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In the present work we explore a pre-stretched oscillator chain where the nodes interact via a
pairwise Lennard-Jones potential. In addition to a homogeneous solution, we identify solutions
with one or more (so-called) “breaks”, i.e., jumps. As a function of the canonical parameter of the
system, namely the precompression strain d, we find that the most fundamental one break solution
changes stability when the monotonicity of the Hamiltonian changes with d. We provide a proof for
this (motivated by numerical computations) observation. This critical point separates stable and
unstable segments of the one break branch of solutions. We find similar branches for 2 through 5
break branches of solutions. Each of these higher “excited state” solutions possesses an additional
unstable pair of eigenvalues. We thus conjecture that k break solutions will possess at least k−1 (and
at most k) pairs of unstable eigenvalues. Our stability analysis is corroborated by direct numerical
computations of the evolutionary dynamics.

I. INTRODUCTION

The study of chains with pair-wise interaction poten-
tials has had a long and distinguished history since the
inception of the Fermi-Pasta-Ulam (FPU) model [1]; see
for some relevant accounts the works of [2; 3]. Intrigu-
ingly, some of the original questions revolving around the
foundations of associated studies remain active topics of
investigation even half a century later. Among them,
we note the potential equipartition of the energy among
different degrees of freedom [4], or the number of soli-
tary waves emerging in the early Kruskal-Zabusky simu-
lations [5]; for the latter, see the associated recent work
of [6].
In the present work, we intend to examine a variant

of such inter-site interaction potential chains, in the con-
text of a Lennard-Jones (LJ) potential [7]. We focus, in
particular, on the equilibrium states of a pre-stretched,
one-dimensional LJ chain and provide a detailed bifurca-
tion analysis of the elastic (i.e., homogeneous) and bro-
ken states, where one or more bonds deviate towards
large strains, rendering the chain inhomogeneous. We
will use the terms broken or fractured to denote the lat-
ter bonds. The Lennard-Jones potential is prototypical
of non-convex pair interactions, with a convex region for
close particles and a concave region for longer-range in-
teractions, with the force decaying to zero as the inter-
particle distance goes to infinity. The non-convexity al-
lows the potential to model fractured states of the ma-
terial, where two portions of the chain are sufficiently
separated and have very weak interactions, as is done in
Γ-convergence approaches to the continuum limit of such
1D chains [8; 9].
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Among the numerous and diverse topics considered for
such LJ lattices, for example the dynamics and mean
length of clusters at finite temperature [10], the (homo-
clinic to exponentially small periodic oscillations) sub-
sonic, as well as (periodic) supersonic lattice traveling
waves [11], the potential for chaotic motion through the
maximum Lyapunov exponent [12], and as a model for su-
perheated and stretched liquids [13] (whereby the role of
the different dynamical configurations must be assessed
in the calculation of thermodynamic quantities). A linear
approximation of the chain and its solutions for nearest-
neighbor (NN) and next-near neighbor (NNN) interac-
tions was explored in [14].

The existence and stability of one break solutions was
studied for the Morse [15] and LJ [13] potentials, while
the instability of more than 1 break solutions was argued.
This can be seen intuitively by considering the transla-
tion of a non-boundary segment in a direction that closes
one of the fractures. In both cases the arguments used
were based on the relative character of the energy mini-
mum. In the latter study statistical mechanics arguments
were used. Using the static solutions as initial states,
these studies were extended in molecular dynamics meth-
ods to study the expected time for a failure to occur at
finite temperatures (see, e.g., [16] and references therein),
and collective fluctuations [17]. Later, it was shown that
for a wide range of potentials and many-neighbor inter-
actions, the chain with more than one fracture is always
locally unstable [18] (see also references therein).

Our aim here is somewhat different, as we explore the
bifurcation analysis of different states and provide a sys-
tematic count of the eigenvalues of the different branches
of solutions. We also consider the eigendirections of the
relevant instabilities and excite them in order to observe
the dynamical response of the chain to different unstable
perturbations (when appropriate). This helps us shape
a systematic picture about the existence, stability and
dynamical properties of the chain. It adds to the picture
provided by molecular dynamics simulations by showing
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more direct paths to create broken chains, using eigendi-
rections of the linear excitations and provides avenues
to steer the evolution from one equilibrium state to an-
other, guiding the choice of suitable (e.g., in-phase or
out-of-phase) perturbations.
Our presentation hereafter will be structured as fol-

lows. In Section II, we will present the mathematical for-
mulation and some of the principal features of the model.
In Section III, we will prove a basic result for the stability
of the static solutions in connection to the monotonicity
of the Hamiltonian as a function of the driving precom-
pression parameter. In Section IV, we will present nu-
merical computations of existence, stability and dynam-
ics. Finally, in Section V, we will summarize our findings
and present our conclusions, as well as some directions
for future work.

II. MATHEMATICAL SETUP:

NEAREST-NEIGHBOR INTERACTION

BETWEEN PRE-STRETCHED OSCILLATORS

CHAIN

We consider the following Hamiltonian system describ-
ing M free oscillators interacting via a potential φ(r),
with the two ends clamped. Let un for n = 0, . . .M + 1
denote the displacements of the oscillators, with u0 = 0
and uM+1 = 0. We also assume that the chain has
been pre-stretched to a separation value d. (Bold char-
acters denote vectors whose components are as in u =
[u0, u1, . . . , uM , uM+1].) The Hamiltonian is written as
the sum of kinetic and potential energy, giving

H0(u̇,u) = K(u̇) + V (u) where

K(u̇) =

M
∑

n=1

1

2
u̇2
n,

V (u) =

M+1
∑

n=1

[φ(d + un − un−1)− φ(d)] .

From this we obtain the equations of motion (with the
index n = 1, . . . , M)

ün = φ′(d+ un+1 − un)− φ′(d+ un − un−1). (1)

If we consider the interaction potential to be of the LJ
type, scaled to have the dimensionless form:

φ(r) =
1

r12
−

2

r6
, (2)

the reference length, where force f is zero, is at r0 such
that

∂φ

∂r
= f(r) = 0 ⇒ r0 = 1. (3)

Similarly, the inflection point is obtained from:

∂2φ

∂r2
= 0 ⇒ ri =

(

13

7

)1/6

≈ 1.10868. (4)

In our considerations within what follows, we will ex-
amine the possible solutions of the corresponding static
problem as parametrized by d. Once a static solution u0

is identified we perturb them by means of the ansatz:

un = u0,n + ǫeλtδn. (5)

Substituting in the equation of motion, written as

ün = Fn(u), (6)

we obtain

d2

dt2

(

u0 + ǫeλtδ
)

= F (u0 + ǫeλtδ), (7)

or

ü0 + ǫλ2eλtδ = F(u0) + ǫeλt
∂F

∂u

∥

∥

∥

∥

u0

δ +O(ǫ2) (8)

At O(1) we obtain the steady state equation, and at
O(ǫ) we have:

λ2
δ =

∂F

∂u

∥

∥

∥

∥

u0

δ = J(u0)δ (9)

where J is the Jacobian matrix. This is an eigenvalue
problem arising for the eigenvalue-eigenvector pair (λ, δ).
The relevant i-th pair (i = 1, . . . ,M) will also be de-
noted by (λi, ei) in what follows. Its result will allow
us to assess the spectral (linear) stability of the different
solutions, as a non-vanishing real part of the eigenvalue
λ (positive λ2) will be associated with dynamical insta-
bility (the perturbation will grow), while for marginally
stable solutions (the perturbation will just oscillate) all
λ’s will lie on the imaginary axis (negative λ2).

III. BIFURCATION ANALYSIS OF THE

LENNARD-JONES CHAIN: A CRITERION

Before we embark on a systematic numerical computa-
tion of the stationary solutions and their spectral prop-
erties, we establish a theoretical criterion for stability
motivated by our numerical computations that will fol-
low. Due to the nearest-neighbor interactions between
the particles, the equilibrium states are particularly sim-
ple, as the balance of force on each particle gives

φ′(d+ un+1 − un) = φ′(d+ un − un−1). (10)

We define the bond length (or strain) variables rn = d+
un+1 − un, where we have the equilibrium condition

φ′(rn) = φ′(rn−1), n = 1, . . . ,M.

The Dirichlet boundary conditions u0 = uM+1 = 0 cor-
respond to the total strain condition

M
∑

n=0

rn = (M + 1)d. (11)
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We let fmax = maxr φ
′(r) = φ′(ri). For 0 < f < fmax,

there are two solutions to φ′(r) = f, one with 1 < r < ri,
the other with r > ri. We describe a bond with length
r < ri as elastic and with length r > ri as broken, and
define the two right inverses re : (0, fmax] → (1, ri] and
rb : (0, fmax] → [ri,∞) where φ′(re(f)) = φ′(rb(f)) = f

for every f ∈ (0, fmax]. In the following, we will consider
equilibria containing one or more breaks.

Lemma 1. There is a minimal d for which one break

solutions exist, corresponding to M + 1 isolated saddle

points at which the stability of the equilibria changes.

Proof. From the elastic and broken bond solutions, we
can parameterize the equilibrium states using the bond
stress f. Then, a uniformly stretched chain has total
length L0(f) = (M + 1)re(f) whereas a chain with a
single break has total length L1(f) = Mre(f) + rb(f).
Note that L0(f) is a monotone increasing function of
f , whereas L1 is not, it has a local minimum when
L′
1(f) = Mr′e(f) + r′b(f) = 0.
The total energy for a chain with a single break is

H1(f) = Mφ(re(f)) + φ(rb(f)), and we see

H
′
1(f) = Mφ′(re(f))r

′
e(f) + φ′(rb(f))r

′
b(f)

= Mf r′e(f) + f r′b(f), (12)

so that its local minimum corresponds to that of L1. We
can also show directly that this point represents a change
in stability for the single fracture solution.
For that, consider a single-fracture equilibrium with

strain r, where we take without loss of generality r0 = rb
and rn = re for n = 1, . . . ,M. We will denote the internal
stress f = φ′(re) = φ′(rb). We then consider the mean-
zero perturbation direction

δn =

{

M n = 0,

−1 n = 1, . . . ,M.

When applying a perturbation ǫδn, for positive ǫ, this
enlarges the break, proportionally shrinking the rest of
the chain, and inversely for negative ǫ. For large enough
d, there are two single-fracture equilibria possible, one
stable and one unstable, with the unstable branch moving
toward the no break solution for negative epsilon and
toward the stable single-fracture equilibrium for positive
epsilon, see Figure 1 below. Then we expand the energy

H(r+ ǫδ) = φ(rb +Mǫ) +Mφ(re − ǫ)

= φ(rb) +Mφ(re) + [Mφ′(rb)−Mφ′(re)]ǫ

+ [M2φ′′(rb) +Mφ′′(re)]
ǫ2

2
+O(ǫ3)

The linear term in ǫ is zero since r is an equilibrium. The
quadratic coefficient satisfies

[M2φ′′(rb) +Mφ′′(re)] = Mφ′′(rb)φ
′′(re)

[

M

φ′′(re)
+

1

φ′′(rb)

]

= Mφ′′(rb)φ
′′(re) [Mr′e(f) + r′b(f)] .

where the last equality follows from differentiating
φ′(re(f)) = φ′(rb(f)) = f. This has a zero (that is, a
change of concavity) exactly when L′

1(f) does as well.

This calculation suggests that motion along this
eigendirection becomes neutral as we cross the relevant
critical point of the length or energy curve as a func-
tion of the precompression parameter d. As a result,
crossing this point will induce a change of stability along
the corresponding eigendirection, a feature that we will
monitor further in our detailed computations below. It
is relevant to point out here that the stability criterion
developed herein is in line with recent criteria (based on
energy monotonicity changes upon suitable parametric
variations) for stability of both traveling waves in lat-
tices [19; 20] and breather-like periodic orbits [21].

Note that the criterion proved above is applicable to
any potential that has a change of concavity and a max-
imum for the absolute value of the force.

IV. NUMERICAL RESULTS FOR THE

NEAREST-NEIGHBOR LENNARD-JONES

POTENTIAL

A. Steady state

In our existence computations, we identified station-
ary solutions via a fixed point (Newton) iteration scheme.
Using Eq. (9), we also calculate the eigenmodes ei and
corresponding eigenvalues λi of that configuration (where
the index in both λ and e labels an ordering, which we
choose to be of decreasing magnitude of λ2). Upon iden-
tifying a member of a particular family of solutions (with
one or more breaks/fractures), we performed a continu-
ation in the parameter d. When a turning point was
reached, the direction of variation of d was reversed, and
care was taken to ensure the segment of the curve fol-
lowed was a different one (see Figs. (1–3)). A more
detailed description of the numerical procedure can be
found, e.g., in Ref. [22].

In what follows we will be showing results obtained for
a chain with 20 free nodes.
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FIG. 1: The top panel shows stable (blue, solid) and un-
stable (blue, dashed) modes with 1 break as a function
of the pre-stretching parameter d. Also shown (cyan) is
the uniform stretch mode (no breaks). The inset rep-
resents examples of the profiles with an elastic (cyan),
an unstable break (blue), and a stable break (red). As
d grows, the unstable mode merges with the uniform
stretch mode. The bottom panel shows the largest two
eigenvalues of the 1 break (again, solid for the stable part,
dashed for the unstable), together with the largest eigen-
value of the elastic (uniform stretch) mode. The numbers
in subscripts indicate the order of the eigenvalue, while
the subscript letters indicate stability with s standing for
stable or and u for unstable.

In Fig. 1, top panel, we have represented the ampli-
tude of the broken bond as a function of the continua-
tion parameter d. Two modes were found, a stable (blue,
solid), and an unstable one (blue, dashed). The elastic
(no breaks) mode is also shown (cyan,solid). The inset
shows the corresponding profiles for select values of d.
These broken states only exist above d = 1.034, the turn-
ing point of the branch. The unstable one break branch
can also be identified in the graph as bifurcating from
the uniform elastic solution at the critical strain d = ri.

In the bottom panel we show the highest eigenvalue
for each d, and also the second highest if the mode is
unstable. As per the analysis of the previous section, the

monotonicity change of the maximal strain is correlated
with the stability change of the one break solutions. We
have indeed confirmed that the maximal strain, as well
as the total length of the chain but also, importantly,
the energy of the configuration all have turning points
at the location of the change of stability of the branch.
In particular, the monotonically increasing portion of the
branch is associated with stability, while the monotoni-
cally decreasing one with instability. Let us now see how
the situation is modified in the presence of an additional
break.
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FIG. 2: The top panel shows the amplitude of the 2
break solutions as a function of pre-stretching, d. The
inset represents an example of the two profiles for a given
d. The bottom panel shows the two largest eigenvalues
of this branch (both for its energy/strain increasing and
decreasing segments), which is always unstable. Note
that it only exists for a higher pre-stretching than the 1
break modes. Subscripts in legend as in Fig. 1

The configuration with 2 breaks was found to be always
unstable; see Fig. 2. In this case too, the branch was
found to possess two segments, one of which with two
unstable eigenvalue pairs (the additional one stemming
from the monotonicity of the energy as a function of the
precompression strain d), while the other one with only
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one unstable eigenvalue pair. These two branch segments
once again terminated in a saddle-center bifurcation at a
critical value of d, higher than that of the 1 break branch.

3. 3 breaks
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FIG. 3: The top panel shows the amplitude of the 3
breaks solutions as a function of pre-stretching, d. The
inset represents an example of the solution profiles for a
given d. The bottom panel shows the three largest eigen-
values associated with the saddle- and center- portions
of the 3 break branch, which are both always unstable.
Subscripts in legend as in Fig. 1

Similar conclusions could be drawn for the case with
3 breaks; see Fig. 3. Here, the different segments of
the branch generically possessed two unstable eigenvalue
pairs. The one with the monotonically increasing depen-
dence on d had only these two unstable modes, while the
decreasing one, just as before, featured an additional pair
of unstable eigenvalues. From this, as well as our addi-
tional results involving modes up to N = 5 breaks, a gen-
eral picture is emerging regarding the stability properties
of the different branches. As illustrated in section III, the
change of monotonicity of the energy is associated with
a change of stability of a particular eigenmode. For the
relevant eigenmode, an increasing energy as a function
of d results in stability (along this eigendirection) while
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FIG. 4: Combined results for elastic and 1-5 break
branches. The top panel summarizes our results for

break length, while the bottom panel shows the energy
of these branches as a function of the potential

pre-stretching parameter d.

a decreasing energy leads to instability. In addition to
this eigendirection, the presence of N breaks implies the
existence of an additional N − 1 unstable eigenmodes.
These features are summarized in Fig. 4 showcasing the
dependence of the maximal strain as well as of the en-
ergy on the precompression strain d. Now, we discuss
the implications of the excitation of the corresponding
unstable eigenvectors, as a preamble towards predicting
the dynamical evolution of the associated instabilities.

4. Geometry of the Principal Eigenmodes

Our aim in the present section is to explore the ex-
act stationary solutions when the unstable eigenmodes
are appended to them, in order to appreciate the paths
that the system can take towards the decay of the unsta-
ble stationary states. The next series of plots show the
modes found above together with the eigenvectors that
are associated with their potential instabilities, as iden-
tified before. The right panels show a linear combination
of the mode with a small perturbation in the form of
each eigenvector represented on the left panels. In Fig. 5
and the following similar figures, the weight given to the
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perturbation was exaggerated for clarity. On the corre-
sponding dynamical simulations, small weights were ap-
plied, consistent with the linear stability hypothesis be-
hind the calculation leading to those eigenvectors. This
is shown for the upper and lower segments of branches in
the top and bottom rows, respectively.
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FIG. 5: For the 1 break branch, the upper (top row)
and lower (bottom row) segment eigenvectors (ê1,2) are
shown in the left panel (the two principal ones). The
right panels show the 1 break solutions with 0.2 × ê1,2.
Here d = 1.05, as in the inset of Fig. 1

.

In Fig. 5 we show the effect of the eigenvector corre-
sponding to the largest eigenvalue on the shape of the
modes, for upper (linearly stable) and lower (unstable)
single break branch segments. In this case we also show
the second eigenvector for illustration, but it always has
λ2 < 0, so its effect will be oscillatory (i.e., the mode will
be marginally stable and will not lead to instability). At
first sight the eigenvectors seem to have opposite effects,
but we can always perform a phase shift of π (since there

is the freedom of multiplying them by any real constant).
The important difference lies on the sign of λ2, which is
negative for the upper branch segment, and so its effect is
to solely lead to a benign oscillation, while for the lower
branch segment it grows with time. It is this growth that
leads to destruction of the mode. The decay can lead to
2 distinct results, as will be shown below: in the form
shown, ê1 will make the unstable state u1l (subscript l

for the lower segment branch and u for the upper branch
segment) grow towards a stable 1 break waveform on the
upper branch segment, albeit a oscillating one, given the
non-dissipative, Hamiltonian nature of the model. How-
ever, if we change the sign of the perturbation it will
decay to the elastic mode, shedding some energy in the
form of small amplitude waves in the process.
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FIG. 6: Similar to the previous figure, but now for the 2
break branch, now for d = 1.07, as in Fig. 2. Again,
in the right panel, a perturbation involving the rele-
vant eigenvectors, 0.2 × ê1,2, has been added to the two
segments (increasing/decreasing in top/bottom, respec-
tively) of the branch.
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FIG. 7: Similar to the previous figures, but now for the 3 break branch, and d = 1.07, corresponding to the inset of
Fig. 3. Here too, a perturbation in the direction of the leading eigenvectors of the form 0.2× ê1,2,3 was added to the
upper (top row) and lower (bottom row) segments of the branch (middle and right columns). The left column shows
the mode profile and the first 3 eigenvectors; the middle column shows the linear combination of the mode with the
first or second eigenvector; the right column shows the linear combination of the mode with the third eigenvector.
This last one has different signs in upper or lower segments.

In Fig. 6 we show a similar representation for the 2
break case. The two leading eigenvectors alternate in
parity with respect to the breaks, and so it is expected
that they appear to seed different dynamical evolutions.
For example, for the unstable lower branch, one of these
eigendirections involves the two breaks moving in con-
cert, either moving towards the larger 2 break solution
or the uniform state.

On the other hand, addition of the other eigendirection
(the one that is generically unstable) tends to convert the
2 break state into a 1 break one, i.e., to eliminate one of
the two breaks. Similar interpretations can be general-
ized in the case of the 3 break solution, with the only
difference that now there are two generically unstable
eigendirections, tending to reduce the number of breaks
in the system.

The analogous representation for the 3 break mode is
shown in Fig. 7. Here, the most unstable eigenmode ê1

for the upper segment is either “in-phase” (IP) with the
side breaks and “out-of-phase” (OOP) with the central
one (as represented in left upper panel of the Fig. 7, blue
circles) or vice-versa. This causes the elimination of the
central break, allowing for the survival of the lateral ones,

if added (as represented in the middle top panel of the
same Fig. 7), or induces the decay the lateral ones, and
survival of the one in the middle, that grows to a stable
oscillating 1 break, if subtracted. The second most un-
stable eigenmode ê2 has a different parity (see again left
upper panel, but now the red triangles), so it is natural to
expect that whether added or subtracted will essentially
lead to a qualitatively similar result. Again from the
middle top panel, we see that it will initially reduce one
of the lateral breaks, and increase the size of the other,
the middle one remaining essentially unchanged. As for
the third eigenmode, it is stable for this upper segment,
i.e., will not lead to growth or decay, but only oscillation.
From the right upper panel we see that its effect is more
pronounced on the lateral breaks.

For the lower segment, from the lower left panel we can
see that the general characteristics of the 3 eigenmodes
represented do not differ from those of the upper segment.
Given the smaller size of the mode of the lower segment,
however, its effects can be more pronounced. This is
apparent on the middle and right lower panels, where
the central (for ê1), or left (for ê2) breaks have essentially
disappeared. Now the third eigenvalue is also unstable.
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So the effects of the highest two eigenmodes should be
qualitatively the same as for the upper segment. The
third eigenvalue however, can show changes, as now it
can lead to decay of all 3 breaks (if we have it OOP with
the mode, i.e., oppositely to the situation represented).
We now turn to the dynamical evolution of the

branches, armed with the interpretation of the different

unstable states and their associated eigendirections.

B. Dynamics
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FIG. 8: The dynamical evolution of the 1 break branch is shown in spatio-temporal (n − t) contour-plot form of
the displacements. The initial condition consists of the stationary solution with a perturbation of ±0.01× ê1 added
to it, for d = 1.05. (a) upper (linearly stable) segment branch mode u1u + 0.01 × ê1; (b) upper segment branch
mode u1u − 0.01 × ê1; (c) lower (unstable) segment branch mode u1l + 0.001 × ê1; (d) lower segment branch mode
u1l − 0.001× ê1. In the latter two, the instability leads, respectively, to oscillations around the upper segment branch
and to degeneration to the homogeneous state.

We start by illustrating the potential outcomes of the
evolution of a 1 break state. In Fig. 8 we show the evo-
lution of such a state at the value corresponding to the
profiles shown in Fig. 5 i.e., for d = 1.05. On the up-
per row we start with an upper branch segment (stable)
1 break mode. We can see that, even with a moderate
perturbation (in this case a component proportional to
the eigenvector of the largest eigenvalue), the waveform
is able to maintain its shape for the duration of the prop-
agation, although there is some oscillation due to the ex-
tra energy stemming from the perturbation. We ensured
that the numerical scheme conserved the initial energy
throughout the propagation duration.

On the other end, the bottom panels show the evolu-
tion starting with the unstable 1 break solution for the

same d. Here the amount of perturbation introduced was
much smaller (by an order of magnitude), and yet very
quickly this 1 break decays. Importantly, however, the
two distinct evolutions of panels (c) and (d) illustrate
that depending on the direction of the perturbation, the
unstable 1 break (operating as a separatrix) may lead
either towards the stable 1 break branch segment (fea-
turing large amplitude oscillations) or towards a homo-
geneous state. These two radically different behaviors
shown in panels (c) and (d) confirm what was hinted on
Fig. 5: adding the most unstable eigenvector takes the
system to the stable 1 break solution, while subtracting
takes it to the elastic state. It is interesting to point
out that even without introducing any noise explicitly,
the numerical round-off error would eventually lead the
configuration to decay.



9

(b)

0 50 100 150

5

10

15

20
(a)

0 50 100 150

n

5

10

15

20

(c)

t

0 50 100 150

n

5

10

15

20
(d)

t

0 50 100 150

5

10

15

20

-0.5

0

0.5

1

FIG. 9: Similar to Fig. 8. Here the initial condition consists of the 2 break waveforms with a perturbation added in
the form of the second eigenmode, ±0.01 × ê2, for d = 1.07. (a) Upper segment branch mode u2u + 0.01 × ê2; (b)
upper segment branch mode u2u−0.01× ê2; (c) lower segment branch mode u2l+0.01× ê2; (d) lower segment branch
mode u2l − 0.01× ê2. Notice that although we perturb the wave in the direction of the less unstable eigenmode ê2,
the more unstable one (ê1) eventually crucially contributes to the destabilization dynamics of both segments of the 2
break branch.

In Fig. 9 we represent now the result of propagation of
a perturbed 2 break solution, corresponding to the pro-
files shown in Fig. 6, for which d = 1.07. The main dif-
ference now is that the highest eigenvalue is positive for
both branch segments, and so it dominates the motion.
As a result, although we perturb only with the second
eigenvector (which is only unstable for the lower segment
of the branch), even the upper branch segment suffers de-
cay, because of numerical noise, although it takes longer

to develop. Thus adding or subtracting the second eigen-
vector leads essentially to a (later) decay into a 1 break.
For the lower branch adding ê2 should lead to an oscilla-
tion around an upper branch 2 break waveform, yet the
effect of contamination by a ê1 causes one of them to de-
cay. Subtracting ê2 should lead to an elastic mode, and
that’s what the simulation shows during an initial stage.
However the energy present is enough to eventually “nu-
cleate” a stable 1 break.
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FIG. 10: Similar to the previous figures, but now for a 3 break branch with a perturbation ±0.05× ê3, for d = 1.07.
(a) Upper segment of the branch mode u3u + 0.05× ê3; (b) upper segment of the branch mode u3u − 0.05 × ê3; (c)
lower segment of the branch mode u3l + 0.05× ê3; (d) lower segment of the branch mode u3l − 0.05× ê3. In all four
cases, eventually the dynamics results in a 1 break state.
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FIG. 11: Same as Fig. 10, but with perturbation ±0.05 × ê1, for d = 1.07. (a) Upper segment of the branch mode
u3u + 0.05 × ê1; (b) upper segment of the branch mode u3u − 0.05 × ê1; (c) lower segment of the branch mode
u3l + 0.05 × ê1; (d) lower segment of the branch mode u3l − 0.05 × ê1. The resulting dynamics is more diverse,
potentially leading to a homogeneous state in (c), the survival of a central break in (b) and (d), as well as the survival
of one of the lateral breaks in (a).
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FIG. 12: In this case, the 3 break waveform is perturbed by ±0.05 × ê2, for d = 1.07. (a) Upper segment of the
branch mode u3u +0.05× ê2; (b) upper segment of the branch mode u3u − 0.05× ê2; (c) lower segment of the branch
mode u3l + 0.05 × ê2; (d) lower segment of the branch mode u3l − 0.05 × ê2. In all cases, one of the lateral breaks
asymptotically persists.

The scenario of the evolution of a perturbed 3 break is
shown in Fig. 10-12. Here, as explained above, there are
2 unstable eigenvalues present for all elements of these
branches of solutions. Therefore even more so than the
2 break case, the effects of ê3 are harder to see, as any
numerical noise contamination introducing ê1 and/or ê2
will have stronger consequences. That is the reason why
we chose to increase the strength of the perturbation here

compared to the 1 and 2 break cases. The eigenvector
ê3 is anti-symmetric like u3. For the lower segment of
the branch, as noted before it will increase or decrease all
breaks but more so the central one (as ê3 is larger there).
So if added, the central break grows at the expense of the
side ones to lead to a stable 1 break (left bottom panel
of Fig. 10). If subtracted it will collapse all three breaks
to the elastic mode, yet the extra energy will eventually
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allow the creation of a 1 break; right bottom panel of
Fig. 10. Note that the decay happens very soon (t ≈ 2.5),
so it is hardly discernible in panel (d).

In the case of the upper segment of the branch its third
eigenmode has a central “break” rather smaller than the
side ones; see the left upper panel of Fig. 7. Thus, when
added or subtracted to the stationary state, its influence
is mainly on the side breaks, leading them to oscillate,
given the negative sign of λ2. This behavior, however,
can only be seen for very short times. As previously
mentioned, contamination with any of the lower eigen-
modes, especially so the first which has the same parity,
will lead to decay, governed mostly by those lower eigen-
modes. This is evident on the dynamical simulation in
the upper panels of Fig. 10.

Turning now to the influence of the stronger eigen-
modes, notice that ê1 is IP with the side breaks but OOP
with the central break. Then, in general, its effect will be
to lead to the survival of the two side breaks by adding
it, or the middle one by subtracting it. As we have seen
before the 2 break is also unstable, so one of those two
will later collapse as well (see e.g. the top left panel of
Fig. 11). Notice the similarity between panel (b) and the
upper panels of Fig. 10, pointing to the influence of ê1 in
that case.

The effect of ê2, on the other end, being an even mode
is nearly the same whether we add or subtract it to the
mode. From its shape, we can infer that it will collapse
one of the side breaks, while increasing the other, and
at an initial stage not influence much of the central one.
But of course the 2 break thus formed is also unstable
and one (the central one in this case) will soon disappear
as well towards a 1 break state. This is confirmed in
Fig. 12.

We also performed a similar bifurcation study for the
scenario of periodic boundary conditions, and found that
the results were qualitatively similar. As such we chose
not to include them here.

V. CONCLUSIONS & FUTURE WORK

In the present work, we have examined solutions in-
volving different numbers of fractures/breaks in a chain
featuring a Lennard-Jones potential of interaction be-
tween the nodes and Dirichlet boundary conditions at
the edges. We saw that for each of the solutions beyond
the uniform, elastic one, there was a (more) stable and
a (more) unstable portion of the branch, separated by a
critical point where the monotonicity of the strain and/or
the energy as a function of the precompression stress

changed. At the same time, while the single break so-
lutions could be potentially stable, any state with N > 1
break would feature N − 1 real eigenvalue pairs, being
associated with respective instabilities. By monitoring
the eigendirections of these instabilities, we could con-
nect them with the tendency to eliminate one or more
breaks from the chain and result to fewer break, more ro-
bust waveforms. Such diagnostics led us to gain insights
not only on the stability of different states but also im-
portantly on the dynamics of such unstable states and
overall metastable (transient) dynamics of the system.
These conclusions of the stability analysis were subse-

quently corroborated by means of direct numerical simu-
lations featuring the unstable evolution of controlled nu-
merical experiments where the instability-inducing eigen-
vectors were added to the unstable structures. Another
important aspect of these results is the ability to con-
trollably steer the evolution of a profile towards another,
intended, profile. For this it is crucial to have a detailed
understanding of the relative stability of the modes and
of the nature (e.g., in-phase or out-of-phase) of the re-
quired perturbation.
Naturally, a number of additional directions for future

research are emerging as a result of the present study.
On the one hand, in the one-dimensional setting, it is
especially relevant to explore the role of interactions be-
yond those of nearest neighbors. Inducing next nearest
neighbor interactions in competition with nearest neigh-
bor ones may be a topic that will modify the stability of
the presently considered states and will be of interest to
explore in light of zigzag [23] and related configurations.
On the other hand, it would be of particular interest
to explore how configurations like the ones considered
herein behave in higher dimensional settings. The latter
offer the possibility of different types of geometries (e.g.
in 2d square, hexagonal, honeycomb etc.) and thus may
induce an interplay of geometry with the nonlinear in-
teractions that may introduce novel states. Such studies
are currently in progress and will be reported in future
publications.
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[18] C. Ortner and E. Süli, M2AN Math. Model. Numer.

Anal. 42, 57–91 (2008).
[19] J. Cuevas-Maraver, P.G. Kevrekidis, A. Vainchtein, and

H. Xu, Phys. Rev. E 96, 032214 (2017).
[20] H. Xu, J. Cuevas-Maraver, P.G. Kevrekidis, A.

Vainchtein, arXiv:1711.03330.
[21] P.G. Kevrekidis, J. Cuevas-Maraver, and D.E. Peli-

novsky, Phys. Rev. Lett. 117, 094101 (2016).
[22] P.G. Kevrekidis, The Discrete Nonlinear Schrödinger

Equation: Mathematical Analysis, Numerical Computa-
tions and Physical Perspectives,(Springer, Berlin, Heidel-
berg 2009),chapters 2 and 9.

[23] See, e.g., for an optical example of such an array: N.K.
Efremidis and D.N. Christodoulides Phys. Rev. E 65,
056607 (2002).


