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In this work we extend the Caspar-Klug construction to the archaeal viruses, which in recent years
have captured the attention of many researchers for their ability to thrive in extreme environments.
We assume that the shells of archaeal viruses are composed of hexamers and pentamers — as it is true
for icosahedral viruses — together with heptamers, necessary to introduce negative Gauss curvature.
Following the original work of Caspar and Klug, we first construct models capable of reproducing
the shape observed in Electron Microscopy images of archaeal viruses. Next, using the technique of
Kirigami, we present a systematic way to formulate archaeal virus templates from regular hexagonal
lattices. Finally, we utilize the presented techniques to build finite element models of archaeal virus
geometries and investigate their shapes as a function of material properties. In particular, using
thin-shell elasticity theory, we describe a buckling transition as a function of a modified Föppl von
Kármán number γ⋆ and we show how changes in γ⋆ may initiate the tail formation in the Acidianus
two-tailed archaeal virus.

I. INTRODUCTION.

In 1962, Caspar and Klug (CK) [1] proposed
a classification method for viral capsids, the pro-
tein shells that surround the genomes of viruses.
Capsids have typical sizes in the range of 10-100
nm and are composed of hundreds of proteins,
known either as capsid proteins or subunits. In

∗ luigiemp@ucla.edu
† kszhang7@ucla.edu
‡ Currently in the Department of Mechanical Engineer-

ing, Stanford University, Stanford, CA 94305, USA
§ jarudnick@physics.ucla.edu
¶ bruinsma@physics.ucla.edu

the simplest case, the subunits are all identi-
cal. The CK construction is shown in Fig. 1. It
consists of the cutting and pasting together of
a template, which transforms a hexagonal sheet
into a closed icosahedral shell. The reason that
the construction has to start from a hexagonal
lattice is that capsid proteins tend to crystallize
into hexagonal sheets when they self-assemble
on a flat surface.

The CK template is composed of twenty ad-
jacent equilateral triangles of a hexagonal sheet
(Fig 1). The base of each triangle is a lattice
vectorA(h, k) = ha1+ka2 of the hexagonal lat-
tice, with {h, k} a pair of positive integers and
{a1, a2} a pair of basis vectors of the hexagonal
lattice. The icosahedron is obtained by past-
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FIG. 1. (Color online) Caspar-Klug construction
of icosahedral viruses. The basis vectors a1 and
a2 of a two-dimensional hexagonal lattice are used
to construct a template made of twenty equilateral
triangles. Icosahedral shells can be constructed by
folding the templates along the edges of the equilat-
eral triangles and gluing them together. Depend-
ing on the steps h and k in the a1 and a2 direc-
tions, achiral (e.g., T = 4 with h = 2, k = 0 —
top) or chiral (e.g., T = 7 with h = 2, k = 1
— bottom) shells can be formed. Figure reprinted
from [2] (copyright 2015) with permission from El-
sevier and composed using figures obtained from
VIPERdb (http://viperdb.scripps.edu) [3]

ing together adjacent exposed edges of the tem-
plate and hexamers at the border of a triangle
neatly match with the hexamers of the trian-
gle to which they will be attached. Examina-
tion of the shells of Fig. 1 shows that there are
twelve pentamers at the vertices of the icosa-
hedron. The construction can be repeated for
every pair of integers h and k. Fig. 1 shows
the construction of an achiral shell (T = 4 with
{h, k} = {2, 0}) and of a chiral shell (T = 7,
with {h, k} = {2, 1}). The size of an icosahe-
dron is determined by the length of the base
vector A(h, k). It follows from simple geometry

that | ~A(h, k)|2 equals T (h, k) = h2 + k2 + hk,
where T represents the capsid T number and
characterizes the Caspar-Klug icosahedron.

By varying the size and shape of the tem-
plate, the CK construction has been gener-
alized to spherocylindrical and conical capsid

shapes [4], encountered with retroviruses. How-
ever, there are viruses whose capsids appear to
be beyond the reach of the CK construction.
For example, the tiling of polyoma virus [5],
simian virus 40 [6], and L-A virus [7] capsids
require a different tiling approach as presented
by Twarock [8, 9]. A different family of exam-
ples belong to the Archaeal viruses, a group of
viruses that prey on the Archaea [10], prokary-
otes that resemble more familiar bacteria in size
and shape. However, their metabolism resem-
bles that of plant and animal cells. Other prop-
erties, such as the structure of their membranes,
appear to be unique to the Archaea. Archaeal
viruses are an equally unusual family of dou-
ble (ds) or single-stranded (ss) DNA viruses
that infect the Archaea. We will focus here
on a group of Archaeal viruses that are typi-
fied by the Acidianus two-tailed virus (ATV), a
spindle-shaped archaeal virus (Fig. 2) that func-
tions in acidic and hot environments [11, 12].
The reason that ATVs have morphologies that
cannot be classified according to the standard
CK method is that, exceptionally, their capsids
have regions of negative Gauss curvature.

When the ATV virus assembles — under
in-vitro conditions — at lower temperatures
the tails are absent. The tails grow sponta-
neously if the temperature is increased above
75◦C (Fig. 2) [11]. These extensions, or tails,
are believed to play a role in establishing con-
tact with potential host cells and it appears that
tails are covered by the same layer of capsid
proteins that constitutes the main body of the
capsid.

The fundamental new feature of the ATV
capsid in terms of crystallography is the pres-
ence of the sections of negative Gauss curva-
ture where the two tails are connected to the
main body of the virus. Shells constructed by
the CK method have strictly positive Gauss cur-
vature. For the CK method to apply to ATV
and other archaeal viruses, it has to be general-
ized. Developing such a generalization is the
first aim of this paper. A second aim is to
examine whether tail assembly can be under-
stood within the CK approach. To that pur-
pose, we will build finite-element models of ar-
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FIG. 2. ATV conformational change: from the tail-
less lemon-shaped virion (top) to the tailed particle
(bottom). Scale bars are 50 nm long. Adapted
by permission from Springer Nature [13], copyright
(2006). Originally adapted from [11].

chaeal viruses to study their buckling instabili-
ties.

II. LATTICE KIRIGAMI FOR CLOSED

SHELLS

Our approach is motivated by the three-
dimensional structures that can be generated
by cutting templates from two-dimensional
lattices, an art form known as Lattice
Kirigami [14]. Structures with negative Gauss
curvature can indeed be generated by Lattice
Kirigami but not within the confines of the
CK rules. We specialize our form of Lattice
Kirigami to hexagonal lattices. The basic con-
struction units are then hexamers, pentamers,
and heptamers (Fig. 3a). Starting from the hex-
amer units with zero Gauss curvature, the re-
moval or addition of one triangular subunit pro-
duces units with positive (pentamers) and nega-
tive (heptamers) Gauss curvature, respectively.

Hexamers and pentamers are the standard
units of the CK construction. Inclusion of the
saddle-shaped heptamers allows the construc-
tion of shells with negative Gauss curvature.
Figure 3b show a paper model example of a
T = 4 CK capsid with a tail starting from a
five-fold symmetry site where a pentamer was
originally located. Heptamers link the tail to
the body of the shell while pentamers close the
end of the tail. In its most simple form (see

FIG. 3. (Color online) Paper models. a) Basic
units: pentamers (orange), hexamers (blue), hep-
tamers (green). b) Tail attached to a partial T = 4
CK capsid by a ring of heptamers. Several other
paper model examples are included as supplemen-
tal material [15].

Fig. 4), one removes a pentamer plus a ring
of five attached hexamers from the icosahedral
shell. Then insert a ring of five heptamers to
replace the hexamers and form the neck region.
Subsequently, several five-fold symmetric rings
of hexamers can be attached to the heptamers’
ring to elongate the tail. Finally, a cap of six
pentamers is used to close the end of the tail.
Adopting the convention of assigning a +1 topo-
logical charge to pentamers and a −1 charge
to heptamers, the net charge of the tail is +1,
which is the same as that of the original pen-
tamer. More generally, application of Euler’s
formula to a closed surface of pentamers, hex-
amers, and heptamers leads to the result that
the net topological charge of the surface must
equal 12. It follows that every additional hep-
tamer must be balanced by adding an extra pen-
tamer. In the simple case illustrated in Fig. 4
and discussed above, the five heptamers intro-
duced in the neck regions are balanced by five
additional pentamers added to the tail cap.



4

FIG. 4. (Color online) Construction of an ATV-
like geometry starting from a CK icosahedral shell.
In this example we use a T = 7 central body (a),
remove a pentamer and its nearest ring of hexamers
(b), and replace them with a five fold symmetric tail
(c). Five heptamers are inserted at the base of the
tail to introduce the negative Gauss curvature in
the transition region from the central icosahedral
body.

This construction can be repeated for any T
number of the central body (e.g., see Fig. 5).

We can extend the same construction princi-
ple to non-icosahedral bodies (e.g., Fig. 6). For
example, starting from an icosahedral shell, we
can rotate one half of the capsid with respect to
an axis passing through a three-fold symmetry
site (i.e., the center of one face of the icosahe-
dron) and introduce a mirror symmetry plane
disrupting the icosahedral symmetry of the cen-
tral body (Fig. 6a). Further variations contain-
ing two-fold symmetric tails are possible (e.g.,
Fig. 6b-c). In the latter examples, four hep-
tamers are necessary in each neck region and
six pentamers are present in the tails’ caps. Al-
though differently distributed in the capsid cen-
tral body and tails, the total topological charge
is still equal to +12 as expected by Euler’s for-
mula.

FIG. 5. (Color online) ATV-like geometries with
T = 4 (a) and T = 7 (b) central icosahedral bodies.
Several additional five-fold hexamer rings can be
added to elongate the tethers’ central sections.

FIG. 6. (Color online) ATV-like geometries with
non-icosahedral bodies. (a) Mirror symmetric cap-
sid with five fold symmetric tail. (b-c) Two fold
symmetric tethers connected with a single (b) and
multiple (c) rings of hexamers in the central bodies.

Can one reproduce the shape of the ATV shell
by this method? Increasing the T-number of
the central body in Fig. 5 without modifying
the tails results in a sharper transition between
the central body and the tails, which does not
reproduce the ATV capsid (e.g., see Fig. 2). In-
stead additional pentamer-heptamer pairs need
to be introduced stepwise in order to gradu-
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ally decrease the radius of the tails (Fig. 7).
As more pairs are introduced, they begin to
connect and develop into pentamer-heptamer
“scars” along the capsid. We observed similar
pentamer-heptamer scar-like structures on the
surface of an unduloid representing the ATV
capsid [16]. By using five pentamer-heptamer
pairs for each step in the radius change, it is
possible for each section to preserves five-fold
symmetry. This leads to a key observation: the
capsid can be approximated by stacking locally
icosahedral sections separated by additional tail
material. In the construction shown in Fig. (7,
a), the capsid progresses from a T = 9 body to
a T = 4 intermediate section and finally to a
T = 1 cap.
It is important to notice that the long

pentamer-heptamer scars in Fig. 7 are a re-
sult of how close the T -numbers of different
sections are. As the size of the capsid grows,
larger T numbers are recruited. In these larger
T numbers, the five-fold sites are separated by
a greater distance. As a result, the inserted
pentamer-heptamer pairs are no longer adja-
cent to form a continuous “scar” and additional
material is expected to appear in between each
pentamer-heptamer pair.

III. EXTENSION OF THE

CASPAR-KLUG CONSTRUCTION TO

ARCHAEAL VIRUSES

Using several examples, in Section II we have
illustrated how ATV-like shapes can be con-
structed using pentamers, hexamers, and hep-
tamers. In the following we want to formally
extend the CK construction to form ATV-like
shapes with icosahedral bodies from a planar
hexagonal lattice. We begin by considering a
single connection from the central icosahedral
body to a tail of a certain size (e.g., Fig. 5).
Subsequently we consider tails of varying radius
such as the one presented previously in Fig. 7a.
We construct the partial icosahedral central

body using the classic CK construction briefly
reviewed in Section I and illustrated in Fig. 1.
Accordingly, pentamers are placed at the ver-

FIG. 7. (Color online) Gradually changing tail ra-
dius with icosahedral (a) or non-icosahedral (b) cen-
tral bodies. By using heptamer/pentamer pairs we
can gradually change the radius of the constructed
ATV-like shells. As a result of the change in ra-
dius, pentamer/heptamer scars may develop in the
tethers.

tices of the icosahedron identified by the (h, k)
pair on the hexagonal lattice. In order to in-
clude the necessary negative Gauss curvature
in the connection region between the tails and
the central icosahedral body, we introduce hep-
tamer units. Since the capsid is a closed surface,
per each heptamer introduced in the connection
region, there is a corresponding additional pen-
tamer so that the net topological charge is pre-
served and equal to +12 as prescribed by Euler
formula (See also [14] for general kirigami rules
on a honeycomb lattice.)
In order to codify our construction and the

location of the heptamer units, we start from
the work presented in [4] for spherocylindri-
cal viruses and define the following vectors (see
Figs. 8, 9, and 10):

A = ma1 + na2 ; (1a)

b1 = −a1 + 2a2 ; (1b)

b2 = −2a1 + a2 ; (1c)

B = p (mb1 + nb2) . (1d)

The integers m and n represent the steps on
the hexagonal lattice in the neck region between
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FIG. 8. (Color online) Templates to construct
ATV-like geometries with T = 7 icosahedral body
and t = 1, p = 1.5 (top), t = 3, p = 4

3
(cen-

ter), and t = 4, p = 1 (bottom) tails. The 3D
capsid corresponding to each template is shown on
the right. We report the lattice vectors a1 and a2

together with the vectors b1, b2, A, and B used to
determine the tail t number and length.

two close heptamers. Accordingly the vector A

FIG. 9. (Color online) Templates to construct
ATV-like geometries with T = 4 icosahedral bod-
ies and t = 1 tails. The two templates correspond
to different tail lengths and possible orientations of
the tails’ cap with respect to the icosahedral body
(p = 1.5 top, p = 2 bottom). The lattice vectors
a1 and a2 are shown together with the vectors b1,
b2, A, and B used to determine the tail t number
and length.

connects two heptamers. As before (see Sec-
tion I and Fig. 1) a1 and a2 are the basis vec-
tors of the hexagonal lattice. The tail grows
in the direction identified by the vector B to a
length depending on p, with p > 0 (the tail can-
not have zero length). Accordingly the vectorB
connects a heptamer in the transition region to
the terminal pentamer at the center of the cap.
The vector B is defined based on b1 and b2,
which are orthogonal to a1 and a2, respectively.
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FIG. 10. (Color online) Templates to construct
ATV-like geometries with T = 9 icosahedral body
and t = 1 (top) and t = 4 (bottom) tails. For both
t-number tails, we show the template corresponding
to two possible orientations of the cap with respect
to the icosahedral body: (T9-t1-a) p = 2, (T9-t1-
b) p = 1.5, (T9-t4-a) p = 1, and (T9-t4-b) p = 1.
Notice that both capsids (T9-t4-a) and (T9-t4-b)
correspond to the same p number and have the same
number of capsomers, although the cap orientation
with respect to the central icosahedral body is dif-
ferent.

Based on the definition of vectors A and B,
we list a few principles governing our extension
of the CK construction to archaeal viruses:

1. Each tail is five fold symmetric and can be
classified by: 1) an additional T -number
t determined by the steps m and n neces-
sary to join the seven-fold sites at its base;
and 2) a number p determining the length
of the tail.

2. Given an icosahedral body characterized
by h and k lattice constants, we can build
tails with t-numbers t = m2+mn+n2 for
any combination m ≤ h and n ≤ k, with
at least either m or n strictly less than
their respective h or k.

3. Chiral and achiral tails can be generated
from either chiral or achiral bodies. Chiral
central bodies lead to a more complex pla-
nar templates, e.g., compare Figs. 8 (chi-
ral) and, 9 or 10 (achiral).

In the classic CK construction, a shell is com-
posed of 10(T−1)+12 capsomers. According to
our construction the total number of capsomers
composing the ATV-like shell with tail of fixed
radius is:

Ncpas = 10(T − 1) + 12 + 2(10p− 5)t . (2)

Therefore the number of pentamers, hexamers,
and heptamers is:

Npent = 22 ; (3a)

Nhex = 10(T − 3) + 2(10p− 5)t ; (3b)

Nhept = 10 . (3c)

Our construction can be seamlessly extended
to tails of varying radius. Each section i of
fixed radius will be described by a set of con-
stants (mi, ni, pi): (mi, ni) will join adjacent
heptamers at the base of the section i and pi will
describe the length of the tail section, from the
heptamers at the base of the section to the po-
sition of the terminal pentamer if the tail would
terminate with the current section (See Fig. 11).
If we allow for tails of varying radius, eqn. (2)

can be generalized to:

Ncpas = 10(T − 1)+12+2

Nt
∑

i=1

(10pi− 5)ti , (4)

where Nt is the number of tail segments with
different radius, each with T number ti and
length determined by the vector Bi.
In the current algorithm, we have considered

shells with the same tail size and length, but
our construction can be easily extended to shells
with tails of different size and length or shells
with one tail only. These extensions can be
achieved by introducing constants m, n, and p
different for each tail and accordingly modifying
eqns. (2), (3), and (4).

IV. ELASTICITY THEORY APPLIED

TO ARCHAEAL VIRAL CAPSIDS

We noted in the introduction that tailed ar-
chaea viral capsids can change their shape by
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FIG. 11. (Color online) Templates to construct
ATV-like geometries with tails of varying radius.
Starting from a T = 7 icosahedral body, two tails
of varying radius are shown: (t1 = 3, p1 = 7

6
) –

(t2 = 1, p2 = 2) tail (left) and (t1 = 4, p1 = 1) –
(t2 = 1, p2 = 2.5) tail (right). The vectors A1 and
A2 determine the subsequent tail t numbers while
the vectors B1 and B2 characterize the tails length.

extending one or two tail groups (see Fig.2).
The extension appears to be driven by the
growth of a central fiber. Can such an exten-
sion be understood within the generalized CK
construction? Shape changes of elastic shells
are possible. A spherical shell can transform
into a polyhedral shell under a change of the
ratio of two-dimensional Young’s Modulus Y
and the bending modulus κc, which is known
as the buckling transition as described by Lid-
mar et al. [17] for spherical capsids. Could a
buckling-type transition be responsible for the
tail growth? In order to answer this question,
we applied thin shell elasticity theory to the
models built according to the construction of
Section III.
Following the work of Lidmar et al. [17] and

our previous work [2], we divide the shell elas-
tic energy Π into bending Πb and in-plane Πs

energies:

Π = Πb +Πs ; (5a)

Πb =

∫

Ω

κc

2
(2H)2 + κGK dω ; (5b)

Πs =

∫

Ω

κs

2
(J − 1)2 +

µ

2

(

tr(C)

J
− 2

)

dΩ ,

(5c)

where Ω is the shell surface, κc and κG are the
bending and Gauss curvature moduli, H and K
are the mean and Gauss curvatures, κs and µ
are the 2D in plane stretching and shear mod-
uli, J is the ratio between deformed and refer-
ence area, and C is the right Cauchy-Green de-
formation tensor. The split in area-stretching
and shearing deformation in Πs was proposed
by [18].

The reference configuration for our calcula-
tions is the flat hexagonal lattice and therefore
we do not introduce any intrinsic curvature in
the expression of the bending energy. Accord-
ing to the Gauss-Bonnet theorem, the integral
of the Gauss curvature over a closed surface
is constant. Therefore, in our simulations the
term

∫

Ω kGKdω in eq. (5b) integrates to a con-
stant value equal to 4πκG and it does not affect
the final shape attained by the capsid.

We model the capsid deformation according
to Kirchhoff-Love thin shell theory. We mini-
mize the shell energy Π by discretizing the cap-
sid with non-local C1 continuous Loop shell fi-
nite elements [19, 20] to minimize the bending
energy Πb, and with linear triangular elements
to minimize the in plane energy Πs.

We initialize our simulations by: 1) project-
ing radially all the vertices of the shell trian-
gular mesh onto a unit sphere; 2) computing
the average edge length ℓ̄ of the mesh projected
on the unit sphere; and 3) setting the trian-
gular elements reference edge length equal to
ℓ̄. This initialization enforces that all triangu-
lar elements forming the elastic shell have the
same flat equilateral triangle as reference con-
figuration from which the in plane energy Πs is
computed.

The energy of the finite element model is min-
imized using the LBFGS solver [21]. A detailed
description of the finite elasticity model and nu-
merical methods used herein can be found in [2].

We analyze the shell shape as a function of
a modified Föppl von Kármán (FvK) number
and shell asphericity. The FvK number char-
acterizes the ratio between shell stretching and
bending stiffness. The shell asphericity instead
characterizes the shell shape with respect to a
perfect sphere. For spherical – or almost spher-
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ical – shells the Föppl von Kármán (FvK) num-
ber γ is defined as Y R2/κc, where R is the av-
erage shell radius and Y = 2κs(1− ν) is the 2D
Young modulus, with ν being the Poisson ra-
tio. In our calculation we set ν = 0.3. For non
spherical shells for which R is not well defined,
we extend the definition of the FvK number to
γ⋆ = Y A/κc, where A is the shell current area
(A =

∫

Ω dω). Analogously, the definition of as-

phericity where R is well defined is 〈∆R
2〉

〈R〉2 [17],

where ∆R = R − 〈R〉 and 〈·〉 denotes the av-
erage over the shell surface. In our case, we
adopt two alternative definitions of asphericity
based on the mean H and Gauss K curvatures

as
∫
Ω
(H−〈H〉)2dω

A
and

∫
Ω
(K−〈K〉)2dω

A
.

Starting from the spherical reference configu-
ration, in all simulations presented here we in-
crease Y from 0.5 to 300 in 300 logarithmic in-
crements while κc was held constant and equal
to 1. Changes in Y corresponded to changes in
γ⋆ from ≈ 4 to ≈ 3930. We emphasize that the
capsid shape changes presented in the follow-
ing are only due to changes in γ⋆ and no other
parameters were modified in computing subse-
quent equilibrium configurations.

We simulated six representative shells that
differ in T number of the central icosahedral
body, t number of the tails, and tails’ length.
In Figures 12-17 we denotes with the following
abbreviations the analyzed shells: T 9− t4− t1
has an icosahedral T = 9 central body and grad-
ually varying tail with t number 4 and 1 (Fig. 7,
a); T 7− t4, T 7− t3, T 7− t1 are built with an
icosahedral T = 7 central body and constant
radius tails with t numbers 4, 3, and 1, respec-
tively (Fig. 8); T 4 − t1 and T 4 − t1ℓ have an
icosahedral T = 4 central body and constant ra-
dius t = 1 tails with different lengths — p = 1.5
in T 4− t1 and p = 2 in T 4− t1ℓ (Fig. 9).

Shortly after γ⋆ begins to increase from the
initial configuration, the shells asphericity un-
dergoes a sharp transition (Figures 12, 13).
This sharp increase in both Gauss and mean
curvature based asphericities correspond to the
tail growth from the central body (Figures 14,
15, and 16). As γ⋆ increases, the tails continue
to extend and the shell shape encoded in the

flat regular hexagonal templates are expressed.
These findings are consistent in all the simula-
tions carried out with the representative shells
listed above. Figure 17 shows the shell trans-
formation along the tail axis. At low γ⋆ (top
row), it is apparent the template pattern from
which the shells are built and that encodes the
shells final shapes. As γ⋆ increases, the Gauss
curvature becomes negative in the neck regions
and increases at the tail ends. See supplemen-
tal material [15] for videos of tails’ growth as a
function of increase in FvK number γ⋆ for the
cases presented in Figs. 14 to 17.
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FIG. 12. (Color online) Mean curvature asphericity
( ∫

Ω
(H−〈H〉)2dω

A

)

as a function of FvK number γ⋆

(Y A/κC) for ATV-like capsids built using T = 4,
T = 7, and T = 9 central bodies.

We notice that the results presented here have
been obtained without enforcing a constant area
constraint. However, the same calculations car-
ried out imposing an area constraint lead to sim-
ilar results.

V. CONCLUSION

In this work we have proposed an algorithm
to construct closed shells with positive and neg-
ative Gauss curvature as the ATV capsid. Our
construction algorithm is an extension of the
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FIG. 13. (Color online) Gauss curvature asphericity
( ∫

Ω
(K−〈K〉)2dω

A

)

as a function of FvK number γ⋆

(Y A/κC) for ATV-like capsids built using T = 4,
T = 7, and T = 9 central bodies.
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FIG. 14. (Color online) Gauss curvature asphericity
( ∫

Ω
(K−〈K〉)2dω

A

)

as a function of FvK number γ⋆

(Y A/κC) for ATV-like capsids built using T = 4
central body. Insets illustrate capsid configurations
at representative FvK numbers equal to ≈ 30, ≈

300, and ≈ 3000.

classic Caspar-Klug construction and is based
only on three basic units: pentamers, hexam-
ers — as in the Caspar-Klug construction with
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FIG. 15. (Color online) Gauss curvature asphericity
( ∫

Ω
(K−〈K〉)2dω

A

)

as a function of FvK number γ⋆

(Y A/κC) for ATV-like capsids built using T = 7
central body. Insets illustrate capsid configuration
at representative FvK numbers equal to ≈ 50, ≈

500, and ≈ 3500.
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FIG. 16. (Color online) Gauss curvature asphericity
( ∫

Ω
(K−〈K〉)2dω

A

)

as a function of FvK number γ⋆

(Y A/κC) for ATV-like capsids built using T = 9
central body. Insets illustrate capsid configuration
at representative FvK numbers equal to ≈ 50, ≈

500, and ≈ 3500.

only positive Gauss curvature — and heptamers
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Gauss curvature

T4 - t1 T7 - t1 T9 - t4 - t1ℓ

FIG. 17. (Color online) Shape evolution of ATV-
like capsids built with T = 4 (left), T = 7 (center),
and T = 9 (right) central bodies. These front views
correspond to the lateral views reported in the in-
sets of figures 14, 15, and 16, respectively, and il-
lustrate the capsid configurations at representative
FvK numbers equal to ≈ 50 (≈ 30 for T4 − t1 ℓ),
≈ 500 (≈ 300 for T4 − t1 ℓ), and ≈ 3500 (≈ 3000
for T4− t1 ℓ). The shells are colored by Gauss cur-
vature.

— necessary to introduce negative Gauss curva-
ture. As in the Caspar-Klug construction, the
topology of the ATV-like shell is completely de-
fined by the number of steps along predefined
directions over a regular hexagonal lattice that
lead to the location of the five and seven fold
type defects (e.g., see eq. (1)). Therefore the
topology of the shell is easily codified by a list
of steps and directions, and different prototypes
can be easily classified and created.

Motivated by the buckling transition ob-
served in spherical viruses, we explored whether
such a transition existed for the ATV-like shells
and whether it could explain tail formation.
We showed that the buckling transition indeed
can promote tail growth provided the negative
Gauss curvature sections are “programmed in”

by a suitable distribution of heptamers (see Fig-
ures 14-16). The tail growth during the buck-
ling transition is driven by a change in ma-
terial properties, i.e., the modified Föppl von
Kármán (FvK) number γ⋆. In other words, it
requires that the virus regulates somehow the
elastic moduli of the capsid. Is this possible?
In fact, there are examples of viruses that mod-
ulate their own material properties leading to
a buckling transition. A well known example
is the HK97 virus [22] where a change in the
bending modulus following a bond scission re-
action produces buckling [23]. Whether this
happens as well for ATV would have to be
demonstrated. A separate way of testing the
theory could be based on a micro-mechanical
study that measured the resistance of the capsid
against nano-indentation by an atomic-force mi-
croscope (AFM) [24], since the elastic response
of a shell is quite different depending on whether
the shell is in a liquid or a solid state. If tail
growth is not due to a form of buckling, then
the capsid would have to allow for a form of
flow of capsid proteins during tail growth. This
would require the capsid proteins to be in a
fluid or smectic liquid-crystalline state [25] (one
would need to understand how a fluid or liquid
crystalline shell can withstand the large osmotic
pressure that is known to be present inside ds
DNA phage viruses in this explanation).
In summary, a shell with positive and neg-

ative Gauss curvature may be encoded in a
regular hexagonal lattice by placing 5 and 7
types defects according to a precise construc-
tion. Subsequently, by increasing uniformly
the ratio between in plane Young modulus and
bending modulus, the shape initially encoded
in the flat template can be expressed and, as
part of the morphing process, tethers can ex-
tend from the central body.
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[12] M. Häring, G. Vestergaard, R. Rachel, L. Chen,
R. A. Garrett, and D. Prangishvili, Nature
436, 1101 (2005).

[13] D. Prangishvili, P. Forterre, and R. Garrett,
Nat. Rev. Microbiol. 4, 837 (2006).

[14] T. Castle, Y. Cho, X. Gong, E. Jung, D. M.
Sussman, S. Yang, and R. D. Kamien, Physical
review letters 113, 245502 (2014).

[15] “See Supplemental Material at [URL will be in-
serted by publisher] for 1) Additional examples
of paper models to construct ATV-like shells;
2) Movies of tails’ growth driven by an increase
in FvK number.”.

[16] L.E. Perotti, S. Dharmavaram, W.S. Klug,
J. Marian, J. Rudnick, and R.F. Bruinsma,
Physical Review E 94, 012404 (2016).

[17] J. Lidmar, L. Mirny, and D. R. Nelson, Phys-
ical Review E 68, 051910 (2003).

[18] E. Evans and R. Skalak, CRC critical reviews
in bioengineering 3, 181 (1979).

[19] F. Cirak, M. Ortiz, and P. Schroder, Interna-
tional Journal for Numerical Methods in Engi-
neering 47, 2039 (2000).

[20] F. Cirak and M. Ortiz, International Journal
for Numerical Methods in Engineering 51, 813
(2001).

[21] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal,
ACM Transactions on Mathematical Software
(TOMS) 23, 550 (1997).

[22] J. Conway, W. Wikoff, N. Cheng, R. Duda,
R. Hendrix, J. Johnson, and A. Steven, Sci-
ence 292, 744 (2001).

[23] A. Aggarwal, J. Rudnick, R.F. Bruinsma, and
W.S. Klug, Physical review letters 109, 148102
(2012).

[24] W. Roos, R. Bruinsma, and G. Wuite, Nat
Phys 6, 733 (2010).

[25] S. Dharmavaram, J. Rudnick, C. Lawrence,
and R. Bruinsma, Journal of Physics: Con-
densed Matter 30, 204004 (2018).


