (2) if it was close to the instantaneous
frequencies of its neighbors in the parameter space (see
Section IV C). An instantaneous frequency was judged
to be “close” to a target frequency if their distance was
smaller than a half of the distance between adjacent natu-
ral frequencies. Distances between frequencies were mea-
sured in log difference because the natural frequencies
were equally spaced on a logarithmic scale.

III. ANALYSIS OF INDIVIDUAL MODES
A. Harmonic locking (k > 1, m = 1)

When m = 1, a canonical oscillator with a single-
monomial input is governed by
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When z = Fel“ot, the monomial is written as
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which can be considered an external signal of amplitude
T F* and frequency kwp. Since the monomial is a lin-
ear term of an external signal only, the model is equiva-
lent to a canonical oscillator with a monomial for k£ =1
and m = 1 (phase locking), but for the new input z’(¢).
A detailed analysis is given elsewhere for canonical os-
cillators phase-locking to external forcing [29], and hence
harmonic locking does not require a new analysis. By the
same token, mode locking at the integer ratio of k : m
(k > 2, m > 2) exhibits the same dynamical properties
as subharmonic locking at 1 : m which we discuss below.

B. Subharmonic locking (k =1, m > 1)
1. Second subharmonic (m = 2)

Subharmonic locking in canonical oscillators is differ-
ent in important ways for m = 2 from other subhar-
monic numbers. Also, the equations for m = 2 are more
tractable and allow closer analysis. Let us first examine
the properties of mode locking that are common to all
parameter regimes and then discuss each regime for its
distinct properties.



When m = 2, Eq. (5) is rewritten as
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Note that Eq. (9) does not include oscillator amplitude
r or intrinsic parameters «, 51, and B2. Thus, the dy-
namics of relative phase ¢ is independent of amplitude
dynamics and is identical across different regimes of in-
trinsic parameters.

Eq. (9) is a well-known equation for a nonuniform os-
cillator known as the Adler equation [35, 39], and its
simple form allows a close analysis of phase dynamics.
First, the steady-state equation ¥ = 0 indicates that the
steady-state solution
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which defines the locking region for ¢ in the (2, F') plane
[see the red dashed lines in panel (a) of Figs. 2-5]. Sec-
ond, we can solve Eq. (9) analytically and express ¢ as
an explicit function of time [39] (see also [40]). Inside
the locking region, relative phase approaches a steady-
state value monotonically, indicating stable mode lock-
ing. Outside the locking region, relative phase does not
converge but makes full rotations with a bottleneck near
5 if @ > 0 or near —3 if © < 0. As shown below,
however, the locking region for ¢ can be different from
the Arnold tongue, defined here as the region with sta-
ble nonzero fixed points, because r* = 0 can be the only
stable fixed point in some part of the region with stable
Y.

The stability of the zero solution for m = 2 also al-
lows a close analysis. Eq. (8) defines a vector field and
determines whether r increases or decreases at a given
value of r. Inside the locking region where stable ¢*
exists, the linear coefficient of r in the right-hand side
of Eq. (8), a + (v/€F)* cos, approaches a steady-state
value, and its sign determines the stability of the zero
solution (stable if negative and unstable if positive) be-
cause the linear term dominates the equation when r = 0.
Since cosy* > 0 for stable ¥*, zero is unstable if a > 0
regardless of 9*. For a < 0, zero is stable if || > (y/eF)*
(weak forcing) regardless of ¥*. If |a| < (y/eF)* (strong
forcing), zero is stable when

] > 2/ (VeF)? — a2, (11)

because cosy* = /1 —sin?4)* for stable ¢*. Eq. (11)
defines the boundary between the ‘NZ/Z’ region (where
nonzero and zero attractors coexist) and the ‘NZ’ region
(where only a nonzero attractor exists) in Figs. 4(a) and
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FIG. 2. 1:2 mode locking of a critical Hopf oscillator (o = 0,
B1=—-0.5, B2 = —1, e =1). (a) The Arnold tongue bounded
by black solid lines obtained with Eq. (7) and the locking
region for ¥ bounded by red dashed lines given by Eq. (10)
shown with regions of the (2, F') space labeled by attractor set
(NZ: stable nonzero fixed point; Z: stable zero). See Fig. 10
for the color scheme for all attractor sets. (b) The stability
of nonzero fixed points (r*,9*) for F = 0.5. Orange color
indicates stable nodes. (c¢) Trajectories in (r, 1) starting from
different initial conditions when the driven oscillator is inside
the locking region (2 = 0.5, F = 0.5). Filled and empty
red circles show stable and unstable fixed points respectively.
(d) Trajectories outside the locking region (2 = 2, F = 0.5).
Horizontal and vertical dashed lines indicate the parameter
values used in other panels identified with letter labels.

5(a). The linear stability analysis of the zero solution is
consistent with this analysis and shows that zero is a node
when it is stable and a saddle point when unstable. This
is expected given that 1 approaches ¥* monotonically.

Outside the locking region where v rotates, the stabil-
ity of the zero solution can be determined by integrating
Eq. (8) while ¢ makes one 27-rotation after a small per-
turbation from zero. Since the trajectory of ¢ for the
solution of Eq. (9) is symmetrical about +7 [39], the in-
tegral of cosvy evaluated over one period is zero. Thus,
we find that for small enough perturbations, oscillator
amplitude is attracted back to zero if the lowest-order
intrinsic term has a negative coefficient. This is when
a spontaneous amplitude of the oscillator is zero (see
Fig. 1). Thus, zero is stable outside the locking region for
the critical (o = 0, 81 < 0) and supercritical /subcritical
DLC (a0 < 0, B1 > 0) regimes and unstable for the su-
percritical Hopf regime (o > 0, 51 < 0) [see panel (a) of
Figs. 2-5].

a. Critical Hopf regime A stability analysis of fixed
points shows that a critical Hopf oscillator always has
one nonzero fixed point inside the locking region for ¢
given by Eq. (10) [see Fig. 2(a)], and the fixed point is
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FIG. 3. 1:2 mode locking of a supercritical Hopf oscillator
(¢ =0.5, 81 =—1, B2 = —1, e = 1). See Fig. 2 for a detailed
caption. (a) The Arnold tongue and the locking region for
1 shown with regions of (2, F') labeled by attractor set (NZ:
stable nonzero fixed point; R: stable limit cycle or rotation).
(b) The stability of nonzero fixed points for F' = 0.4 (orange:
stable node, blue: saddle point; a hint for the grayscale ver-
sion: the node has a higher amplitude than the saddle when
both exist for given Q) and (c) for F = 0.7. (d) Trajectories
in (r,v) inside the locking region (Q = 1.3, F' = 0.7) and (e)
outside the locking region (2 = 1.6, F = 0.7). The red closed
orbit indicates a limit-cycle attractor.

always a stable node [Fig. 2(b) and (¢)]. Thus, the Arnold
tongue (bounded by black solid lines) coincides with the
region with stable ¢* (bounded by red dashed lines). As
discussed above, the zero solution is unstable inside the
locking region because a = 0, and it is stable outside the
locking region because the spontaneous amplitude is zero
[see Fig. 2(a), (c) and (d)].

b. Supercritical Hopf regime Inside the Arnold
tongue, which coincides with the region with stable ¥*, a
supercritical Hopf oscillator can have up to two nonzero
fixed points, and one of them is always a stable node
[Fig. 3(b) and (c)]. A saddle-node bifurcation on in-
variant circle (or SNIC bifurcation) occurs at the mode-
locking boundary where a stable node and a saddle point
collide and disappear leaving a stable limit cycle that
encompasses the origin [Fig. 3(d) and (e)]. Thus, out-
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FIG. 4. 1:2 mode locking of a supercritical DLC oscillator
(e =—0.5, 81 =2, B2 = —0.5, ¢ = 1). See Fig. 2 for a detailed
caption. (a) The Arnold tongue and the locking region for
1) shown with regions of (2, F') labeled by attractor set (NZ:
stable nonzero fixed point; Z: stable zero; R: stable limit cycle
or rotation). (b) The stability of nonzero fixed points for
F = 0.2 (orange: stable node; green: unstable node; blue:
saddle point; for the grayscale version: when there are four
fixed points for given €2, the one with the highest amplitude
is a stable node, followed by a saddle, an unstable node, and
another saddle), (c) for F = 0.4, and (d) for ' = 0.7. (e)
Trajectories in (r,) inside the locking region (Q = 1.35, F' =
0.7), (f) just outside the locking region (2 = 1.45, F = 0.7),
and (g) further outside (2 = 1.6, F = 0.7). The red closed
orbit indicates a stable limit cycle.

side the locking region, relative phase makes 27-rotations
while amplitude fluctuates around the spontaneous am-
plitude. Zero is an unstable fixed point both in and out
of the locking region due to positive « as discussed above.

c. Supercritical DLC regime Inside the Arnold
tongue, a supercritical DLC oscillator can have up to
four fixed points, but only one is stable which is always
a node [Fig. 4(b)—(d)]. A saddle-node bifurcation occurs
at the locking boundary, but for strong forcing it does
not leave a stable limit cycle (i.e., not a SNIC bifurca-
tion), making zero a global attractor [see Fig. 4(e) and
(f), and the narrow region labeled ‘Z’ in Fig. 4(a)]. Fur-
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FIG. 5. 1:2 mode locking of a subcritical DLC oscillator (o =
—0.5, 1 = 1.1, B2 = —0.5, ¢ = 1). See Fig. 2 for a detailed
caption. (a) The Arnold tongue and the locking region for
1 shown with regions of (2, F') labeled by attractor set (NZ:
stable nonzero fixed point; Z: stable zero). (b) The stability
of nonzero fixed points for F' = 0.3 (orange, higher amplitude:
stable node; blue, lower amplitude: saddle point) and (c) for

= 0.7. (d) Trajectories in (r,1) well inside the locking
region (2 = 0.7, F = 0.7), (e) just inside the locking region
(=12, F =0.7), and (f) outside the locking region (2 =
1.7, F =0.7).

ther away from the locking boundary, a stable limit cycle
appears around stable zero indicating a double limit cycle
bifurcation in (r, ) [Fig. 4(f) and (g)]. For weaker forc-
ing, a stable limit cycle appears right outside the locking
boundary, indicating a SNIC bifurcation. Zero is always
stable outside the locking region because o < 0. Inside,
it is a local attractor in the region of weak forcing or large
frequency difference [labeled ‘NZ/Z’ in Fig. 4(a)] which
is given by Eq. (11).

d. Subcritical DLC regime Fig. 5(a) shows that the
Arnold tongue (bounded by the black solid lines) for a
subcritical DLC oscillator is lifted off F' = 0 and does not
coincide with the locking region for ¢ (the red dashed
lines) because zero is a global attractor for weak forcing.
Inside the Arnold tongue, a subcritical DLC oscillator
can have up to two nonzero fixed points, one of which is
always a stable node [Fig. 5(b) and (c)]. Zero is stable in

the region given by Eq. (11). A saddle-node bifurcation
occurs at the locking boundary, outside which zero is the
only attractor.

Fig. 5 suggests that zero is stable inside the Arnold
tongue when a nonzero saddle point exists. Moving
from the ‘N7’ region to the ‘NZ/Z’ region in Fig. 5(a),
zero gains stability as a saddle point separates from it
[Fig. 5(c)—(e)]. Note that the stable manifold of the sad-
dle serves as the basin boundary for the zero and nonzero
attractors [Fig. 5(e)]. The same relationship is observed
for the supercritical DLC regime: Zero is stable inside
the locking region when a nonzero saddle point exists
(Fig. 4). However, this does not apply to the supercriti-
cal Hopf regime for which zero is unstable with or with-
out a nonzero saddle (Fig. 3). It appears that this rule
holds for the regimes where a spontaneous amplitude is
zero (i.e., zero is an attractor when F = 0). The critical
Hopf regime satisfies this rule because zero is unstable
inside the Arnold tongue where no nonzero saddle exists
(Fig. 2). We show below that the same rule holds for
m > 3.

2. Third subharmonic (m = 3)

Unlike m = 2, the phase dynamics for m = 3 is not
independent of amplitude dynamics because the differ-
ential equation for ¢ includes r [see Eq. (5)]. Hence,
the closed-form analysis done for m = 2 is unavailable
for m = 3, and here we determine the mode-locking be-
havior of canonical oscillators by analyzing the stability
of fixed points and examining trajectories in the phase
space.

a. Critical Hopf regime Inside the Arnold tongue, a
critical Hopf oscillator shows bistability with zero and
nonzero attractors except when Q = 0 for which zero
is unstable (Fig. 6). Note that zero is stable inside the
locking region when a nonzero saddle point exits, satis-
fying the rule found for m = 2 (see Section IIIB1d). A
saddle-node bifurcation occurs at the locking boundary,
outside which zero is the only attractor [Fig. 6(b), (d)
and (e)].

b. Supercritical Hopf regime The mode-locking be-
havior of a supercritical Hopf oscillator for m = 3 is basi-
cally identical to the behavior for m = 2. It has a nonzero
attractor (a stable node) inside the locking region, and
a stable limit cycle emerging via a SNIC bifurcation is
the only attractor outside the locking boundary (Fig. 7).
Zero is an unstable fixed point in the entire (€2, F') space.
The only difference from m = 2 is that a nonzero sad-
dle always exists inside the locking region [Fig. 7(b); cf.
Fig. 3(b) and (c)], but this does not cause any qualitative
difference in mode-locking behavior.

c. Supercritical DLC regime There are two main dif-
ferences for a supercritical DLC oscillator with m = 3
compared to m = 2. First, zero is always stable in and
out of the Arnold tongue [Fig. 8(a); cf. Fig. 4(a)]. Along
with the attractor at zero, a stable node exists inside the
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FIG. 6. 1:3 mode locking of a critical Hopf oscillator (o = 0,
B1=—-0.5, B2 = —1, e =1). See Fig. 2 for a detailed caption.
(a) The Arnold tongue shown with regions of (2, F') labeled
by attractor set (NZ: stable nonzero fixed point; Z: stable
zero). (b) The stability of nonzero fixed points (r*, ™) for
F = 0.7 (orange, higher amplitude: stable node; blue, lower
amplitude: saddle point). (c) Trajectories in (r,%) when Q =
0 (F = 0.7), (d) inside the locking region with Q # 0 (Q =
0.6, F = 0.7), and (e) outside the locking region (2 = 1.2,
F=07).

locking region whereas a limit-cycle attractor (rotation)
exists outside the locking region. The stability of zero in
the entire Arnold tongue can be related to the observa-
tion that a nonzero saddle does not disappear for strong
forcing when m = 3 [Fig. 8(b); cf. Fig. 4(d)]. A second
difference from m = 2 is that a SNIC bifurcation occurs
at the locking boundary regardless of forcing amplitude.
Thus, rotation is always an attractor along with stable

(a) (b)

FIG. 7. 1:3 mode locking of a supercritical Hopf oscillator
(a=0.5, 81 =—1, B2 = —1, e = 1). See Fig. 2 for a detailed
caption. (a) The Arnold tongue shown with regions of (2, F')
labeled by attractor set (NZ: stable nonzero fixed point; R:
stable limit cycle or rotation). (b) The stability of nonzero
fixed points for F' = 0.5 (orange, higher amplitude: stable
node; blue, lower amplitude: saddle point).
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FIG. 8. 1:3 mode locking of a supercritical DLC oscillator
(a = =05, 1 = 2, B2 = —0.5, ¢ = 1). See Fig. 2 for a
detailed caption. (a) The Arnold tongue shown with regions
of (Q, F) labeled by attractor set (NZ: stable nonzero fixed
point; Z: stable zero; R: stable limit cycle or rotation). (b)
The stability of nonzero fixed points for F' = 0.7 (orange,
higher amplitude: stable node; blue, lower amplitude: saddle
point). Similar to m = 2, there can be up to four nonzero
fixed points for weaker forcing [see Fig. 4(b) and (c)].
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FIG. 9. 1:3 mode locking of a subcritical DLC oscillator (o =
—0.5, 1 = 1.1, B2 = —0.5, e = 1). See Fig. 2 for a detailed
caption. (a) The Arnold tongue shown with regions of (2, F')
labeled by attractor set (NZ: stable nonzero fixed point; Z:
stable zero). (b) The stability of nonzero fixed points (r*, ¥™*)
for F = 0.5 (orange, higher amplitude: stable node; blue,
lower amplitude: saddle point).

zero outside the locking boundary [i.e., no ‘Z’ region in
Fig. 8(a); cf. Fig. 4(a)].

d. Subcritical DLC regime Zero is a local attractor
in the entire Arnold tongue for a subcritical DLC oscil-
lator when m = 3 [Fig. 9(a); cf. Fig. 5(a)], which can
be explained by the presence of a nonzero saddle point
[Fig. 9(b); cf. Fig. 5(c)]. Like m = 2, zero is a global
attractor outside the tongue.

8. Summary: Subharmonic locking

Fig. 10 compares the Arnold tongues for all four rep-
resentative regimes of intrinsic parameters for m = 2, 3,
and 4. The figure shows that the set of attractors avail-
able in the regions of (2, F') is identical for mm = 3 and
m = 4. We find that all m > 3 share the same dynamics
of mode locking, with m = 2 being a special case due to
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FIG. 10. Arnold tongues for m = 2, 3, and 4 for four repre-
sentative regimes of intrinsic parameters. Black solid lines in-
dicate the boundary of Arnold tongues obtained with Eq. (7),
and red dashed lines show the locking regions for ¢ given by
Eq. (10) (for m = 2 only). Regions of the input parameter
space (2, F') are colored by the set of attractors available at
each point. For the grayscale version, see panel (a) of Figs. 2—

9 for the letter labels for attractor sets.

the mathematical properties discussed in Section IIIB 1
(e.g., the independence of phase dynamics on amplitude).

The Arnold tongues for the critical Hopf regime have
a noticeable difference between m = 3 and m = 4, with
the tip of the tongue for the latter elevated above F = 0
(Fig. 10). This happens when ys function in Eq. (7) is
of the same or higher order of X than the lowest-order
term in y1, which is the case when m > 4 for the critical
Hopf regime (o = 0, 81 < 0). The same rule applies
to other regimes in the group represented by the critical
Hopf regime (i.e., Group 1 in Table I). For the regimes
for which the lowest-order term in y; is a constant term
(i.e., @ < 0), the Arnold tongue is lifted off F' = 0 when
m > 2. When a quartic term is the lowest-order term in
y (e, a=p1 =0, 52 <0), the Arnold tongue does not
touch the F' axis when m > 6.

IV. MODE LOCKING IN GRADIENT
FREQUENCY NETWORKS

Now we study a gradient frequency neural network
(GrFNN) in which each oscillator receives the infinite-
series input in Eq. (3) so that the network can mode-
lock to any input frequency (see Section ITA). We first
discuss frequency scaling for logarithmic frequency net-
works because logarithmic spacing is commonly used in
the models of auditory neural processing and perception
[22, 31, 32, 41, 42]. Then, we compare the widths of dif-
ferent mode-locking regions using approximations based
on the analysis of individual modes. Finally, we compare

the numerical simulations of a periodically forced GrFNN
model with the analysis of individual modes.

A. Frequency Scaling for Logarithmic Frequency
Networks

The analysis of individual modes showed above that
canonical oscillators mode-lock to external forcing when
frequency difference €2 is small. Let I' be the maximum
|| (or the upper bound) for which nonzero mode locking
is possible for given parameter values. In other words,
2T is the width of the Arnold tongue for a given forcing
amplitude. Since © = mw — kwy, the locking range |Q] <
I" can be expressed as the range of natural frequency w
for given input frequency wy,

kwo — T <w< kWQ—f—F’
m m

(12)

which is centered at %wo with the symmetrical half width
of % Note that the width of the natural frequency range
does not vary with input frequency, that is, it is constant
on a linear frequency scale.

As previously shown, scaling intrinsic and input pa-
rameters by natural frequency makes the locking range
of a canonical oscillator increase width with natural fre-
quency [28, 29]. This property, called the ‘constant-Q’
characteristic, is often desirable for oscillator networks
and filterbanks with logarithmically spaced frequencies
because it makes each element in the system cover the
same extent of logarithmic frequency space.

A frequency-scaled canonical oscillator with single-
monomial input is given by

4 —_
TZ=2z2 a+2ﬂ'i+[31|z|2+m ] 2xk5m71,
1—¢lz)?
where 7 = 1/f = 27/w [28, 29] [cf. Eq. (4)].
coordinates,

In polar

5 ktm—2 _
:ar—l—ﬂlr?’—k%—ke s Fkrm=1cosep

1
T
. k+m—2 _ .
%w = % —me 2 FFrm—2ginq.

Comparing with Eq. (5), we see that the steady-state
equations 7 = 0 and w = 0 for a frequency-scaled oscilla-
tor are identical to the unscaled versions except that (2
is replaced with ©/f. Hence, when Q| < T is the locking
range for an unscaled oscillator, the locking range for the
frequency-scaled version is |2/ f| < T or || < fT', which
can be expressed as

k w k
<—<

(if T' < 27m)
(13)
(if T > 27m).



Since the ratio of natural frequency and input frequency
has a fixed range, the width of locking range for a
frequency-scaled oscillator is constant on a logarithmic
frequency scale.

B. Comparison of Mode Locking Ranges

In general, low-order mode locking at a simple fre-
quency ratio (i.e., with k and m being small integers) is
stronger and more stable with a wider locking region than
high-order mode locking at a more complex ratio (large
k and m) [34]. This property of nonlinear resonance has
been suggested to underlie the relative consonance and
dissonance of musical intervals [21] and the tonal stability
of pitches in musical keys [23, 24]. In the latter studies,
the coefficient to the input term in Eq. (4), e(F+m=2)/2,
was used as an estimate for the stability of mode locking
in the k£ : m ratio. Here we obtain an approximation of
mode-locking ranges based on the analysis of individual
modes presented above.

Egs. (12) and (13) show the mode-locking ranges for
unscaled and frequency-scaled canonical oscillators re-
spectively. However, it is not clear from these formulas
how the width of locking region changes with k£ and m
because I" depends on k and m. To obtain a closed-form
approximation of I'; we assume that steady-state driven
amplitude r* is close to the spontaneous amplitude of the
oscillator, which is a reasonable approximation for a su-
percritical Hopf oscillator driven by weak forcing. Then,
from the steady-state equation ¢ = 0 for Eq. (5) we get

Q=m (\/EF)k (\/Ers)m_2 Sinw*u

where 74 is the spontaneous amplitude of the oscillator.
Since |siny*| < 1, stable ¢* exists when

1 <m (VeF)" (Ver))" 2 =T (14)

Let us define

/

= (VeF)A(ver ).

3173

Y=

Since 0 < /eF < 1 and 0 < y/ery; < 1 when the infinite-
series RT is used (see Section ITA), ~ decreases as k
and m increase, and 0 < v < 1 for m > 2. Using this
approximation, the width of locking range for unscaled
oscillators is

21’
— = 277
m

which is the difference of the upper and lower bounds

in Eq. (12). The log-scale width of locking range for
frequency-scaled oscillators is approximated to be

1 m—+ % 1 2m 4y

og, —= =1lo ,
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FIG. 11. Amplitude and relative phase of a canonical oscilla-
tor with the infinite-series input (thick blue lines) compared
with a canonical oscillator with the 1:2 single-monomial input
(thin red lines). The oscillators have identical intrinsic param-
eters (the natural frequency is 0.5 Hz), and they are driven
by the same sinusoidal input of 1 Hz. The relative phase was
computed for 1:2 locking, that is, ¥ = 2¢ — 0 where ¢ is
oscillator phase and 6 is input phase.

which is the difference of the logarithms of the upper and
lower bounds in Eq. (13) for m > 2, where b > 0 is an
arbitrary base. Thus, the approximated width of locking
range decreases as k and m increase (because v decreases)
for both unscaled and frequency-scaled canonical oscilla-
tors, confirming the general property of nonlinear reso-
nance that low-order mode locking is more stable than
high-order mode locking.

C. Gradient Frequency Network with Infinite
Series Input

To study mode locking in the canonical model with
infinite-series input, we numerically solved a frequency-
scaled GrFNN model given by

14

TiZzi = zi | o + 2wl + ﬁ1|2i|2 + 7€ﬂ2|Z1|
= i 1)
T 1

1—exr 1-—Jez’

where 7; = 27/w;, w; is the natural frequency of the ith
oscillator, ¢ is additional coupling weight, and z(t) =
Fel“ot is sinusoidal forcing (see Section I1B4 for meth-
ods). As discussed above, the infinite series of input
monomials allow a canonical oscillator to mode-lock to
an arbitrary input frequency.

Fig. 11 compares an oscillator with the infinite-series
input with an identical oscillator with a single resonant
monomial. The natural frequency (0.5 Hz) and the input
frequency (1 Hz) form a ratio of 1:2, thus the monomi-
als with ¥ = n and m = 2n in the series (n € N) be-
come resonant and dominate the long-term dynamics of
the oscillator. Unlike the oscillator with the single 1:2
resonant monomial (thin red lines), the amplitude and

+c




relative phase of the oscillator with infinite-series input
(thick blue lines) do not converge to a fixed point due to
the presence of nonresonant terms in the series. However,
the relative phase is bounded and fluctuates around the
fixed point for the single-monomial oscillator (i.e., the
trajectory forms a libration in (r, ), not a rotation; see
[29, 35]). Hence, when averaged over a long enough time
scale, the infinite-series oscillator has the same instanta-
neous frequency as the single-monomial oscillator. This
type of synchronization may be called ‘frequency locking’
instead of mode locking [34].

Fig. 12 shows the Arnold tongues for the GrFNN model
with infinite-series input in Eq. (15), identified by the
time-averaged instantaneous frequencies of the oscillators
(see Section IIB4 for methods). Only the tongues for
low-order resonances with k& + m < 5 are displayed as
colored regions. Consistent with the analysis of individ-
ual modes, the GrFNN model with infinite-series input
has wider Arnold tongues for low-order resonances (with
small & and m) than for higher-order resonances (larger
k and m). At low forcing amplitudes, the tongues for
canonical oscillators with single-monomial input (solid
magenta lines; from Section IIT) match the tongues for
infinite-series input (colored regions). For stronger forc-
ing, the tongues for infinite-series input are tilted and
deviate from the tongues for single-monomial input, in-
dicating that long-term oscillator dynamics are influ-
enced by multiple resonant monomials for distinct mode-
locking ratios. A detailed analysis of the canonical model
with infinite-series RT is beyond the scope of this paper,
which we leave for future work.

Note that for £ > 1 and m = 1, the tongues for infinite-
series input (colored regions in Fig. 12) are significantly
wider than the tongues for single-monomial input (ma-
genta solid lines) at high forcing amplitudes. This is ex-
pected given that the oscillators are in the supercriti-
cal Hopf regime, for which a region of frequency locking
(i.e., libration) exists just outside the mode-locking range
for strong forcing [29]. As discussed in Section IV B,
the tongues for individual modes (magenta solid lines)
and their approximations in Eq. (14) (cyan dashed lines)
match well at low forcing amplitudes because driven am-
plitudes are close to the spontaneous amplitude. They
deviate at higher forcing amplitudes for which the driven
amplitudes at locking boundaries are significantly differ-
ent from the spontaneous amplitude.

V. CONCLUSION

We examined mode locking in periodically forced gra-
dient frequency neural networks by analyzing a canonical
model. As in our previous analysis of 1:1 phase locking
[29], we found that the canonical model has different sets
of attractors in four representative parameter regimes.
We studied individual modes of locking separately by an-
alyzing the canonical model with single-monomial input.
We found that harmonic locking (k > 2, m = 1) has qual-
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itatively identical dynamics to 1:1 phase locking. Among
subharmonic ratios, m = 2 has distinct properties from
m > 3 due to the independence of phase dynamics on am-
plitude. Using a closed-form approximation, we showed
that the width of Arnold tongue (i.e., locking region)
for k£ : m mode locking decreases as k and m increase,
indicating low-order nonlinear resonances are generally
more stable than higher-order ones. Finally, we examined
the Arnold tongues for the canonical model with infinite-
series input which is capable of mode-locking to an ar-
bitrary input frequency. For weak forcing, the Arnold
tongues for infinite-series input match the tongues for
single-monomial input, but they deviate as forcing am-
plitude increases because multiple input monomials affect
oscillator dynamics at high forcing amplitudes.

The analysis presented in this paper has broad implica-
tions for neural processing and nonlinear dynamics. The
canonical model analyzed here is a generic mathematical
model of tonotopically organized neural networks, which
are commonly found in the auditory system. Thus, the
properties of mode locking found in the canonical model
are relevant to auditory neural processing and perception
in general. Our previous modeling studies showed that
mode-locked resonances in neural oscillators can explain
nonlinear components in human auditory brainstem re-
sponses to musical intervals [31], and the perception of
harmony [22], tonality [24], and rhythm and meter in
music [27]. The present analysis provides mathemati-
cal foundations to these studies. Also, by presenting the
complete set of driven behaviors available to the canon-
ical model, this study informs modeling efforts featuring
the GrFNN model [38] as to choosing appropriate param-
eter regimes and values to achieve target behaviors.

Compared to biological neuron models such as the
Hodgkin-Huxley model, the canonical model is mathe-
matically simpler and more tractable, and hence we were
able to analyze and compare different modes of synchro-
nization for all parameter regimes available in the model.
The thorough analysis given in this paper can serve as
a canonical reference for diverse mode-locking behaviors
observed in neurons and neuron models which are often
difficult to control and analyze (e.g., [4-7, 9-12]). Lastly,
since the canonical model is a generic model of nonlin-
ear oscillatory networks, the present analysis is not lim-
ited to neural networks but applies generally to multi-
frequency nonlinear systems consisting of oscillatory ele-
ments poised near a Hopf bifurcation or a Bautin bifur-
cation. In this light, the present study reveals the signal
processing capabilities of multi-frequency nonlinear sys-
tems by showing how they transform external signals into
spatiotemporal patterns of synchronized activities.
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FIG. 12. Arnold tongues for a gradient frequency neural network driven by sinusoidal forcing in Eq. (15). Colored regions
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