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Nonlinear interactions in focusing media between traveling solitons and the dispersive shocks pro-
duced by an initial discontinuity are studied using the one-dimensional nonlinear Schrödinger equa-
tion. It is shown that, when solitons travel from a region with nonzero background towards a region
with zero background, they always pass through the shock structure without generating dispersive
radiation. However, their properties (such as amplitude, velocity and shape) change in the process. A
similar effect arises when solitons travel from a region with zero background towards a region with
nonzero background, except that, depending on its initial velocity, in this case the soliton may remain
trapped inside the shock-like structure indefinitely. In all cases, the new soliton properties can be
determined analytically. The results are validated by comparison with numerical simulations.

Introduction. A common way to study the response
of a nonlinear system is to consider Riemann problems,
i.e., the evolution of a jump discontinuity between two
uniform values of the initial datum. In dispersive nonlin-
ear media, Riemann problems can give rise to dispersive
shock waves (DSWs), which are non-stationary coherent
wave structures and arise in many different physical con-
texts, including water waves, the atmosphere, optics and
Bose-Einstein condensates. As a result, considerable ef-
fort has been devoted to the study of DSW formation,
propagation and interactions [1–8]. The topic has also
attracted renewed interest in recent years [9–11, 13–15].

An ubiquitous tool in nonlinear physics is the nonlin-
ear Schrödinger (NLS) equation, which is a universal
model for the evolution of the envelope of weakly nonlin-
ear dispersive wave trains [16]. The NLS equation arises
in a wide variety of physical settings, including deep wa-
ter waves, fiber optics, plasmas and Bose-Einstein con-
densates [17–20]. The NLS equation is also a completely
integrable infinite-dimensional Hamiltonian system [20–
23]. This means that the initial value problem can be
solved by the inverse scattering transform (IST) [24, 25].

Typically, DSWs are produced either in the small dis-
persion, or semiclassical, limit, which arises when the
dispersive effects are small compared to nonlinear ones,
or in the long-time asymptotics. For the focusing NLS
equation, the asymptotic behavior of solutions in the
semiclassical limit with zero background (ZBG) has been
studied extensively, with sech-shaped input [26–28],
generalizations thereof [29, 30], and box-like input [31–
33]. In all these cases, the focusing nonlinearity results
in the formation of highly peaked oscillations in a local-
ized region of space.

The situation is more complicated with nonzero back-
ground (NZBG), due to the presence of modulational
instability (MI), namely, the fact that a constant back-
ground is unstable to long-wavelength perturbations
[34]. A quantitative description of the nonlinear stage
of MI for generic localized perturbations of a constant
background was recently obtained in [35–37]. The cor-
responding behavior, which is comprised of two quies-
cent states separated by a central wedge with modulated

periodic oscillations, was later found to arise in a broad
class of NLS-type evolution equations describing a vari-
ety of focusing nonlinear media in [38], and was recently
observed experimentally in [39]. Related scenarios arise
from Riemann problems. Special cases of Riemann prob-
lems for the focusing NLS equation were studied in [40–
42], and more general Riemann problems were recently
considered in [43]. The expanding oscillatory wedge be-
tween two uniform states can be viewed as a DSW in
focusing media.

Solitons play no role in the above discussion. On
the other hand, the focusing NLS equation admits a
large variety of soliton solutions, both with ZBG [24]
and NZBG [44]. The combined presence of solitons
and dispersive radiation in focusing media with NZBG
was recently shown to produce novel phenomena such
as soliton transmission, trapping and wake [45]. The
purpose of this work is to investigate nonlinear interac-
tions arising when the solution contains all three of the
above components, namely: NZBG, solitons and disper-
sive shocks. In particular, we study a practical scenario,
namely, the interaction between a soliton and the oscil-
latory wedge formed by a discontinuity in the initial con-
dition. We show that, when traveling from a region with
nonzero background towards a region with zero back-
ground, solitons always pass through these shock struc-
tures and retain their identity, without generating dis-
persive radiation. Importantly, however, we also show
that, even though the discrete eigenvalue in the scat-
tering problem is of course time-independent, all of the
properties of the corresponding soliton (including ampli-
tude, velocity and shape) change once they move from a
region with NZBG to one with ZBG.

A similar scenario arises when solitons travel from a
region with ZBG to one with NZBG, except that now, de-
pending its velocity, the soliton can remain trapped in-
side the shock-like structure indefinitely. In both cases,
the new soliton properties are analytically determined by
computing the long-time asymptotics of solutions, and
the results are validated by comparison with extensive
numerical simulations.

NLS equation, ZBG and NZBG, solitons. The cubic
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one-dimensional NLS equation is the partial differential
equation

iqt + qxx + 2(|q|2 − q2
o)q = 0 . (1)

Subscripts x and t denote partial differentiation, and
q(x, t) typically describes the complex-valued envelope
of oscillations. The non-negative real parameter qo cor-
responds to a background amplitude [46].

The IST makes crucial use of the existence of a Lax
pair, namely the fact that Eq. (1) is the compatibility con-
dition φxt = φtx of the overdetermined linear system

φx = Xφ , φt = Tφ , (2)

with X = −ikσ3 + Q and T = −i(2k2 + q2
o − |q|2 −

Qx) σ3 − 2kQ, where σ3 = diag(1,−1) is the third Pauli
matrix, and

Q(x, t) =
(

0 q
−q∗ 0

)
. (3)

The first half of the Lax pair (2) and q(x, t) are referred to
as the scattering problem and the potential, respectively,
while k is the scattering parameter or eigenvalue of the
scattering problem.

Here we study the behavior of solutions of Eq. (1) with
the following step-like boundary conditions:

q(x, t)→ q± , x → ±∞, (4)

with q− = 0, and where without loss of generality we can
take q+ = qo thanks to the phase invariance of the NLS
equation. We refer to Eqs. (4) as the case of one-sided
nonzero background (1SNZBG). When qo = 0, they re-
duce to the case of ZBG [20, 21, 23, 24]. Conversely,
when q− 6= 0, one has a problem with a two-sided NZBG.

The IST in the case with ZBG was developed in the
seminal work by Zakharov and Shabat [24]. The sym-
metric NZBG case |q−| = |q+| = qo was developed in
[44], and was extended to the fully asymmetric case
|q±| 6= 0 and |q−| 6= |q+| in [47], while the one-sided
NZBG was studied in [48]. Recall that the IST works
by associating to q(x, t) time-independent scattering data
via the scattering problem. Once the scattering data are
obtained from the initial conditions (ICs), the solution
of Eq. (1) is then reconstructed by inverting the scat-
tering transform. The scattering data are computed in
terms of the Jost eigenfunctions, which are the solu-
tions φ±(x, t, k) of the Lax pair (2) that reduce to plane
waves as x → ±∞, and are therefore the nonlineariza-
tion of the Fourier modes. The set of all complex val-
ues of k for which the Jost eigenfunctions are defined
comprises the continuous spectrum Σ of the scattering
problem. For potentials on ZBG, the continuous spec-
trum is simply the real k-axis; i.e., Σzbg = R [24]. For
potentials on NZBG or 1SNZBG, however, the continuous
spectrum acquires a subset of the imaginary axis, namely
Σnzbg = Σ1snzbg = R ∪ i[−qo, qo] [44, 48]. Moreover,
for potentials on NZBG, the nonlinear analogue of the
Fourier wavenumber is given by λ = (q2

o + k2)1/2.

FIG. 1. Contour lines of constant soliton velocity in the spectral
plane for solitons on NZBG and the domains D+

1 , D+
2 , D+

3 , D+
4

resulting in the various interaction outcomes for a right-moving
soliton (see text for details). The blue dashed curve is deter-
mined by a system of modulation equations (see text for de-
tails). Red dots: the discrete eigenvalues that generate the soli-
tons in Fig. 3.

The discrete spectrum of the scattering problem, when
present, gives rise to soliton solutions. In particular, each
discrete eigenvalue contributes one soliton to the solu-
tion. Both with ZBG and with NZBG, all the properties
of the soliton are determined explicitly by the location
of the discrete eigenvalue in the complex plane. These
properties however differ with ZBG versus NZBG. In par-
ticular, a soliton on ZBG generated by a discrete eigen-
value k = kre + ikim travels with velocity [24]

Vzbg(k) = 4kre . (5)

A soliton on NZBG generated by the same discrete eigen-
value, however, travels with velocity

Vnzbg(k) = 2(kre + kimλre/λim), (6)

where λ = λre + iλim. A contour plot of constant soli-
ton velocity in the spectral plane for solitons on NZBG is
given in Fig. 1. For solitons on ZBG, the curves of con-
stant soliton velocity are obviously given by vertical lines,
towards which the contour lines in Fig. 1 tend asymptot-
ically as Im k → ∞. Note also Vnzbg(k) > Vzbg(k) for all
k in the first quadrant.

Interactions between solitons and DSWs: Set-up.
The simplest realization of ICs consistent with the bound-
ary conditions (4), is a “pure step” problem, namely

qstep(x, 0) = qo H(x), (7)

where H(x) is the Heaviside step function, defined as
H(x) = 0 for x < 0 and H(x) = 1 for x > 0. The above
IC results in the formation of an oscillatory “wedge” (or
DSW) in the region 0 < x < 4

√
2qot, to the left of which

the solution is negligible and to the right of which the
solution is approximately equal to the background qo. In-
side the wedge, the solution can be described as a slow
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modulation of the traveling wave (elliptic) solutions of
the focusing NLS equation, [42] (see below for details).

Here we consider situations arising from a combina-
tion of the above step ICs and a traveling soliton of the
focusing NLS equation. Specifically, we consider the case
of a soliton generated by a discrete eigenvalue located at
k = ko and initially positioned at x = Xo. If Xo > 0,
the soliton is initially positioned to the right of the step
(i.e., on a NZBG), whereas if Xo < 0 it is initially posi-
tioned to the left of the step (i.e., on a ZBG). Denoting
by Vo the initial velocity of the soliton, if Re(ko) > 0, the
soliton will travel to the right (i.e., Vo > 0), whereas if
Re(ko) < 0, it will travel to the left (i.e., Vo < 0). Thus,
if XoVo > 0, the soliton will travel away from the DSW,
whereas if XoVo < 0 it will move towards it. The most
interesting scenario is obviously the latter. We therefore
consider two main cases:

1. A left-moving soliton initially placed on NZBG (i.e.,
to the right of the initial discontinuity), corresponding to
Vo < 0 and X0 > 0.

2. A right-moving soliton initially placed on ZBG (i.e.,
to the left of the initial discontinuity), corresponding to
Vo > 0 and X0 < 0.

It should be noted that, numerically, the ICs corre-
sponding to the above situations are realized in a differ-
ent way depending on whether Xo is positive or negative.
If Xo < 0, one can simply add a one-soliton solution of
the focusing NLS equation with ZBG to the pure step IC.
If Xo > 0 instead, one should multiply the pure step IC
by the one-soliton solution of the focusing NLS equation
with NZBG. Once the appropriate ICs have been realized,
the time integration of Eq. (1) was performed using an
eighth-order Fourier split-step method. As in [35–38],
the computed time evolution is only accurate up to the
time at which round-off error grows to O(1) [51].

Interaction between solitons and DSWs: Results.
Figure 2 presents the results of numerical simulations
corresponding to case 1 above (left-moving soliton ini-
tially placed to the right of the step), while Fig. 3 corre-
sponds to case 2 (right-moving soliton initially placed to
the left of the step).6 In each case, the left column shows
density plots of the solution amplitude |q(x, t)|. while
the right column shows the difference between the so-
lution to the left and that obtained from the pure step
IC (7), which provides a direct visual illustration of the
nonlinear interaction effects. Each row corresponds to a
different choice of discrete eigenvalue.

In case 1 (soliton initially on a NZBG and traveling left-
ward toward the DSW) we observe that, for all choices
of discrete eigenvalue, the soliton is transmitted through
the DSW and emerges as a soliton on ZBG. Importantly,
however, Fig. 2 clearly shows that all of the properties of
the soliton (that is, its amplitude, width, velocity, and its
breather-like versus traveling-wave nature) are changed
after it has traveled through the oscillatory structure.

The change of the soliton features may be surprising,
since the properties of the soliton are completely deter-

FIG. 2. Solutions of the focusing NLS equation with a left-
moving soliton initially placed on a NZBG qo = 1 and a step
to ZBG at x = 0. Left column: Density plot of |q(x, t)| as a
function of x and t. Right column: Density plot of the differ-
ence between q(x, t) and the solution qstep(x, t) produced by
the pure step IC (7), illustrating the permanent effect of the
nonlinear interactions. Solid white lines: boundaries x = 0
and x = 4

√
2qot of the wedge. Dashed lines: initial trajec-

tory (yellow, velocity Vnzbg) and the trajectory of the soliton
after it exits the wedge (red, velocity Vzbg), demonstrating the
change of the soliton velocity. Top row [(a) and (b)]: ko =
−2 + 1.5i ∈ D−1 , resulting in Vzbg = −8 and Vnzbg = −8.68.
Second row [(c) and (d)]: ko = −0.4 + i ∈ D−2 , resulting in
Vzbg = −1.6 and Vnzbg = −3.24. Third row [(e) and (f)]: ko =
−0.3+ 0.8i ∈ D−3 , resulting in Vzbg = −1.2 and Vnzbg = −4.29.
Bottom row [(g) and (h)]: ko = −0.4 + 0.3i ∈ D−4 , resulting in
Vzbg = −1.6 and Vnzbg = −6.21.

mined by the location of the discrete eigenvalue, and
both the continuous and discrete spectrum of the scatter-
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FIG. 3. Same as Fig. 2, but for a right-moving soliton initially
placed on ZBG together with a step to the NZBG qo = 1 at
x = 0. Dashed lines: initial trajectory (red, velocity Vzbg) and
trajectory of the soliton after it exits the wedge (yellow, veloc-
ity Vnzbg, or blue, velocity Vs, or green, velocity V∗, see text for
details). The discrete eigenvalues are the symmetric counter-
parts of those in Fig. 2: namely, ko 7→ −k∗o . Correspondingly,
all values of Vzbg and Vnzbg are the opposite of those in Fig. 2.
Additionally, Vs = 2.78 in (d), Vs = 3.83 and V∗ = 2.55 in (f),
and V∗ = 2.93 in (h).

ing problem are independent of time. As we show below,
however, these changes are not a numerical artifact, and
are indeed reflective of the true nonlinear dynamics of
the system.

As shown in Fig. 3, a similar outcome arises in case 2
(soliton initially on a ZBG and traveling rightward to-
ward the DSW). In addition, however, here there are
cases (e.g., second and third row) in which the soli-
ton does not escape the oscillatory wedge, and remains

trapped there forever, as is easily seen by comparing the
soliton trajectory with that of the wedge boundary [49].

Long-time asymptotics. We emphasize that none
of the velocities in the trajectories shown in the right
column of Figs. 2 and 3 were determined numerically,
and all of them are determined analytically instead. In-
deed, we next show that the numerical results of Figs. 2
and 3 can be fully characterized by studying the long-
time asymptotics of solutions of the focusing NLS equa-
tion with nonzero background.

A full calculation of the long-time asymptotics is be-
yond the scope of this work, so here we limit ourselves
to presenting the essential details. Recall that, in the in-
verse problem of IST, the solution of the NLS equation is
obtained from that of a suitable matrix Riemann-Hilbert
problem (RHP) defined in terms of the reflection coeffi-
cient and, if present, the discrete spectrum. A key part of
the RHP is a controlling phase function appearing in the
jump conditions. In the case of ZBG, this phase function
is θzbg(x, t, k) = k(x − 2kt) [23], whereas with NZBG,
θnzbg(x, t, k) = λ (x − 2kt) instead [44], with λ(k) as
above. Indeed, it is precisely by looking along directions
x = Vt and setting Im[θ(x, t, ko)] = 0 that one finds the
soliton velocities corresponding to a discrete eigenvalue
at k = ko with ZBG and NZBG.

Importantly, however, in the long-time asymptotics
of solutions with symmetric NZBG in the presence of
a small disturbance initially placed near x = 0, the
governing phase function gets modified in the wedge
x ∈ (−4

√
2qot, 4

√
2qot) [35, 37]. For those values of

x, θ(x, t, k) is replaced by a new phase function h(x, t, k)
defined in terms of certain Abelian integrals [37]. It was
also shown in [45] that it is by setting Im[h(x, t, ko)] = 0
that one determines the velocity of a soliton inside the
wedge. For the one-sided NZBG studied here, the same
considerations apply in the half wedge x ∈ (0, 4

√
2qot).

Classification of interactions. For a left-moving soli-
ton starting on a NZBG, the plots in the right column of
Fig. 2 clearly show that, for the choices of ko considered,
the soliton velocity is given by Vnzbg(ko) before entering
the oscillation structure, and by Vzbg(ko) after exiting it.

The situation is more complex for a right-moving soli-
ton starting on a ZBG. In this case, one observes differ-
ent outcomes depending on the precise location of the
discrete eigenvalue. Consider a discrete eigenvalue ko in
the first quadrant of the complex plane, and recall the
contour plot of soliton velocity with NZBG in Fig. 1. One
can distinguish four domains: in D+

1 (purple region) and
D+

4 (blue region), one has Vnzbg(ko) > 4
√

2qo, whereas
in in D+

2 (yellow region) and D+
3 (gray region), one has

Vnzbg(ko) < 4
√

2qo. Figure 3 shows the results obtained
from a discrete eigenvalue located in each of these do-
mains. (The domains D−1 , . . . , D−4 used in Fig. 2 are
the symmetric counterparts to D+

1 , . . . , D+
4 relative to the

imaginary axis.) The difference between D+
1 and D+

4 is
that the latter collects eigenvalues close to the branch
cut, and results in broader solitons compared to the for-
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mer [45]. The difference between D+
2 and D+

3 originates
from the long-time asymptotics.

Recall that the elliptic solutions of the focusing NLS
equation are determined (up to translations and phase
invariance) by four complex conjugate constants, which
are the branch points of the associated Riemann surface
in the IST [2]. For the boundary conditions (4) with
q− = 0, two of these branch points are fixed at ±iqo,
whereas the other two, α = αre + iαim and its conjugate,
are given by the system of modulation equations [4]

4αre + 2(q2
o − α2

im)/αre = V , (8a)(
α2

re + (qo − αim)2)K(m) = (α2
re − α2

im + q2
o)E(m). (8b)

Here, m = 4αimqo/|α− qo|2, while K(m) and E(m) are
the complete elliptic integrals of the first and second
kind, respectively [50]. The trajectory described by α

in the complex plane as V varies between 0 and 4
√

2qo
is shown by the blue dashed curve in Fig. 1 It is this
curve that defines the boundary between D+

2 and D+
3 .

As shown in [4, 35, 36], the same slow modulation of
the traveling wave solutions of the focusing NLS equa-
tion also describes the nonlinear stage of MI induced by
localized perturbations of a constant background.

Importantly, each of the domains D+
1 , . . . , D+

4 results
in a different outcome for the nonlinear interaction. The
four cases shown in Fig. 3 correspond to a choice for the
discrete eigenvalue ko in each of the four domains (the
precise location is identified by the red circles in Fig. 1).

In all four cases, the soliton initially travels towards
the oscillatory structure with velocity Vzbg(ko). The sim-
plest case is that of ko ∈ D+

1 (top row of Fig. 3). Here
the soliton is transmitted through the DSW, and emerges
as a soliton on a nonzero background. However, its ve-
locity is different after the interaction, and is given by
Vnzbg(ko) > 4

√
2qo.

When ko ∈ D+
2 (second row of Fig. 3), we have

Vzbg(ko) < Vnzbg(ko) < 4
√

2qo. Here the soliton is not
transmitted through the DSW, and remains trapped in-
side the wedge. The velocity Vs(ko) of the trapped soli-
ton is obtained by solving the equation him(ko, V) = 0,
with h(k, V) = h(Vt, t, k)/t, which has a unique root
V = Vs(ko) for ko ∈ D+

2 [45].
When ko ∈ D+

3 (third row of Fig. 3), we also have
Vzbg(ko) < Vnzbg(ko) < 4

√
2qo, and the soliton is again

trapped inside the wedge. Here however the equation
him(ko, V) = 0 has two solutions, for V = V∗(ko) and
V = Vs(ko) with V∗(ko) < Vs(ko) [45]. The second of
these roots corresponds to the trapped soliton, the first
to the soliton-generated wake [45, 52].

Finally, when ko ∈ D+
4 (fourth row of Fig. 3), we have

Vzbg(ko) < 4
√

2qo but Vnzbg(ko) > 4
√

2qo. Here the soli-
ton is transmitted through the wedge and eventually re-
emerges with speed Vnzbg(ko) [52]. However, the equa-
tion him(ko, V) = 0 has a solution for V = V∗(ko) which
gives rise to a soliton-generated wake [45].

Discussion. We emphasize that there is no data fit-
ting in Figs. 2–3. Thus, the figures demonstrate excellent
agreement between the numerically computed soliton
velocities and those obtained from the long-time asymp-
totics. In terms of the inverse problem in the IST, the
properties of the soliton depend on whether the control-
ling phase function is the one with ZBG or that with
NZBG. Soliton trapping by a dispersive shock was also
recently discussed in Refs. [13, 45], while soliton trap-
ping by a rarefaction wave was considered in Ref. [14].

The dynamics remain virtually unchanged if the sharp
discontinuity in the IC is replaced by a smooth function
which interpolates between the asymptotic values of the
potential, demonstrating the robustness of the results.
Note also that the dynamical behavior produced by a
pure step IC is markedly different in the focusing and de-
focusing case. Namely, instead of the oscillatory wedge
arising here, in the defocusing case the pure step IC (7)
gives rise to Gibbs-like phenomena [53, 54].

The numerical results do not allow us to draw any
conclusions regarding the possible presence of a soliton-
generated wake in interactions between left-moving soli-
tons and the DSW. We were unable to observe a wake,
but we cannot exclude its existence a priori. A definitive
answer can be obtained through a rigorous calculation of
the long-time asymptotics, which however is beyond the
scope of this work.

The results of this work open up a number of inter-
esting avenues for further research. From a theoretical
point of view, an obvious open problem is the rigorous
validation of the results of this work by explicit compu-
tation of the long-time asymptotic behavior of solutions,
for example using the Deift-Zhou nonlinear steepest de-
scent method for oscillatory Riemann-Hilbert problems
[55]. From a practical point of view, another obvious
question is whether the results of this work can be gener-
alized to other NLS-type models, as was previously done
in [38] for the results obtained in [35]. Finally, from an
even more practical point of view, an obvious challenge
will be the experimental observation of the results of this
work, perhaps in nonlinear optical fiber experimts, simi-
larly to those recently conducted in [39].
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