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We consider n particles diffusing freely in a domain. The boundary contains absorbing escape
regions, where the particles can escape, and traps, where the particles can be captured. Modeled
after biological examples such receptors in the synaptic cleft and ambush predators waiting for prey,
these traps, or capture regions, must recharge between captures. We are interested in characterizing
the time courses of the number of particles remaining in the domain, the number of cumulative
captures, and the number of available capture regions. We find that under certain conditions, the
number of cumulative captures increases linearly in time with a slope and duration determined
explicitly by the recharge rate of the capture regions. This recharge rate also determines the mean
and variance of the clearance time, defined as the time it takes for all particles to leave the domain.
Further, we find that while a finite recharge rate will always result in a lower number of captured
particles when compared to instantaneous recharging, it can either increase or decrease the amount
of variability. Lastly, we extend the model to partially-absorbing traps in order to investigate the
dynamics of receptor activation within an idealized synaptic cleft. We find that the width of the
domain controls the amount of time that these receptors are activated, while the number of receptors
controls the amplitude of activation. Our mathematical results are derived from considering this
system in several ways: as a full spatial diffusion process with recharging traps; as a continuous-time
Markov process on a discrete state space; and as a system of ODEs in a mean-field approximation.

I. INTRODUCTION

In this work, we investigate the time dynamics of par-
ticles diffusing in a domain with a boundary contain-
ing traps (Fig. 1A). After capturing a particle, these
traps, or capture regions, become reflecting for a tran-
sitory recharge time before capturing additional parti-
cles (Fig. 1B). The boundary also contains escape re-
gions, where the particles may freely leave the domain.
As a result, each particle will eventually be removed from
the domain by either escaping or being captured. We are
interested in the time evolution of the first and second
moments of a) the number of particles remaining in the
domain, b) the number of cumulative captures, and c)
the number of available capture regions evolve with time.
Specifically, we focus on how these time courses are af-
fected by the capture regions having a finite recharge
rate.
The study of this stochastic process, referred to here

as diffusion with recharging traps (DiRT), is primarily
motivated by two applications: 1) molecules interacting
with receptors (e.g., neurotransmitters in the synaptic
cleft [1] and drug delivery via biodegradable nanoparti-
cles [2]), and 2) prey being ambushed by predators [3].
In both of these applications, the capture regions (re-
ceptors/predators) must recharge between captures, and
how the number of cumulative captures evolves with
time is crucial to understanding the process (when down-
stream molecules are produced/how long do prey have to
escape).
This non-instantaneous recharge rate results in the

particles indirectly interacting with each other, resulting
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FIG. 1. Schematics of domain and recharging capture

regions. A: Particles diffusing in domain Ω with boundary
∂Ω = ∂ΩR ∪ ∂ΩC ∪ ∂ΩE , where ∂ΩR are reflecting regions,
∂ΩC are capture regions, and ∂ΩE are escape regions. B:
After capturing a particle, capture regions are reflecting for a
transitory recharge time, which we take to be exponentially
distributed with rate ρ, where ρ is referred to as the recharge
rate.

in a significantly different problem mathematically than
those studied previously. Much work has been done in
regards to the distribution of exit times when the parti-
cles are trying to find small targets, in what is known as
the narrow escape problem [4–7]. These results have also
been extended to account for particles that interact di-
rectly with one another in the domain (e.g., particles in a
highly crowded environment) [8]. We deviate from these
previous studies in this work by not necessarily assum-
ing that the capture regions are small, and by having the
particles interact via the switching boundary conditions.
There has also been a large amount of work completed on
studying diffusion with stochastically switching bound-
ary conditions [9–14]. In these studies, the particle paths
are also statistically correlated, since they are diffusing
in the same random environment. However, the state of
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the boundary does not depend on interacting with the
particles, and the particles’ paths do not influence one
another.
In our previous work, we investigated the average num-

ber of total captures in the DiRT process [15]. We proved
that this quantity grows logarithmically in the number
of initial particles. This result is drastically different
from the linear growth that occurs when capture regions
recharge instantaneously. However, this previous work
offers no information about the time dynamics of the
process or higher-order statistics.
In this work, we extend this previous study by inves-

tigating the dynamical behavior of not only the number
of cumulative captures, but also the number of particles
remaining in the domain and the number of available cap-
ture regions. We are specifically interested in answering
the following questions: What is the role of the recharge
rate in determining the mean dynamics? More broadly,
what are the overall trends of the dynamical behavior
of these higher-order statistics, and how do parameters
such as location, number, and recharge of capture re-
gions influence these time courses? Specifically, we seek
analytical answers to these questions.
While insight into this problem can be gained with di-

rect Monte Carlo simulations of the DiRT process, such
simulations are computationally expensive for a large
number of particles. Further, due to the correlations
that arise between particles, this spatial and stochastic
process is challenging to investigate analytically. Thus,
we begin this work by approximating this stochastic pro-
cess with a continuous-time Markov process on a discrete
state space, along with its corresponding mean field ap-
proximation and reduction in the limit that captures oc-
cur instantly (Section II). These approximations signifi-
cantly reduce the complexity of the DiRT model and are
then used to answer the questions outlined in the previ-
ous paragraph (Section III).

II. DIRT MODEL AND APPROXIMATIONS

This work focuses on understanding the underlying
stochastic dynamics of the diffusion with recharging traps
(DiRT) process, which we define precisely in the next
subsection. To yield analytical result pertaining to this
model, we derive a series of approximations to the DiRT
model that capture similar qualitative and quantitative
results, under certain conditions. We first make a quasi-
stationary distribution assumption on the distribution of
particles to derive a continuous-time Markov process on
a discrete state space that is still stochastic, but non-
spatial. We then make a mean field approximation to
yield a non-spatial and deterministic model. Then, as-
suming that captures occur instantly, we reduce the dis-
crete state model to yield a non-spatial, stochastic model,
which is simplified enough to yield analytical results.
Thus, in total, we consider models that take the follow-
ing forms: (1) spatial and stochastic, (2) non-spatial and

stochastic, and (3) non-spatial and deterministic (Fig. 2).
With this toolbox of models in hand, we are able to select
the appropriate models to answer each of the questions
proposed in Section I, yielding insights into the original
diffusion with recharging traps process.

A. Diffusion with Recharging Traps

Consider n particles diffusing in a bounded domain
Ω ⊂ R

n (Fig. 1A). The boundary (∂Ω) is partitioned
into escape regions which absorb particles (∂ΩE), reflect-
ing regions which reflect particles (∂ΩR), and m-many
traps, or capture regions (∂ΩC = ∪m

k=1∂Ω
k
C). After cap-

turing a particle, a capture region becomes reflecting for
a transitory recharge time, where the recharge time is an
exponential random variable with rate ρ, during which
it cannot capture additional particles (Fig. 1B). The lo-
cations of the n molecules diffusing in this domain can
be described by the following set of stochastic differential
equations

dXk(t) =
√
2DdWk(t), k = 1, ..., n, for Xk(t) ∈ Ω,

(1)

where the Xk(t) denotes the location of the particle, the
Wj(t)’s are independent Wiener processes, and D is the
diffusivity. While we assume that these particles do not
interact during motion, the boundary conditions depend
on the paths of particles, and as a result, the particles can
indirectly affect each other. Eventually, all particles will
leave the domain either by escaping through an escape
region or by being captured by a capture region.
We focus of three key variables: the number of parti-

cles remaining in the domain at time t, P (t), the number
of captured particles before time t, C(t), and the number
of available capture regions at time t, R(t). This paper
focuses on understanding the dynamics and statistics of
these variables as a function of the number of initial par-
ticles n and the recharge rate of the capture regions ρ.
We are particularly interested in finite ρ. In the limit
ρ → ∞ (instantaneous recharge), the capture regions be-
have exactly like escape regions, eliminating the corre-
lation between particles paths and allowing the use of
more traditional techniques. For example, it is easy to
show that the number of total captures follows a bino-
mial distribution with mean nh and variance nh(1− h),
where h is the probability of hitting a capture region for
a given initial condition. We provide more details about
computing h in the Supplementary Materials [16].

B. Continuous-Time Markov Process on Discrete

States

While the DiRT model tracks the paths of individual
particles, the dynamics of P (t), C(t), and R(t) simply
depend on when one of the following events occurs: (i)
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FIG. 2. Flow diagram of all models. Red box: DiRT model (spatial and stochastic), Purple box: DS and RDS models
(non-spatial and stochastic), and Blue box: MF model (non-spatial and deterministic).

a particle escapes the domain, (ii) a particle is captured
and a capture region closes, and (iii) a capture region
reopens. Due to this fact, we approximate the DiRT
model with a discrete state model, where the states are
given by (P (t), C(t), R(t)).
Assuming that we are currently in state

(P (t), C(t), R(t)), there are three possible states it
may transition to, namely

(P (t) − 1, C(t), R(t)), particle escapes,

(P (t) − 1, C(t) + 1, R(t)− 1), particle is captured,

and (P (t), C(t), R(t) + 1), capture region reopens.

Further, the rates can be estimated from simulations of
the DiRT model. For a general transition from discrete

state (P,C,R) to (P̂ , Ĉ, R̂), there is a corresponding tran-
sition rate κpcr,p̂ĉr̂, which has the maximum likelihood
estimator [17–19]

κ̂pcr,p̂ĉr̂ =
# of transitions from (P,C,R) to (P̂ , Ĉ, R̂)

total time in state (P,C,R)
.

Unfortunately, there are several drawbacks to using this
maximum likelihood estimator in this context. Most no-
tably, the number of states in this model is O(n2m), and
each state is visited at most once during a single simula-
tion of the DiRT model. Thus, an unreasonable number
of simulations of the DiRT model for a given domain Ω
and boundary ∂Ω are required to get estimates of these
transition rates. As a result, it would be easier to use
these simulations of the DiRT model directly to under-
stand the time courses of P (t), C(t), and R(t).
With this key drawback in mind, we make the addi-

tional approximation that the transition rates are pro-
portional to the number of molecules remaining in the

domain and the number of open capture regions. Specif-
ically, the transitions from (P (t), C(t), R(t)) are

(P (t)− 1, C(t), R(t)), with rate γP (t),

(P (t)− 1, C(t) + 1, R(t)− 1), with rate νP (t)
R(t)

m
,

and (P (t), C(t), R(t) + 1), with rate ρ(m−R(t)),

where γ, ν, and ρ are constants independent of the cur-
rent state, and m is the total number of capture regions.
While this approximation significantly reduces the num-
ber of parameters, it remains to be shown whether we
can choose constants γ and ν such that this discrete state
model captures similar quantitative characteristics as the
DiRT model (note: ρ is the mean recharge rate for the
capture regions).

We make the following assumption for γ and ν: the
rate a particle escapes (is captured in) the domain is pro-
portional to the probability of hitting the escape (cap-
ture) region and inversely proportional to the average
time it takes a particle to reach the escape (capture) re-
gion. More specifically, we take these constants to be of
the form h/τs, where h is the probability of hitting the re-
gion of interest and τs is the the mean first passage time
to hit an absorbing region of the boundary, assuming
that the particles are distributed according to a quasi-
stationary distribution (QSD). The full algorithm for es-
timating these parameter values and sufficient conditions
for when this approximation may be reasonably accurate
can be found in the Supplementary Materials [16].
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C. Mean Field Approximation

It is straightforward to write down the correspond-
ing general master equation for our discrete state model.
Further, this equation can be used to derive the following
exact system of differential equations for E[C(t)], E[P (t)],
and E[R(t)] using techniques found in [20],

dE[P ]

dt
= −γE[P ]− νE[PR]

m
,

dE[R]

dt
= ρ(m− E[R])− νE[PR]

m
,

dE[C]

dt
=

νE[PR]

m
.

These techniques can also be used to derive equations
for higher-order moments that are necessary to calculate
quantities such as variance. For example,

dE[C2]

dt
=

νE[PR]

m
+

2νE[PRC]

m
.

However, it is readily apparent, due to the appearance of
the higher-order term E[PRC], that this will result in a
system of infinitely many differential equations, and an
approximation must be used to close the system of equa-
tions. A number of such approximations were attempted
in order to have a system of equations that contained at
least second-order moments, but the errors introduced
produced results not consistent with the DiRT model.
As a result, we reduce the focus of our mean field model
to the three equation system for E[C(t)], E[P (t)], and
E[R(t)]. The following mean field approximation can be
used to close this system of three equations

E[PR] ≈ E[P ] · E[R]. (2)

Applying this approximation and the following defini-
tions,

p(t) = E[P ], c(t) = E[C], r(t) = E[R],

we find the following closed system of differential equa-
tions

dp

dt
= −γp− νpr

m
,

dr

dt
= ρ(m− r)− νpr

m
,

dc

dt
=

νpr

m
,

with initial conditions p(0) = n, c(0) = 0, and r(0) = m
(i.e., all capture regions are initially open).

D. Reduced Discrete State Model

In the limit ν → ∞ (instantaneous capture rate) the
discrete state model can be reduced significantly. Specifi-
cally, the states are given by (P (t), C(t)), with transitions

(P (t)− 1, C(t)), with rate γP (t),

and (P (t)− 1, C(t) + 1), with rate ρm.

In the discrete state model, the particles are correlated
through the number of available capture regions, since
when one particle is captured, the number of available
capture regions decreases by one, making subsequent cap-
tures less likely. However, the reduced discrete state
model does not contain this correlation, and as a result,
can yield analytical results relating to higher-order statis-
tics.

E. Example Domains

A complete algorithm to calculate parameters γ and ν,
can be found in the Supplementary Materials [16]. This
algorithm can be applied to very general bounded do-
mains Ω with boundary ∂Ω = ∂ΩR ∪ ∂ΩE ∪ ∂ΩC . Here,
we provide the description and parameter values for two
domains where these approximations perform well, and
will be considered for the rest of this work.
First, we consider the 1D domain

Ω1D = [0, 1],

with an escape region at x = 0 and a capture region at
x = 1. We also consider the 2D domain

Ω2D = [0, 1]× [0, 0.1],

with escape regions along x = 0 and x = 1, ∂ΩC =
{(x, y)|y = 0 and x ∈ [0.250, 0.417] ∪ [0.417, 0.583] ∪
[0.583, 0.750]} (m = 3 capture regions), and reflecting
boundaries for the rest of the domain (Fig. 3). This rect-
angular domain, longer in the horizontal direction, was
inspired by a synaptic cleft, and used in [15]. Initially,
the particles are located at x = 0.5 in Ω1D and x = 0.5,
y = 0.1 in Ω2D (triangle in left panels of Fig. 3). We
choose this point distribution in order to avoid biasing
our results by making the unreasonable assumption that
the particles are initially distributed according to their
QSD, which would surely benefit our approximation.
All associated parameter values for these domains can

be found in Table I. The first four parameters in this
table (those to the left of the double vertical line) were
assumed, while those to the right were calculated using
the algorithm. For this paper, we consider arbitrary time
and space units.

III. RESULTS

With the toolbox of models outlined in Sections II and
the details found in the Supplementary Materials [16] to
calculate the necessary parameters, we now seek to an-
swer each of the motivating questions outlined in Section
I. Specifically, we seek to characterize the time courses
of the DiRT process, focusing on the number of particles
remaining in the domain, P (t), the number of cumula-
tive captures, C(t), and the number of available capture
regions, R(t). Using the discrete state and mean field
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FIG. 3. Example Domains. Top: Ω1D, Bottom: Ω2D. The
escape regions denoted by black, dashed lines, capture regions
by red, solid lines, and reflecting regions by black, solid lines.
Unless otherwise specified, all particles are initially located at
the gray triangles in each domain for simulations of the DiRT
model.

TABLE I. Parameter values for Ω1D and Ω2D (capture regions
located along y = 0 and x ∈ (0.25, 0.75)). The parameters to
the left of the double vertical line were assumed. The re-
maining parameters, were found following the algorithm pro-
vided in the Supplemental Materials [16] (analytically for Ω1D

and numerically for Ω2D using the NDEigensystem and ND-
SolveValue functions in Mathematica [21]). Unless otherwise
noted, these are parameters used in the figures. The units are
arbitrary time and space units.

D n m ρ γ h λ1 ν = h · λ1

Ω1D 1 100 1 10 2.467 0.500 9.870 4.935

Ω2D 1 1000 3 10 9.870 0.563 110.808 62.394

approximations, we examine how these time courses de-
pend explicitly on the recharge rate ρ. We also inves-
tigate higher-order statistics (variance and coefficient of
variation) of the number of cumulative captures, and how
these depend on ρ, as well as the number and distribu-
tion of capture regions. Finally, we extend the model to
the case of partially-absorbing capture regions.

A. Accuracy of the Discrete State Model

We start by verifying that the discrete state model
accurately captures the average behavior of the DiRT
model in domains Ω1D and Ω2D (defined in Section II E).
We estimate the parameter values to use in the discrete
state model via an algorithm outlined in the Supple-
mental Materials [16]. This calculation assumes a quasi-
stationary distribution (QSD) of particles conditioned on
not being absorbed for large time. As a result, we expect
the approximation of the DiRT process by the discrete
state model to be the most accurate when the particle dis-
tribution converges quickly to this QSD. We denote this
convergence rate by the function α(Ω, ∂Ω, D, ρ), where

Ω is the domain with boundary ∂Ω, D is the diffusion
coefficient and ρ is the recharge rate (see Supplemental
Materials [16] for additional details).
We first consider domain Ω1D and compare the E[P (t)],

E[C(t)], and E[R(t)] estimated from simulations of both
models (Fig. 4). We find qualitative and quantitative
similarities with all three variables. More specifically, we
see that in both models, the expected number of remain-
ing particles, E[P (t)], decays exponentially. Meanwhile,
the expected number of cumulative captures, E[C(t)],
rises quickly to one (the total number of capture regions
in this domain), and then increases linearly, until satu-
rating. Lastly, the expected number of available capture
regions, E[R(t)], quickly drops close to zero, and then
increases back to one sigmoidally.
The convergence rate for this domain and parameter

values is

α(Ω1D, ∂Ω1D, 1, 10) ≈ 1.97.

While this rate is exponential (as discussed in the Sup-
plemental Materials [16]), we find that the distribution
of particles is not particularly close to the QSD in the
DiRT model when t ≪ 1 (Fig. 4A, inset). Specifically,
we find that E[P (t)] stays elevated for a moment in the
DiRT model before dropping, unlike in the discrete state
model. This result is expected, since the particles ini-
tially begin at x = 0.5 for the DiRT model and are not
immediately close to an absorbing region. This inset also
notes that once the number of particles in the domain
does begin to drop in the DiRT model, it drops at a
faster rate than the discrete state model. During this
time, the particle distribution has yet to converge to the
QSD in the DiRT model, and the escape rate is actually
higher than estimated rate. As a result, the discrete state
model overestimates E[P (t)]. However, this has a minor
effect on E[C(t)], with the two models resulting in quite
similar time courses (Fig. 4B).
We also find great quantitative agreement between the

two models for domain Ω2D (Fig. 5). Further, we find
similar qualitative time courses as the previous exam-
ple, namely that E[P (t)] decays exponentially, E[C(t)]
increases almost instantaneously to three (the total num-
ber of capture regions) and then increasing linearly before
saturating, and E[R(t)] drops to zero and saturates back
to three sigmoidally.
For this domain and parameter values, the convergence

rate is

α(Ω2D, ∂Ω2D, 1, 10) ≈ 2.96,

which is larger than in the previous example. Again,
the distribution of particles is not particularly close to
the QSD during the early moments of E[P (t)] (Fig. 5A,
inset). For the DiRT model, we see a quick decrease
of three particles (being absorbed by the three capture
regions) and then a slight pause before a sustaining ex-
ponential decrease. This result makes sense intuitively.
In the DiRT model, the initial distribution of particles
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FIG. 4. Comparison of DiRT and discrete state model for Ω1D. A: E[P (t)], B: E[C(t)], and C: E[R(t)] for DiRT (red,
solid) and discrete state (blue, dashed) models. Inset shows a zoomed in view of E[P (t)] for an early time interval. These
panels show good agreement between the two models, with the differences arising due to the time it takes for the distribution
of particles to converge to the QSD. Parameter values are found in Table I.
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FIG. 5. Comparison of DiRT and discrete state model for Ω2D. A: E[P (t)], B: E[C(t)], and C: E[R(t)] for the DiRT
(red, solid) and discrete state (blue, dashed) models. Inset shows a zoomed in view of E[P (t)] at an early time. Similar to the
previous figure, we again see good agreement between the two models, with the differences arising due to the time it takes for
the distribution of particles to converge to the QSD. Parameter values are found in Table I.

is δ(x− 0.5)δ(y − 0.1), and the particles are much closer
to the capture regions than the escape regions. Simi-
lar to the last example, this transient state is not cap-
tured in simulations of the discrete state model, as ex-
pected. However, again, despite a noticeable difference in
the time course of E[P (t)] (here, the discrete state model
results in an underestimation), we see a great agreement
for E[C(t)] and E[R(t)].

For the rest of this article, we limit ourselves to do-
main Ω2D, where we have shown that this approximation
performs well. Unless otherwise noted, the shape of the
domain and the number of receptors is the same as those
outlined in Subsection II E.

B. Time Course of the Average Behavior

Having established that the discrete state model per-
forms well in capturing the dynamics of the DiRT model,
we now turn our attention to understanding the under-
lying dynamical structure driving the time courses of
E[P (t)], E[C(t)], and E[R(t)]. To perform this analysis,
we employ the deterministic mean field model,

dp

dt
= −γp− νpr

m
,

dr

dt
= ρ(m− r) − νpr

m
,

dc

dt
=

νpr

m
,

which lends itself well to phase plane analysis.
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1. Accuracy of the Mean Field Approximation

Before investigating the mean field model in detail, we
first assess its accuracy, since the mean field approxima-
tion, Eq. (2), is only exact when P and R are uncor-
related. This is certainly not the case here, since when
a particle binds to a capture region and decreases R, it
has also been removed from the domain, decreasing P .
However, despite this fact, Fig. 6 illustrates that this is
not a poor approximation to make. As this figure shows,
the discrete state model and the numerical solution to
the mean field model quantitatively agree for E[P (t)],
E[C(t)], and E[R(t)]. Further, the inset of Fig. 6A shows
that the absolute error of the mean field approximation,
(i.e., |E[PR] − E[P ] · E[R]|) is small, and only increases
to a potentially significant level when a few particles are
remaining in the domain (which only occurs for a short
period of time).

2. Phase Plane Analysis of Mean Field System

Since the mean field model accurately captures the dy-
namics observed in the discrete state model, it can be
used to understand the mean dynamics of the original
spatial and stochastic DiRT process. Specifically, we turn
our attention to the time course of c(t), where we have
seen previously that it increases almost instantaneously
to the number of capture regions and then grows linearly
before saturating. Specifically, one can show (Supple-
mental Material [16]) that for a large portion of time

dc

dt
≈ mρ.

This result matches the slope of c(t) during its linear
growth regime in the DiRT and discrete state models. In
words, mρ is the rate that particles are captured by all
capture regions, assuming they each capture a particle
the moment they have recharged. Further, the duration
of this linear growth is given by

T linear =
1

γ
log

(
1 + mρ

nγ

C + mρ
nγ

)
, (3)

where C is the fraction of particles remaining at time
T linear. A plot of Eq. (3) as a function of recharge rate
ρ for various values of C is found in Fig. 7. This fig-
ure illustrates that T linear monotonically decreases as a
function of ρ. The dashed portion of line indicates the
parameter regime where T linear > 1/(mρ), meaning the
predicted time is greater than the average recharge rate
of the receptors; therefore, we do not expect to observe
this linear growth. For example, when ρ = 0.01 and
C = 0.01, the equation finds that T linear = 0.47. How-
ever, with this choice of ρ, the average time for a capture
region to recharge is 1/(3 · 0.01) or approximately 33.33.
Not only is this recharge rate greater than T linear, but it

is greater than the expected amount of time of particle
clearance (i.e., the time the last particle leaves the do-
main). Combining this with the fact that T linear → 0 for
large values of ρ, we conclude that Eq. (3) is most useful
for intermediate values of ρ (i.e., between these two ex-
tremes). Unfortunately, we also note that in this regime,
the curves are sensitive to the parameter C, which is do-
main dependent. Again, while choosing C > 0 might
yield more accurate results in given domain, choosing
C = 0 provides a reasonable upper bound.

This result may be particularly helpful for understand-
ing applications where multiple puffs of particles are in-
serted in the domain over a period of time (e.g., neuronal
synapses), and can provide a bound on the time between
puff events such that particles in different puffs minimally
interact. This is investigated in more detail in the next
section, where we examine the statistics of the clearance
time.

C. Higher-order Statistics for Total Particle

Captures and Clearance Time

Having investigated the dynamics of E[P (t)], E[C(t)],
and E[R(t)], and explored the phase space underlying
E[C(t)] in detail, we now seek information regarding
higher-order statistics. Focusing first on deriving analyt-
ical results, we turn to the reduced discrete state model.

1. Estimating the Total Average Number of Captures and
its Variance

Considering first the average number of total captures,
one can show (Supplemental Material [16]) that

⇒ E[Ctotal] = m+
mρ

γ

[
Ψ(0) (n−m+ 1 +mρ/γ)−

Ψ(0) (1 +mρ/γ)
]
, (4)

var[Ctotal] =
mρ

γ

[
Ψ(0) (n−m+ 1 +mρ/γ)−

Ψ(0) (1 +mρ/γ)
]
+

(
mρ

γ

)2 [
Ψ(1) (n−m+ 1 +mρ/γ)−

Ψ(1) (1 +mρ/γ)
]
, (5)

where Ψ(j) is the polygamma function of order j [22].
Although Eqs. (4) and (5) appear unwieldy, they provide
valuable insight as n → ∞ when coupled with asymptotic
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expansions for Ψ(0)(n) and Ψ(1)(n), namely

E[Ctotal] = m+
mρ

γ
logn−

mρ

γ
Ψ(0)(1 +mρ/γ) +O

(
1

n

)
, (6)

var[Ctotal] =
mρ

γ
logn− mρ

γ
Ψ(0)(1 +mρ/γ)−

(
mρ

γ

)2

Ψ(1)(1 +mρ/γ) +O
(
1

n

)
. (7)

Thus, in agreement with our previous results, the mean
grows like O(log n) [15]. Further, this calculation sug-
gests the new result that the variance should also grow
like O(log n). Fig. 8A compares this theoretical result
to simulations from the DiRT model, and finds that not
only does the variance estimated from DiRT model grow
like O(log n), but it matches well with Eq. (5). We can
also use these theoretical results to approximate how the
coefficient of variation, a normalized measure of variance,

cv =
standard deviation

mean
,

changes with n, and find that it decays as O(1/
√
logn).

We can compare these results to those when the cap-
ture regions recharge instantaneously. In that case, re-
call that the number of total captures follows a binomial
distribution, with n trials and probability of success h;
therefore, the expected number of particles captured is
nh and has a variance of nh(1− h), both of which grow
as O(n). Further, in the instantaneous recharge case, the
cv grows as O(1/

√
n). As a result, it appears that a fi-

nite recharge rate has the effect of decreasing the rate
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(solid, h = 0.99) in Ω2D. Depending on parameters, a finite recharge rate may lead to more or less variability when compare
to an instantaneous recharge rate.

at which the expected value and variance terms grow as
a function of n, while in terms of this normalized mea-
sure of variability, a finite recharge rate has the ability
to increase the amount of variability observed.
However, this asymptotic analysis is true only in the

limit n → ∞. For finite n, we directly compare Eq. (5) to
nh(1− h) for parameters from domain Ω2D (h = 0.99 for
this domain and initial condition). As Fig. 8B illustrates,
while Eq. (5) (dashed) grows as O(log(n)) for different
values of ρ and the instantaneous recharge (black, solid)
case grows as O(n), it is not necessarily true that a finite
recharge rate will lead to a lower variance. Specifically,
we see that while the curve for ρ = 0.1 lies below the
solid line, this is not the case for ρ = 1 and 10 for all
values of n.
We can understand this result by noting that in the

limit ρ → 0, each capture region will catch at most one
particle, with all remaining particles almost surely escap-
ing the domain before they have a chance to recharge. As
a result, there is little to no variability for ρ ≪ 1; thus
increasing ρ will lead to an increase in variability. The
fact that the ρ = 1 and ρ = 10 curves lie above the
instantaneous recharge curve for some values of n is a re-
sult of the large hitting probability used in the nh(1−h)
calculation, resulting in a small slope for this line. As a
result, we conclude that a finite recharge rate can result
in a higher variance for the total number of captures, but
this result depends on the domain, initial condition, n,
and ρ.
In terms of the coefficient of variation, the results are

more straightforward, with Fig. 8C showing that a finite
recharge rate does consistently result in a higher coeffi-
cient of variation when compared to ρ = ∞. However, it
does not behave monotonically as a function of ρ (ρ = 0.1
has the lowest cv, ρ = 1 the highest, and ρ = 10 rests in
the middle). The coefficient of variation as a function of
time is explored in more detail in Subsection IIID.

Equations 4 and 5 can also be used directly to pre-
dict and compare the amount of variability of two neu-
ronal synapses expressing different types of receptors.
Specifically, we consider the synapses discussed in [15],
with one containing exclusively NMDA receptors (slow
recharge rate) and another consisting of AMPA recep-
tors (fast recharge rate). We find that the variability in
the total number of captures for these two synapses to
be drastically different (var[Ctotal] = 0.20 for the NMDA
synapse and 47.77 for the AMPA synapse). However,
this is not particularly surprising, since synapses with
AMPA receptors have a much higher mean number of
particle captures (due to both the larger number of recep-
tors, 20 NMDA vs. 200 AMPA receptors, and the faster
recharge). We can account for this disparity by compar-
ing instead the coefficients of variations. Doing so still
yields a noticeable difference between the two cases (0.01
for the NMDA synapse and 0.19 for the AMPA synapse).
As a result, the synapses with larger fraction of AMPA
receptors, are predicted to be more noisy, i.e. result in
a less consistent conductance change in the postsynaptic
neuron and, subsequently, more neuron response variabil-
ity and altered information processing in networks with
such synapses.

2. Estimating the Clearance Time

One can also use the reduced discrete state model to
estimate statistics regarding the time it takes for all par-
ticles to leave the domain, referred to here as the clear-
ance time. Let T clear denote this random variable and
let Tk denote the interleaving time between the (k− 1)th
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particle and kth particle. It follows that

T clear =
n∑

k=m+1

Tk,

where Tk is simply an exponential random variable with
parametermρ+γ(n−(k−1)). As a result, we can perform
a very similar calculation as the one in Subsection III C 1
to find E[T clear] and var[T clear],

E[T clear] =
1

γ

[
Ψ(0)(n−m+ 1 +mρ/γ)−

Ψ(0)(1 +mρ/γ)
]
, (8)

var[T clear] =
1

γ2

[
−Ψ(1)(n−m+ 1 +mρ/γ)+

Ψ(1)(1 +mρ/γ)
]
. (9)

Using the asymptotic expansions from the previous sec-
tion, it follows that the expected value of the clearance
time grows as O(log n), while the variance grows as O(1).
This is illustrated in Fig. 9, where for a fixed recharge
rate ρ, the bars denoting one standard deviation remain
relatively unchanged. Interestingly, as the recharge rate
increases, not only does the expected clearance time de-
crease, but the variability also decreases.

1 1.5 2 2.5 3 3.5
log10(n)

0

0.2

0.4

0.6

0.8

1

1.2

T
c
le

a
r

=0

=10

=100

=1000

FIG. 9. Comparing the expected value and variance of clear-
ance times for different values of ρ using equations Eqs. (8)
and (9). The bars denote one standard deviation. We find
that ρ determines the mean and variance of the random vari-
able T clear. Other parameters can be found in Table I for
Ω2D.

We can again return to the neuronal example and com-
pare the clearance time of neurotransmitters for the two
types of synapses. Using Equation 8 we find that for
the NMDA synapse, the clearance time is 0.11 ms and is
0.07 ms for the AMPA synapse. This minimal discrep-
ancy suggests that the difference in recharge rate between
these two types of receptors has a minimal effect on clear-
ance time, and other parameters of the problem (e.g.,

domain size) have a larger impact. This is examined in
more detail in Subsection III E.

D. Dynamics of Higher-order Statistics and

Dependence on Parameter Space

Seeking to extend the analytical results from the previ-
ous subsection, we now turn our attention to the dynam-
ics of higher-ordered statistics, as well as how results may
differ over a wide-range of parameter values. Numerical
simulations of the discrete state model is the approach
of choice here, by striking a balance between being suffi-
ciently detailed yet computationally tractable.

1. Time Evolution of the Coefficient of Variation and
Dependence on Recharge

Before exploring the parameter space with the discrete
state model, we must first confirm that it accurately
matches the higher-order statistics of the DiRT model,
since Subsection IIIA only examined the average behav-
ior. Figs. 10A and 10B compares cv(C(t)) for these two
models in Ω2D for different recharge rates. These fig-
ures illustrate quantitative agreement for both parame-
ter choices. Further, we observe that for a large recharge
rate (ρ = 1000), the coefficient of variance decreases
monotonically over time, while for a smaller recharge rate
(ρ = 10), it varies non-monotonically.

Having established this quantitative match between
the discrete state and DiRT models, and having found
this interesting non-monotonic behavior, we now inves-
tigate cv(C(t)) over a wider range of values for ρ us-
ing just the discrete state model. As illustrated in
Fig. 10C, we find that the final amount of variation (i.e.
limt→∞ cv(C(t))) does not vary monotonically with ρ,
further confirming our results from Subsection III C 1.
Also, this panel indicates that the non-monotonic be-
havior in time observed in Fig. 10A appears to be an
intermediate step between the extremes of a slow and
fast recharge rate. For ρ small, the coefficient of varia-
tion monotonically increases with time. However, as ρ
increases to intermediate values, the coefficient of varia-
tion behaves non-monotonically. Specifically, it increases
before decreasing to a final value. Interestingly, in the
cases where this non-monotonic behavior is observed,
cv(C(t)) seems to always peak at the same value. Fi-
nally, as ρ increases to larger values, cv(C(t)) monotoni-
cally decreases. Thus, a finite recharge rate will not only
influence the final amount of variability observed, but the
time course of variability.
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FIG. 10. Coefficient of Variation of C(t) for the DiRT and discrete state models. A. ρ = 10, B: ρ = 1000 for the
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over time. Simulations were conducted in Ω2D and parameter values can be found in Table I.

2. Influence of the Number and Spatial Arrangement of
Capture Regions

We now expand our investigation to include the dy-
namics of the number of available capture regions, and
how their number and spatial distribution influence these
dynamics. We start by considering Ω2D with one cap-
ture region located at ∂Ωc = {(x, y)|y = 0 and x ∈
[0.45, 0.55]} (Fig. 11, red, dashed). We compare this
to the same domain, but with ∂Ωc split into five cap-
ture regions of equal size (orange, solid). Note that ν
and γ are the same for both domains, and their estima-
tion only needs to be performed once. As illustrated in
Figs. 11A and 11B, the domain with five capture regions
captures more particles, while having a lower amount of
variation. Figs. 11C and 11D contain plots for the ex-
pected fraction and standard deviation of open capture
regions (i.e. E[R(t)/m]), and illustrate that the system
reaches steady state faster with five capture regions and
has a lower amount of variation for the fraction of open
capture regions.
With these results in mind, one might wonder whether

having five capture regions yields similar results as having
a single capture region with a five times faster recharge
rate (purple, dot-dashed). However, Fig. 11 clearly illus-
trates that this is not the case. The number of cumulative
captures does increase, but unlike in the case of five cap-
ture regions, the initial increase in E[C(t)] is only one, as
opposed to five. Further, the amount of variation seen
is drastically different, and the system returns to steady
state significantly faster with this larger recharge rate.
Lastly, we investigate how the spread of capture re-

gions may affect these curves. Specifically, we dis-
tributed the five capture regions along y = 0, with
∂ΩC = {(x, y)|y = 0 and x ∈ [0.09, 0.11] ∪ [0.29, 0.31] ∪
[0.49, 0.51] ∪ [0.69, 0.71] ∪ [0.89, 0.91]} (purple, dotted).

We found a minimum difference between this arrange-
ment of capture regions, and the arrangement where all
of the capture regions were placed in the center of the
domain. These results suggest that a combination of the
number and recharge rate, but not the spatial location
of receptors, primarily determines the time courses and
their variability. This result is particularly interesting in
the context of our neuronal synapse application, where
receptors have been shown to cluster in the center of the
post-synaptic terminal [23]. Our result suggests that this
spatial arrangement of receptors does not directly affect
the reliability of signal propagation through the synapse,
and the functional consequences of such an arrangement
lie elsewhere.

E. Application to an Idealized Synapse

We now apply our mathematical model to investigate
the dynamics of an idealized synaptic cleft, where the
particles are neurotransmitters, the capture regions are
receptors, and the neurotransmitters are broken down
by enzymes after being captured by the receptors. In
this context, the number of currently bound capture re-
gions (i.e., m−E[R(t)]) is the key variable of interest, as
it represents the number of currently activated receptors
and relates to the conductance through the post-synaptic
neuron. These receptors are not perfect absorbers, lead-
ing us to generalize the model to partially-absorbing cap-
ture regions. Unlike the perfect absorbing capture re-
gions considered up to this point, there is some probabil-
ity of a particle not being captured after coming in con-
tact with a partially-absorbing capture region. We can
extend the technique used to estimate parameters γ and
ν to account for such capture regions by including appro-
priate Robin boundary conditions (Supplemental Materi-
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FIG. 11. Parameter exploration using the discrete state model. A: E[C(t)], B: coefficient of variation of E[C(t)],
C: E[R(t)/m], and D: standard deviation of R(t)/m for different recharge rates, capture region numbers and capture region
locations. The domain for all curves is Ω2D. The capture regions have been adjusted to be ∂ΩC = {(x, y)|y = 0 and x ∈
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for the centered m = 5 curve, and ∂ΩC = {(x, y)|y = 0 and x ∈ [0.09, 0.11]∪ [0.29, 0.31]∪ [0.49, 0.51]∪ [0.69, 0.71]∪ [0.89, 0.91]}
for the distributed m = 5 curve. The algorithm provided in the Supplemental Materials [16] was used to calculate parameters
ν and γ.

als [16]). Here, we consider an absorption rate K = 1 (in
the case of a perfect absorber, K = ∞). We also increase
the number of capture regions from m = 3 to m = 50
(still uniformly spaced along the interval x ∈ [0.25, 0.75]),
which is closer to reality for a neuronal synapse [24].

Fig. 12A starts the investigation by first illustrating
that the discrete state model accurately models the DiRT
process with such a partial absorbing capture region
(red, solid and blue, dashed). This figure also compares
partially-absorbing capture regions (blue, dashed) with
perfect absorbers (purple, dot-dashed). These curves
show that perfectly absorbing capture regions are faster
at capturing particles, they are closer to being fully satu-
rated when m−E[R(t)] is at its peak, and have a slower
initial decay away from this peak.

Returning our attention to the specific application of
a neuronal synapse, we investigate how the size of the
cleft and number of capture regions influence the time
course of m−E[R(t)], since both of these quantities have
been experimentally shown to vary [25, 26]. We first com-

pare Ω2D to the smaller domain Ω̂2D (Fig. 12B, inset).
As Fig. 12B, illustrates, the magnitude of m − E[R(t)]
does not change between the two domains, but it has a

significantly shorter duration in domain Ω̂2D. We also
consider m = 50 and m = 25 capture regions in domain
Ω2D (Fig. 12C). Unsurprisingly, more capture regions are
occupied in the m = 50 case. However, while the dura-
tion of the two curves are similar, the time course with
m = 50 has a noticeably quicker decay from its max-
imal value. As a result, we conclude that the discrete
state model can approximate a neuronal synapse with
partially-absorbing receptors, and finds that the size of
the synapse and number of receptors determines the time
course of receptor activation.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we investigated the dynamics of the dif-
fusion with recharging traps process, focusing on P (t),
the number of particles remaining in the domain, C(t),
the number of cumulative captures, and R(t), the num-
ber of available capture regions. We outlined conditions
where this spatial and stochastic process can be approx-
imated by a discrete state model, and its corresponding
mean field approximation. Using these models, we found
that the recharge rate, ρ, of the capture regions deter-
mines the time course of E[C(t)] (increases linearly with
a slope and duration that explicitly depend on ρ), as
well as the average and variance of the clearance time,
the time it takes for all particles to leave the domain. In
our previous work, we showed that accounting for a finite
recharge rate for the capture regions drastically decreased
the average number of particles captured when compared
to an instantaneous rate [15]. Here, we have built upon
that result, and found that, depending on the parameter
regime, a finite recharge rate will either increase or de-
crease the amount of variability. Lastly, we considered
the dynamics of the model with partially-absorbing and
found that the time course of capture region activation
is determined by both the size of the domain and the
number of capture regions.

We now mention a couple of possible extensions to the
model. First, we note that the continuous-time Markov
process on a discrete state space used to approximate
the DiRT model consisted of transition rates that only
accounted for the number of available capture regions.
However, this discrete state model can be made more
complex by explicitly accounting for the arrangement of
currently available capture regions. For example, with
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FIG. 12. Role of domain size and number of capture regions with partially-absorbing capture regions. A) The
average number of occupied capture regions for the DiRT (red, solid) and discrete state (blue, dashed) models for m = 50
and partially-absorbing receptors (K = 1). The purple, dot-dashed line corresponds to the discrete state model for m = 50
and perfect absorbers (parameters found in Table I). B) The average number of occupied capture regions for the discrete

state model in domain Ω2D (blue, dashed), and Ω̂2D = [0.25, 0.75] × [0, 0.1] (black, solid) for m = 50. C) The average number
of occupied capture regions for the discrete state model with m = 50 (blue, dashed), and m = 25 (orange, solid) capture
regions. Parameters γ and ν were calculated using the extensions to the main algorithm and can be found in the Supplemental

Materials [16]. For Ω2D: γ = 9.8696, ν = 6.6496, and for Ω̂2D: γ = 39.4784, ν = 9.6754.

m = 3 capture regions, we would have escape rates γijk
and capture rates νijk, where i, j, and k denote the state
of capture regions one, two, and three respectively (1 if
it is available, and 0 otherwise). With this setup, the
number of transition rates is m!, which is large for even a
moderate number of receptors. While this complication
to the model would potentially improve the approxima-
tion, we have shown that this additional computation
was not necessary for a quantitative agreement between
the DiRT model and its approximations for domains Ω1D

and Ω2D.

One also could generalize the DiRT model to account
for more general assumptions on particle motion. Such a
generalization would appear in the Fokker-Planck equa-

tion, and the algorithm used to calculate the parameters
could be extended appropriately. Another possible gener-
alization is to suppose that each particle is removed from
the system at some constant rate, γdec (i.e., particles have
an exponentially distributed lifetime, and would apply to
second messenger proteins such as IP3 [27]). In this case,
the transition rate for a particle to escape in the discrete
state model would simply become γ + γdec. Lastly, one
could allow for multiple types of capture regions, some
that remove the particles from the domain, as we stud-
ied here, and others that would return them back into
the domain. This would lead to a less-idealized synaptic
cleft model, but we note that while this updated model
would further reduce the number of molecules seen by the
receptors, it would not affect their activation directly.
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