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Molecular motors facilitate intracellular transport through a combination of passive motion in
the cytoplasm and active transport along cytoskeletal filaments. Although the motion of motors on
individual filaments is often well characterized, it remains a challenge to understand their transport
on networks of filaments. Here, we use computer simulations of a stochastic jump process to deter-
mine first-passage times (FPTs) of a molecular motor traversing an interval containing randomly
distributed filaments of fixed length. We characterize the mean first-passage time (MFPT) as a
function of the number and length of filaments. Intervals containing moderate numbers of long fila-
ments lead to the largest MFPTs with the largest relative standard deviation; in this regime, some
filament configurations lead to anomalously large FPTs due to spatial regions where motors become
trapped for long periods of time. For specific filament configurations, we systematically reverse the
directionality of single filaments and determine the MFPT of the perturbed configuration. Surpris-
ingly, altering a single filament can dramatically impact the MFPT, and filaments leading to the
largest changes are commonly found in different regions than the traps. We conclude by analyzing
the mean square displacement of motors in unconfined systems with a large density of filaments
and show that they behave diffusively at times substantially less than the MFPT to traverse the
interval. However, the effective diffusion coefficient underestimates the MFPT across the bounded
interval, emphasizing the importance of local configurations of filaments on first-passage properties.

I. INTRODUCTION

Active intracellular transport is essential for proper
cellular function in eukaryotes, with defects resulting in
various types of disease [1]. Passive diffusion is often too
slow for transport across cellular distances, so biological
cargo such as vesicles and organelles are commonly trans-
ported via active processes [2–4]. Active transport is fa-
cilitated by molecular motor proteins that bind cargo and
generate directed motion along cytoskeletal filaments by
converting energy obtained from the hydrolysis of ATP
into mechanical work [5–8]. The cytoskeleton of the cell is
comprised of a network of filamentous protein assemblies
and serves as a substrate for the movement of motor pro-
teins in the cytoplasm [9, 10]. Individual filaments have
a polarity that dictates the direction in which a motor
protein moves.

Myosins are a class of molecular motors that travel
along actin filaments [11]. The organization of the actin
cytoskeleton is controlled by many accessory proteins;
commonly, it can be found in an approximately random
configuration, with little correlation between filaments
[12, 13]. In traversing a cytoskeletal network, active
transport along filaments is interspersed with passive cy-
toplasmic motion [14]. Although the biophysical prop-
erties of many types of myosin motors on single actin
filaments have been well characterized [15–20], the influ-
ence of various features of the cytoskeletal network on
transport is not as well established.

Experimental and theoretical studies have shown that
an actin network of sufficient filament density can effec-
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tively transport material, with transport controlled by
motors switching from one filament to another rather
than by means of spontaneous changes in network struc-
ture [21–23]. Theoretical studies have demonstrated
that intermittency in passive versus active transport can
increase the efficiency of transport by decreasing the
amount of time required to traverse a given intracellu-
lar distance [24, 25]. Thus, the spatial organization of
the filament network can significantly affect the trans-
port of molecular motors. In addition, the local organiza-
tion of filaments can have outsized influence on transport
over larger length scales. Experimental and theoretical
studies have shown that motors can become trapped at
junctions of multiple filaments, leading to unproductive
cycling states [26, 27]. Work related to the statistical
physics of traffic phenomena has also provided insight
into systems of multiple interacting motors, where bot-
tlenecks can lead to global segregation into high and low
density regions [28, 29].

In the field of stochastic processes, first-passage pro-
cesses are a class of problems that have been useful
in the study of many physical and biological systems
[25, 30]. Applications in biology include problems in-
volving molecular search, transcription, channel trans-
port, and evolution (reviews of biological applications
can be found in Refs. [31] and [32]). The first-passage
time (FPT) is the time to first reach a specific state (or
set of states) starting from a specified initial condition.
Because FPTs reflect the underlying stochastic process,
they provide a useful way to characterize properties of the
process and are often directly related to physical proper-
ties of interest. For the case of coupled active and pas-
sive motor transport, characterizing FPTs gives insight
into the timescales and variability of transport. For the
example of a motor crossing an interval, a small mean
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first-passage time (MFPT) and low variability would rep-
resent fast and reliable transport; in contrast, a large
MFPT and high variability would represent slow, unre-
liable transport. In this context, Ando et al. used simu-
lations to characterize the FPTs of motors moving from
the nucleus to the cell surface and determined that the
MFPT was largely determined by the total length of all
filaments in the system [27].

Recent experimental and theoretical work has shown
intriguing coupling between motor transport and the
structure of the underlying cytoskeletal network [26, 27].
However, much remains unknown about the relationship
between configurations of filaments and the large-scale
transport of motors [10, 33–35]. In this work, we use
stochastic computer simulations to study the transport
of single motors traversing random configurations of fil-
aments. We systematically vary the number and length
of filaments and characterize the first-passage times for a
motor to traverse an interval of fixed length. We examine
the FPT distributions of select cases and investigate the
impact of net filament polarity. For specific filament con-
figurations, we assess the impact of individual filaments
by reversing their polarity and determining the change in
MFPT; we then compare the location of high-impact fil-
aments with regions of space in which motors spend large
amounts of time. Finally, we assess whether the trans-
port of a motor across a domain with many filaments can
be treated as a diffusive process with an effective diffusion
coefficient.

II. METHODS

A molecular motor is represented as a particle that
diffuses, reversibly binds to filaments, and undergoes
directed motion when bound to a filament. We con-
sider a single molecular motor as it traverses a two-
dimensional rectangular system containing static, fixed-
length filaments that are randomly distributed in the sys-
tem space. The dynamics are described by a continuous-
time stochastic jump process.

The system is 20 µm by 5 µm with hard-wall boundary
conditions. Filaments are represented as line segments
with a fixed directionality for motor motion (we refer to
this as the polarity of the filament). The filaments are
placed by selecting a random point in the system, extend-
ing a line segment of a prescribed length at a random an-
gle, and then assigning a polarity at random. Filaments
are truncated if they cross a boundary. The number and
length of filaments are both systematically varied. The
choice of system size is motivated by plant cells, in which
motors often traverse large cellular dimensions (∼ 10 to
∼ 100 µm) with a third dimension that is substantially
restricted (∼ 1 µm) due to the close proximity of a large
vacuole and the cell membrane [36].

When the particle is not bound to a filament, it moves
diffusively. In the simulations, the particle attempts to
move with a fixed step size (100 nm) at random times.

Space is continuous, and the step occurs in a randomly
chosen direction. The waiting times between attempted
moves of an unbound motor are exponentially distributed
with rate khop = 270 s−1. If the particle attempts to
move outside of a boundary, the move is rejected and
time is incremented. The step size and attempted move
rate give a diffusion coefficient of D = 0.675 µm2 s−1.
When not bound to a filament, the motor has a binding
rate of kon = 6 s−1 with each filament located within
100 nm of the particle. This is the approximate size of a
myosin motor.

When the motor is bound to a filament, it takes steps
of length 100 nm along the filament in the direction pre-
scribed by the filament’s polarity. The moves occur at a
rate of kfil = 60 s−1, giving an average speed of 6 µm s−1.
The step size in simulations is larger than those measured
for myosins (<∼ 36 nm), but the average speed on the
filament is the important physical property for the sim-
ulations [15, 16]. The motor unbinds from the filament
either spontaneously (koff = 2 s−1) or when the end of
the filament is reached. The rate constants were chosen
to be physiologically relevant and were motivated by in
vitro experiments with myosin and kinesin [15–17, 37].
We use the Gillespie algorithm to generate independent
stochastic simulation trajectories using various filament
network configurations [38].

The primary quantity of interest is the first-passage
time (FPT) for the motor to cross the rectangular inter-
val in the longer (20 µm) dimension, starting from one
boundary. The motor starts at the center of the bound-
ary in an unbound state, and the simulation runs until
the motor reaches the opposite boundary. The motor
crosses the interval by a combination of passive diffusion
and active transport along filaments. Figure 1 shows a
sample filament configuration along with the path taken
by a motor traversing the system from left to right in
a sample simulation trajectory. Longer line segments
on the path correspond to periods of directed transport.
Each independent trajectory results in a different path.

Areas in which the motor spends the most time are
characterized by discretizing the system and measuring
the time spent in each discrete lattice site. The relative
effect of an individual filament on the FPT in a network
is investigated by reversing the polarity of that filament
and measuring the resulting MFPT.

III. RESULTS AND DISCUSSION

A. First-passage times: Impact of the length,
number, and configuration of filaments

We begin by systematically varying the number (Nf )
and length (Lf ) of filaments in the system. For each
case, we generate 10,000 network configurations, each of
which is used to obtain a single stochastic trajectory. The
mean first-passage time (MFPT) is obtained by averaging
the FPTs of these trajectories, and the relative standard
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deviation is the associated standard deviation (σ) divided
by the MFPT.

Figure 2 shows that the largest MFPTs with the high-
est variability occur in systems containing a relatively
small number of long filaments; the smallest MFPTs
occur in systems with large numbers of long filaments.
Systems with many short filaments also have large MF-
PTs, but they exhibit less relative variability than sys-
tems with relatively few long filaments. It is interesting
to note that systems with many short filaments exhibit
larger MFPTs than pure diffusion (Nf = 0).

Figure 3 shows the full distribution of FPTs for three
cases appearing in Fig. 2. This includes the case with no
filaments (Nf = 0, blue) in which the particle moves by
diffusive motion only. The smallest MFPT is associated
with large numbers of long filaments (Nf = 3000, Lf = 3
µm, red). The FPT distribution for this case has a peak
at relatively short times and is somewhat right-skewed,
with the peak occurring at a time moderately lower than
the mean. The case with 100 filaments of length 3 µm
(purple) exhibits the largest MFPT. Interestingly, this
case has a peak in the FPT distribution at shorter times
than the purely diffusive case, but the MFPT is more
than twice as long. The large MFPT is caused by the
long tail of the distribution in which FPTs are anoma-
lously large but relatively rare (Fig. 3, inset). The over-
all distribution reflects the time for a motor to traverse
many different underlying filament configurations, sug-
gesting that typical configurations lead to relatively fast
transport, but that a small fraction of configurations pro-
duce very slow transport. Others cases from Fig. 2 with
a large relative standard deviation have similar distribu-
tions of FPTs.

To investigate the influence of specific filament config-
urations, we also determine the distribution of FPTs for
fixed configurations. When sampling over independent,

FIG. 1. (a) Random configuration of filaments for a system
containing 100 filaments of length 2 µm. Filaments possess
either positive (blue) or negative (green) polarity, which speci-
fies whether a motor bound to a filament moves in the positive
or negative x-direction. (b) Sample path of a motor traversing
the system from left to right.

FIG. 2. Mean first-passage time (MFPT, top) and relative
standard deviation (σ/MFPT, bottom) for various numbers
(Nf ) and lengths (Lf ) of filaments. Each value is obtained
from 10,000 independent trajectories, each generated with a
different filament configuration.

FIG. 3. Probability density of first-passage times (FPTs) in
systems with no filaments (blue, MFPT = 298.9 s), 3000 fila-
ments of length 3 µm (red, MFPT = 95.2 s), and 100 filaments
of length 3 µm (purple, MFPT = 633.8 s). The tails of the
distributions at longer times are shown in the inset. Each
distribution is constructed from 10,000 trajectories.

randomly generated filament configurations, we refer to
the resulting FPT distribution as “annealed.” The re-
sults shown in Figs. 2 and 3 were obtained in this manner.
In contrast, when determining the distribution of FPTs
for a specific filament configuration, we refer to the dis-
tribution as “quenched.” Figure 4 compares annealed
and quenched FPT distributions for a system consisting
of 100 filaments of length 3 µm. Each quenched distri-
bution was obtained using a different filament configu-
ration. Pronounced differences are evident when com-
paring results for the three configurations and for the
annealed case. In particular, the third quenched distri-
bution is strikingly flat with a long tail. The MFPT as-
sociated with this configuration is 1,111 s, in comparison
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FIG. 4. Annealed versus quenched FPT distributions. The
probability density is generated from independent, randomly
generated network configurations (“Annealed,” MFPT =
633.8 s) and for fixed filament configurations (“Quenched 1 -
3” for three different configurations; MFPT = 155.7 s, 257.1
s, and 1,111.3 s, respectively). Each network contains 100 fil-
aments of length 3 µm. Each distribution is constructed from
10,000 trajectories.

with 634 s for the annealed case and 156 s for the first
quenched configuration. This indicates that the filament
configuration, even with the same network properties,
can markedly influence the ability of a motor to traverse
the system.

Differences between quenched distributions of FPTs
result from differences in the configurations of filaments.
In the following, we explore both “bulk” properties that
reflect the entire filament configuration and “local” prop-
erties that involve specific local arrangements of fila-
ments.

B. The MFPT is correlated with net filament
polarity

We characterize the net filament polarity of a config-
uration (a bulk property) as the fraction of negatively
polarized filaments. A larger fraction, meaning more fil-
aments are polarized toward the initial boundary, is ex-
pected to increase transit times on average because more
filaments transport motors away from the target bound-
ary.

Figure 5 shows the MFPT as a function of the net
filament polarity for various numbers and lengths of fil-
aments. The dominant trend is that a larger fraction of
negatively polarized filaments leads to a larger MFPT,
and that relatively small changes in the net filament po-
larity lead to substantial changes in the MFPT. The re-
sults are consistent with trends in Fig. 2: Cases with
a larger relative standard deviation (Fig. 2) exhibit a
more pronounced increase in MFPT as the fraction of
negatively polarized filaments increases. For example,
systems with relatively few filaments (Nf = 100) ex-
hibit greater sensitivity to the net polarity when filament
lengths (Lf ) are greater, which is the regime in which

FIG. 5. Scaled MFPT versus the fraction of negatively po-
larized filaments in the network. Different combinations of
filament length (Lf ) and number (Nf ) are shown. Each curve
is constructed with data from 10,000 independent trajectories
(each with a randomly generated filament network). For each
case, the MFPT for all trajectories is scaled to 1 (horizon-
tal dashed line). The fraction of negative filaments is binned
so that each bin contains many samples; the scaled average
MFPT for each bin is shown.

they have a large relative standard deviation. In contrast,
systems with larger numbers of filaments (Nf = 1000 and
3000) are most sensitive to net polarity when filaments
are short.

When there is a net filament polarity in the system, the
MFPT can be impacted in two ways. The first is that
there is a net bias in the transport of the motor across
the system. One can think of this as a drift term in a
diffusion equation or as a bias in the steps of a random
walk. The second is that an increased number of nega-
tively polarized filaments increases the likelihood of local
filament configurations that impact the first passage of
the motor, for example by locally trapping the motor in
a specific region [26, 27] or by acting as a barrier through
a particular interval in the system.

C. Identifying traps and high-impact filaments

To probe local effects involving specific arrangements
of filaments, we first identify where motors spend the
most time by characterizing the average residence time as
a function of position. For a fixed filament configuration,
we discretize the system into 0.01 µm2 square regions
and determine the average time spent in each region over
10,000 trajectories.

Figure 6 shows the mean residence time for a sys-
tem with no filaments and for a fixed filament config-
uration (Nf = 100, Lf = 3 µm) with a large MFPT.
For the purely diffusive case, the residence time decays
from left to right in an approximately linear manner. In
general, as in Fig. 6b, cases with filaments look qualita-
tively different. Given a filament configuration, the map
of residence times highlights the particular filaments and
regions of space where a motor spends the most time.
Regions with large residence times that are surrounded
by small numbers of frequently-occupied filaments indi-
cate local filament structures that promote extended oc-
cupancy. These filaments constitute a “trap” in which
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FIG. 6. Average residence times (a) for diffusive motion only
(no filaments) and (b) for a fixed filament configuration with
Nf = 100 and Lf = 3 µm (MFPT = 5484 s). The heat maps
show the average residence time in each square lattice site
when the space is discretized; each site has area 0.01 µm2.
The corresponding line plots show the average residence time
in each vertical slice of width ∆x = 0.1 µm. Results are
averaged over 10,000 trajectories.

a motor remains confined for extended periods of time
[27]. The example in Fig. 6b shows that filaments trap
the motor near the starting position.

The emergence of traps suggests that small numbers
of localized filaments have a disproportionately large in-
fluence on the overall MFPT. To probe this idea, we sys-
tematically perturb the network structure by reversing
the polarity of each filament (one at a time) while keep-
ing all others in their original state. For each perturbed
network, we compute the resulting MFPT using 100 in-
dependent trajectories. Figure 7a shows the results for
the filament network presented in Fig. 6b. The network
contains 100 filaments of length 3 µm, so reversing the
polarity of each results in 100 new configurations.

Figure 7a shows that changing the polarity of filaments
that were initially negatively polarized typically leads to
a decrease in MFPT; changing the polarity of filaments
that were initially positively polarized typically increases
MFPT. The change in MFPT due to a single filament can
be quite substantial, as evidenced by the greater than 4-
fold decrease and 4-fold increase in MFPT for the most
extreme cases. Using Welch’s t-test, 30% of the filaments
are shown to lead to statistically significant differences in

(b)

*
**

**

*

(a)

FIG. 7. (a) The MFPT obtained when reversing the polar-
ity of each filament (one at a time) from the configuration in
Fig. 6b. Results are sorted in order of increasing MFPT for
filaments that were initially negatively (green) and positively
(blue) polarized. The MFPT of each new configuration is
averaged over 100 independent trajectories (shown with the
standard deviation). The MFPT of the initial configuration
is indicated by the dashed horizontal line. Welch’s t-test is
used to test the hypothesis that the MFPT associated with
a perturbed filament configuration is equal to the MFPT of
the original configuration. Statistically significant differences
are denoted by ∗ (p < 0.05) and ∗∗ (p < 0.01). (b) Fila-
ments colored according to their impact on the MFPT when
their polarity is reversed: The fold-decrease in MFPT for fil-
aments changing from negative to positive polarity (left) and
the fold-increase in MFPT for filaments changing from posi-
tive to negative polarity (right).

the MFPT when compared with the original configura-
tion. When characterizing the mean residence times for
altered configurations, the largest changes are observed
around traps.

The previous results suggest that certain filaments
have outsized influence on the first-passage properties of
motors crossing the interval. The difference in MFPT
between the filament with the largest decrease all other
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cases was statistically significant (p < 10−4); the differ-
ence between the filament with the largest increase was
significantly different (p < 0.05) than all but one other
case. Given the trap regions previously identified, it is
interesting to characterize where the most impactful fil-
aments are located. Figure 7b shows the location of fila-
ments and their influence on the MFPT when their origi-
nal polarity is reversed. Interestingly, the highest impact
filaments are not located near the areas of high residence
time but instead are found “downstream.” In this case,
the filaments whose reversal cause the largest increase in
MFPT appear to form a bridge that link the trap with
a region of the system closer to the final boundary. The
other filaments in this region are polarized toward the
origin; thus, the high-impact filaments provide the only
clear path from one side to the other. When one of them
is reversed, the bridge is broken, and the motor is forced
to traverse a field of filaments that are polarized toward
the origin. Thus, even when the motor exits the initial
trap, it is likely to be transported back to the trap. This
is conceptually similar to the idea of bottlenecks in the
study of traffic [28, 29].

This suggests that filaments most critical in determin-
ing transit times for a system with a large MFPT are
not necessarily those that constitute a trap, but instead
can be those providing a path away from one. These fil-
aments act as lynchpins connecting different regions and
facilitate transport of a motor to or away from areas of
prolonged occupancy. This suggests that a motor enters
and escapes trapping regions multiple times in a typi-
cal trajectory for a filament configuration with a large
MFPT, thus producing a recurring unproductive cycling
state.

We have focused on a single filament configuration with
a large MFPT. We now consider additional configura-
tions that are characterized by MFPTs that are slow,
typical, and fast compared with the annealed average.
Figure 8 shows an additional configuration with anoma-
lously slow transport. Traps can again be identified by in-
spection of the spatially resolved residence times. In this
case, the most impactful filament whose reversal leads to
an increase in MFPT is located near the end of the trap.
The filaments leading to the largest decrease in MFPT
are located downstream of the area with large residence
time. The next two figures in Fig. 8 have intermediate
MFPTs that are close to the annealed average. These
also exhibit areas with enhanced occupancy, but the time
spent in these regions is less pronounced than in the slow
cases. Flipping individual filaments can still significantly
influence the MFPT, but to a lesser relative degree than
in the slow cases. High-impact filaments are located both
within and downstream of traps. The final two configu-
rations in Fig. 8 have fast MFPTs. In the first, the resi-
dence time is relatively constant throughout, in contrast
with the diffusive case, which decays linearly. In the sec-
ond, the motor spends substantially more time in the first
half of the domain than the second half. There is a single
filament whose reversal leads to a substantial change in

MFPT; it is located just beyond the high-residence time
area.

Collectively, the results in Figs. 7 and 8 show that
altering single filaments can dramatically influence the
MFPT and that the most impactful filaments can be lo-
cated in areas that are not associated with traps. For
cases in which the high-impact filaments are downstream
of traps, they appear to serve as lynchpins that connect
trap regions with regions further downstream; other fila-
ments in their vicinity are typically polarized in the op-
posite direction. For anomalously slow FPTs, the phys-
ical picture that emerges is that the motor escapes and
re-enters trap regions multiple times.

D. Do motors behave diffusively when the number
of filaments is large?

In the previous section, we focused on a regime with
moderate numbers of long filaments. We established that
the configuration of filaments plays a large role in dic-
tating FPTs, and that averaging over different config-
urations leads to broad distributions of FPTs. In this
section, we consider a regime with large numbers of fila-
ments. We investigate whether motors behave diffusively
in this regime at sufficiently long times, and if so, whether
the effective diffusion coefficient produces the MFPT ob-
tained from an annealed average over configurations of
filaments.

With a large density of filaments, a motor will spend
most of its time bound to filaments because it is typically
within binding range of multiple filaments. Additionally,
a large density reduces correlations in the motion of a
motor imposed by rebinding to recently-traversed fila-
ments. Thus, in a large isotropic system, the motor is
expected to undergo a random walk with a step size dic-
tated by the filament length. An effective diffusion coeffi-
cient for this motion would be given by De ≈ (1/2d) l2/τ ,

where l2 is the characteristic square distance traveled
between each filament binding, τ is the characteristic
time to bind and traverse a single filament, and d = 2
is the dimensionality. Given sufficiently long filaments,
the motor would rapidly bind to a new filament once
unbinding from another. Thus, it would spend most
time on filaments and, assuming the dissociation rate
of the motor is small, l2 would be given by averaging
over the square distance from a random binding position
to the end of the filament, l2 ≈ L2

f/3. The character-

istic time, τ ≈ (Lf/2)∆x−1k−1
fil , is the average time re-

quired to traverse half the distance of the filament, giving
De ≈ Lf ∆x kfil/6. Thus, De is expected to scale linearly
with the filament length for sufficiently long filaments.

To test the whether motors behave diffusively, we cal-
culate the mean-square displacement (MSD) of a motor
as a function of time in a larger system (100 µm×100 µm)
with a filament concentration of 20 filaments/µm2. This
is the same filament concentration as for the interval with
Nf = 2000. We vary the length of filaments and fit the
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FIG. 8. Residence times and impact of single-filament reversal for five configurations of filaments with Nf = 100 and Lf = 3 µm.
The configurations are categorized as slow, typical, and fast in comparison to the MFPT for the annealed case. From left to
right, the MFPT values for the initial configurations are 7960 s, 250 s, 251 s, 46 s and 98 s. The first two rows show average
residence times (analogous to Fig. 6). Rows 3 and 4 show the fold-increase and fold-decrease in MFPT, respectively, resulting
from changing the polarity of single filaments (analogous to Fig. 7b).

FIG. 9. Mean square displacement (MSD, blue line) of mo-
tors in a 100 µm × 100 µm domain with 20 filaments/µm2.
Filament lengths of Lf = 0.3 µm (left) and Lf = 2 µm
(right) are shown. Dashed lines are power-law fits to long-
time (10 s < t < 80 s ) data obtained from 1000 trajectories
of length 100 s. The exponents are 0.99 (left) and 1.03 (right),
indicating approximately diffusive motion.

long-time behavior of the MSD to a power law to as-
sess whether it scales linearly in time, as expected for
diffusive behavior. Figure 9 shows the MSD for two dif-
ferent filament lengths. The case with short filaments
(Lf = 0.3 µm) is approximately linear over the entire
time domain. The case with long filaments (Lf = 2 µm)
exhibits superdiffusive behavior at short times (< 1 s)
and diffusive behavior at longer times. This is consistent
with ballistic-like motion when motors are bound to fila-
ments and to random-walk behavior at longer times. The
diffusive behavior emerges at times considerably shorter
than the typical first passage times obtained for a motor
crossing a 20 µm × 5 µm interval.

The long-time behavior of the MSD is approximately
linear for all values of Lf . We use the slope of linear
regime with the expression MSD(t) = 4Det to determine

De, the effective diffusion coefficient. The results are
shown in Fig. 10a. The diffusion coefficient is nonmono-
tonic as a function of Lf , as De decreases between Lf = 0
and Lf = 0.3 µm and increases beyond Lf = 0.3 µm.
This is likely a consequence of short filaments having
truncated steps (< 100 nm) near the ends of filaments
and more frequent rebinding, both of which serve to de-
crease the effective diffusion coefficient. The behavior of
De at larger values of Lf increases in an approximately
linear manner, which is consistent with the scaling argu-
ments above. However, the slope of the line (≈ 0.81) is
smaller than the value of 1 that emerges from the scal-
ing analysis. This may be because we are not probing
sufficiently large values of Lf or because not all of the
assumptions (e.g., negligible rebinding) hold. The un-
derlying physics is that, at sufficiently long times, mo-
tors undergo random-walk-like motion in which longer
filaments lead to larger steps.

We finally determine the MFPT for a motor travers-
ing the original interval (20 µm×5 µm) in the absence of
filaments assuming that it diffuses with the effective dif-
fusion coefficients from Fig. 10a. The results are shown
in Fig. 10b (black line). When compared with MF-
PTs obtained from simulations with explicit filament net-
works (blue line), it is evident that the effective diffusion
coefficient underestimates the MFPT for most filament
lengths. Thus, the behavior of the motor in the interval
used to obtain FPTs is not well-described by purely diffu-
sive motion governed by the effective diffusion coefficient
calculated at an equivalent filament density and length.
This suggests that local filament configurations impact
the FPTs in nontrivial ways. For example, prolonged oc-
cupancy of traps is less likely in larger domains because
there are more ways to escape them. Thus, in a con-
fined system, filament configurations leading to traps are
likely to increase the MFPT relative to that estimated
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FIG. 10. (a) Effective diffusion coefficient (De) obtained from
the MSD for various filament lengths (Lf ) for a system with
20 filaments/µm2. The diffusion coefficient of the motor in
the cytoplasm is indicated by the dashed line. The solid line
is a linear fit to the data (Lf ≥ 1 µm), De = 0.81Lf . (b)
Comparison of MFPTs obtained in original simulations with
filaments and in simulations without filaments using the ef-
fective diffusion coefficient. Cases with a filament network
contained 2,000 filaments of various lengths. Cases without
filaments used the effective diffusion coefficient from (a). All
data points represent averages over 10,000 trajectories.

from De.

IV. CONCLUSIONS

We used stochastic computer simulations to explore
the transport of molecular motors traversing a two-
dimensional interval with random configurations of cy-
toskeletal filaments. The motors undergo a combination
of diffusion in the cytoplasm and active transport when
bound to filaments. We varied the length and number of
filaments and characterized the mean first-passage time
(MFPT) for a motor to traverse the interval. As shown
in Fig. 2, cases with relatively small numbers of long fil-
aments had large MFPTs with high variability. This was
a consequence of anomalously large first-passage times
associated with particular network configurations. Cases
with large numbers of short filaments also produced large
MFPTs relative to pure diffusion, although with less rel-
ative variability. Large numbers of long filaments de-
creased the MFPT relative to the case of purely diffusive
motion. The fact that MFPTs for systems of many short
filaments were larger than those for purely diffusive mo-
tion suggests that a minimum filament length is needed
for active transport to enhance transport across a do-
main.

We further investigated the source of large, highly vari-

able FPTs, finding that specific filament configurations
produced localized spatial “traps” in which motors spend
most of their time. Additionally, we systematically per-
turbed the polarity of each filament to assess the impact
on the MFPT. Surprisingly, perturbing certain filaments
produced large changes in MFPT. Some of these were
found “downstream” of traps, suggesting that high resi-
dence times in traps were not only the consequence of the
filament configuration in the immediate vicinity, but also
of filaments that linked the trap to other spatial regions.
These filaments typically provided the only clear path
through a region that was otherwise filled with filaments
polarized in the opposite direction. This is conceptu-
ally similar to well-established results in the statistical
physics of traffic showing that bottlenecks can lead to
traffic jams, that bottlenecks can be caused by static lo-
cal properties of the transportation network, and that
global segregation into high and low density regions can
result [28, 29]. We also showed that in cases with large
numbers of filaments, the mean square displacement of
unconfined motors can be used to determine an effective
diffusion coefficient. However, this diffusion coefficient
underestimates the MFPT to traverse a confined inter-
val, again suggesting the importance of local filament or-
ganization when confined in a finite domain.

Overall, we identified general parameter regimes and
mechanisms by which intracellular transport of a sin-
gle molecular motor on a static filament network in two
dimensions can become slow and/or unreliable. Many
cells have quasi-two-dimensional regions in which motor
transport occurs. For example, some plant cells have
highly-constricted regions due to the close proximity of a
vacuole and plasma membrane. However, understanding
transport in less confined regions is also of interest, and
extending to three dimensions may reduce the likelihood
of traps due to the additional degree of freedom for es-
cape. Additionally, the actin cytoskeleton is regulated
by myriad proteins that organize it into structures such
as actin bundles [39, 40]. It will be of interest to under-
stand effects of actin organization on intracellular trans-
port. In this context, understanding dynamic changes in
the cytoskeleton [41–43], crowding effects due to many
motors [44–50], and the effects of multiple motors associ-
ated with individual cargo [26] will be interesting avenues
of future research. This study provides a foundation for
investigating these future directions.
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[4] J. K. Vick and A. Nebenführ, J. Integr. Plant Biol. 54,

868 (2012).
[5] M. Schliwa and G. Woehlke, Nature 422, 759 (2003).
[6] R. D. Vale and R. A. Milligan, Science 288, 88 (2000).
[7] N. Hirokawa, Science 279, 519 (1998).
[8] B. Gentry, D. Smith, and J. Käs, Phys. Rev. E 79,

031916 (2009).
[9] J. L. Ross, M. Y. Ali, and D. M. Warshaw,

Curr. Opin. Cell Biol. 20, 41 (2008).
[10] C. Appert-Rolland, M. Ebbinghaus, and L. Santen,

Phys. Rep. 593, 1 (2015).
[11] A. L. Wells, A. W. Lin, L.-Q. Chen, D. Safer, S. M. Cain,

T. Hasson, B. O. Carragher, R. A. Milligan, and H. L.
Sweeney, Nature 401, 505 (1999).

[12] C. Loverdo, O. Bénichou, M. Moreau, and R. Voituriez,
Nat. Phys. 4, 134 (2008).

[13] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts,
and P. Walter, Molecular Biology of the Cell: 5th Edition
(Garland Science, 2008).

[14] H. Higuchi and S. A. Endow, Curr. Opin. Cell Biol. 14,
50 (2002).

[15] R. Mallik and S. P. Gross, Curr. Biol. 14, R971 (2004).
[16] J. Howard, Mechanics of motor proteins and the cy-

toskeleton (Sinauer Associates, 23 Plumtree Rd, Sunder-
land, MA 01375, 2001).

[17] J. M. Ryan and A. Nebenführ, Plant Physiol. 176, 119
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