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A replica-symmetry-breaking phase transition is predicted in a host of disordered media. The
criticality of the transition has, however, long been questioned below its upper critical dimension,
six, due to the absence of a critical fixed point in the renormalization-group flows at one-loop order.
A recent two-loop analysis revealed a possible strong-coupling fixed point but, given the uncontrolled
nature of perturbative analysis in the strong-coupling regime, debate persists. Here we examine the
nature of the transition as a function of spatial dimension and show that the strong-coupling fixed
point can go through a Hopf bifurcation, resulting in a critical limit cycle and a concomitant discrete
scale invariance. We further investigate a different renormalization scheme and argue that the basin
of attraction of the strong-coupling fixed point/limit cycle may stay finite for all dimensions.

I. INTRODUCTION

Quenched disorder often leaves conspicuous marks on
a system’s macroscopic behavior. For instance, quenched
impurities can localize excited states [1–4] and conse-
quently turn metals into insulators with anomalous trans-
port properties [5–7]. When coupled to an order pa-
rameter, extrinsic disorder can also destroy the would-
be long-range order, altering its lower critical dimen-
sion [8]. Counterintuitively, disorder can also give rise to
long-range order, albeit in the subtle, amorphous man-
ner that breaks the permutation symmetry among ficti-
tious replicas [9]. Although initially considered a fairly
exotic proposal, this replica symmetry breaking (RSB)
phenomenon has since found core applications in differ-
ent fields of science [10].

The nature of the RSB phase transition, however,
remains controversial. While its existence and criti-
cality are unquestionable in a wide range of infinite-
dimensional mean-field models ranging from spin to
structural glasses [9–18], some have suggested that the
RSB phase is completely washed out in any finite-
dimensional, short-ranged models [19]. In particular the
droplet/scaling scenario [20–25] proposes that there can-
not be infinitely many incongruent pure states in realis-
tic finite-dimensional models (see also Ref. [26]). Oth-
ers posit that the transition survives down to the up-
per critical dimension, du = 6, but disappears below
it [27] (see, however, Refs. [28–30]). This second pro-
posal is rooted in the absence of a critical fixed point
in the renormalization-group (RG) flow equation at one-
loop level below du [31–33]. The discovery of the Gardner
transition in structural glass formers [18] has rekindled
interest in this debate [33–38], and a recent two-loop RG
analysis [39] challenges above proposals by identifying
a strong-coupling critical fixed point that is invisible at
one-loop order, just as is the case for a class of non-
Abelian gauge theories [40, 41]. While the validity of
the two-loop analysis in the strong-coupling regime can
be questioned, it nonetheless provides a potentially vi-

able description of the critical RSB transition in three-
dimensional systems.

The difficulty associated with capturing the fate of
strong-coupling fixed points through perturbative meth-
ods is well known. Even for the Ising universality class,
the minimal RG equation without resummation results
in the Wilson-Fisher fixed point for spatial dimensions
d = 2 and 3 being present at one-loop, three-loop, and
five-loop orders, but absent at two-loop and four-loop or-
ders. Only after applying a certain class of resummation
schemes does the existence of the fixed point become in-
dependent of loop order [42]. In the Ising case, the pre-
existing experimental and theoretical evidences of crit-
icality in two and three dimensions, together with the
striking agreement of the one-loop exponents with those
in three dimensions, made it clear that the qualitative
change in the unresummed results was not a fundamen-
tal concern. For the critical RSB phase transition as well,
a similar aggregation of evidences from theories, experi-
ments [43–46], and simulations [47–52] will be needed to
reach a steady state of understanding for the true fixed
point structure. In attaining such an understanding, it is
especially instructive to examine the nature of the tran-
sition as a function of d, as was instrumental for studying
the Ising universality class, percolation [53, 54], the glass
problem [55, 56], and many others [57]. Here, we thus
closely analyze higher-loop RG flow equations in varying
dimensions.

It is important to emphasize that the intent of the pa-
per is not to provide a conclusive answer to the nature
of the fixed point structure in finite dimensions. That
answer will most likely require a concerted and sustained
effort in developing various theoretical machineries, such
as higher-loop calculations [58] with sophisticated resum-
mation schemes [59, 60], nonperturbative RG [61–66],
and conformal bootstrap [67–70], as well as experiments
and simulations. Instead, our intent here is to suggest a
few viable physical scenarios that have heretofore been
missed within the confine of the one-loop analysis.

The organization of the paper is as follows. In Sec. II,
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we analyze the minimal two-loop RG flow equation and
in particular find that, as d varies, the fixed point goes
through a Hopf bifurcation, resulting in a limit cycle with
discrete scale invariance. There, a controversy in d >
du [71] is also addressed. We then employ a coordinate-
transformed RG scheme in Sec. III, within which the
basin of attraction of the critical fixed point/limit cycle
stays finite for all d, in contrast to previously reported
scenarios [39, 71]. We then briefly conclude in Sec. IV.

II. MINIMAL TWO-LOOP RG

The critical RSB transitions in spin and structural
glasses are universally signaled by the instability of the
replicon fluctuations, φab(x) [13, 18] (see Appendix A).
The critical field theory for this de Almeida-Thouless-
Gardner universality class is governed by two cubic cou-
plings, gX=I,II, with the bare Lagrangian

L =
1

2

n∑
a,b=1

(∇φab)2
(1)

− 1

3!

gI
n∑

a,b=1

φ3
ab + gII

n∑
a,b,c=1

φabφbcφca

 .
The beta functions, βX ≡ µ∂g

X

∂µ , then dictate the RG flow

for these couplings. At two-loop order with the minimal
subtraction scheme [39], we have
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The RG flow stops at points with βX = 0, i.e., at fixed
points. Such points live at the intersections of curves on
which βI = 0 and those on which βII = 0. At one-loop
order for d < du, these curves do not intersect except
at the unstable Gaussian fixed point gX = 0 [Fig. 1(a)],
but at two-loop order they do [Fig. 1(b)]. This intersec-
tion results in a strong-coupling fixed point, visible only
beyond one-loop order, just like the Caswell-Banks-Zaks
fixed point in non-Abelian gauge theories [40, 41].

The flow geometry around the strong-coupling fixed
point evolves with d. In order to study this dimensional
dependence more carefully, we analyze the minimal two-
loop RG flow equations (2) and (3) numerically [72]. For
d ≤ d0 ≈ 4.84, the strong-coupling fixed point is stable.
For d0 < d < dH ≈ 5.41, the fixed point is still stable but
the stability exponents obtain imaginary parts, causing
the flow to spiral into the fixed point. At d = dH, the real
part of the stability exponents changes sign, making the
fixed point unstable and resulting in the emergence of a
stable limit cycle through a Hopf bifurcation [Fig. 2(a)].
The limit cycle gives rise to a log-periodic, discrete scale
invariance in physical observables such as two-point cor-
relation functions right at the critical point. Scale in-
variance of this sort is familiar from the period-doubling
route to chaos, and is speculated to be important in stock
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(b) Two-loop

FIG. 1. Zeros of βI = 0 (green solid) and βII = 0 (black
dashed) for d = 3. (a) At one-loop order, curves do not
intersect except at the unstable Gaussian fixed point (red dot)
at the origin. (b) At two-loop order, curves intersect at the
stable strong-coupling fixed point (blue dot).

market crashes [73], earthquakes, and many other sys-
tems [74]. Our results indicate that spin and structural
glasses might therefore share a connection with these phe-
nomena.

The size of this stable limit cycle cascades toward in-
finity as dimension nears dcas ≈ 5.47, leaving its infinite
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remnant [Fig. 2(b)]. For d ∈ [dcas, du], there is neither a
stable fixed point nor a finite stable limit cycle in sight of
the minimal two-loop analysis. Analytically continuing
the flow equations above du, the Gaussian fixed point
becomes stable with a finite basin of attraction of size
∝
√
d− du [Fig. 2(c)], and at d = dcol ≈ 6.01 this basin

collides with the infinite remnant of the limit cycle dis-
cussed above, resulting in a semi-infinite basin of attrac-
tion for the Gaussian fixed point [Fig. 2(d)].

In Ref. [71], through the analysis of the one-loop RG
flow, Moore and Read predicted the existence of a mul-
ticritical point — and of a nonperturbative phase tran-
sition of an indeterminate kind — on the de Almeida-
Thouless line. Their argument, which is based on the
shrinkage of the basin of attraction as d → d+

u and the
absence of the critical fixed point for d < du in the weak-
coupling regime, still applies to the minimal two-loop
RG flow in the window d ∈ [dcas, dcol) ≈ [5.41, 6.01). In
the next section, we suggest an alternative scenario that
emerges upon transforming the coordinates of two-loop
RG equations.

III. DEPENDENCE ON COORDINATE
TRANSFORMATIONS

In Ref. [39], a three-loop calculation with Borel re-
summation was performed to further corroborate the ex-
istence of the critical fixed point identified at two-loop
order. However, the resummation scheme employed was
somewhat ad hoc, in part because of the scarcity of sys-
tematic studies on resummation schemes for field theories
with two couplings (see, however, Ref. [75]). Nonper-
turbative RG equations also exist for this problem (see
Appendix B). Although a partial analysis suggests that
their predictions are consistent with those of the two-
loop analysis, the results also suffer from the uncontrolled

scheme dependence. Just as for the Ising universality
class, the existence and nature of the fixed point thus de-
pend on the details of the scheme used. The coordinate-
transformation scheme we present below is no exception
to this lack of systematics. It nonetheless yields a simple
scenario, in which the critical RSB transition survives for
all spatial dimensions d. The proposal should thus be of
interest for the community to keep in mind.

Generically, external parameters controlled in experi-
ments and simulations map nontrivially to coupling co-
ordinates of effective field theories in the RG analysis.
It is therefore natural to analyze the dependence of the
fixed point structure against changes in coupling coor-
dinates. In particular universal properties near a fixed
point should be invariant under coordinate changes, and
this invariance can be used to cast the RG equations into
a normal form around that fixed point [76]. Below, we
perform a coordinate change around the Gaussian fixed
point and explore its effect on the strong-coupling fixed
point.

Scrutinizing the structure of Feynman diagrams lets
us organize the perturbative two-loop RG flow equation
into the form [39]

µ
∂gX

∂µ
=

[
− ε

2
+

1

4
I2(g)− 11

144
I2
2 (g) +

1

6
I4(g)

]
gX (4)

−IX3 (g) +
7

24
I2(g)IX3 (g)− 1

2
IX5,A(g)− 3

4
IX5,B(g)

where ε ≡ du − d and Ik(g)’s are k-th degree homo-
geneous polynomials of two variables gX=I,II (see Ap-
pendix A). We keep this algebraic structure suggested by
the Feynman diagrams intact and thus restrict ourselves
to the class of coordinate transformations involving only
these polynomials. Specifically, we recast the RG-flow
equations in a new normal-form coordinate g̃X defined
through

gX = g̃X + λ1g̃
X I2(g̃) + λ2I

X
3 (g̃) + Λ1g̃

X I2
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X
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X
5,B(g̃) +O(g̃7) (5)

and truncate higher-order terms. Here, coefficients λ1,2 and Λ1,2,...,5 are real parameters of the coordinate transfor-
mation. After some algebra we obtain

µ
∂g̃X

∂µ
(6)
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[
7
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− 2λ1 −

1
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λ2 + ε (−4λ1λ2 + 2Λ3)
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−1
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+ 2εΛ4
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IX5,A(g̃) +

[
−3

4
+ ε
(
−3λ2

2 + 2Λ5

)]
IX5,B(g̃) +O(g̃7) .
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(a) d = 5.43 (b) d = 5.50 (c) d = 6.005 (d) d = 6.05

FIG. 2. Flows in the space of couplings for minimal two-loop RG equations. (a) At d = 5.43 ∈ (dH, dcas), a limit cycle (thick
orange line) is observed around the strong coupling fixed point (blue dot). Its basin of attraction is delineated by thick black
lines. (b) At d = 5.50 ∈ [dcas, du], an infinite-size remnant of the limit cycle is observed, but no stable fixed point. Within the
remnant, the flow emanates from the strong-coupling fixed point and then circles around and approaches this infinite remnant.
(c) At d = 6.005 ∈ (du, dcol), the Gaussian fixed point (red dot) is stable with a finite basin of attraction. On the boundary
of the basin, two unstable fixed points (green dots) are observed along with their mirror images. (d) At d = 6.05 ≥ dcol, the
finite Gaussian basin and the infinite-size remnant of the limit cycle have merged. The Gaussian basin is now semi-infinite.

Here, we choose Λ1,2,3,4,5 appropriately to cancel the ε-dependent quintic terms, which yields

µ
∂g̃X

∂µ
=

[
− ε

2
+

(
1

4
+ ελ1

)
I2(g̃)− 11

144
I2
2 (g̃) +

(
1

6
+ 2λ1 +

1

2
λ2

)
I4(g̃)

]
g̃X (7)

+(−1 + ελ2)IX3 (g̃) +

(
7

24
− 2λ1 −

1

2
λ2

)
I2(g̃)IX3 (g̃)− 1

2
IX5,A(g̃)− 3

4
IX5,B(g̃) +O(g̃7) .

For d = du the flow equation depends only on one parameter, the linear combination λ ≡ −2λ1 − 1
2λ2:

µ
∂g̃X

∂µ
=

[
1

4
I2(g̃)− 11

144
I2
2 (g̃) +

(
1

6
− λ
)
I4(g̃)

]
g̃X−IX3 (g̃)+

(
7

24
+ λ

)
I2(g̃)IX3 (g̃)−1

2
IX5,A(g̃)−3

4
IX5,B(g̃)+O(g̃7) . (8)

The existence of the strong-coupling fixed point is ro-
bust against λ-deformation within the window λ ∈
[−0.91, 1.19]. In addition, the fixed point becomes stable
for λ > λaH ≈ 1.00 through an anti-Hopf bifurcation.
In other words, for λ < λaH the fixed point is unstable
without a limit cycle around it, while for λ > λaH it is
stable with an unstable limit cycle around it.

For d 6= du, the space of coordinate changes is two
dimensional. While this is much simpler than the full
space of coordinate changes (recall that we chose to re-
spect the algebraic structure mentioned above and in ad-
dition chose to cancel ε-dependences of the highest order
terms in the RG equations), there are still a myriad of
possibilities depending on values of λ1,2 (λ1,2 can even
be dependent on d). We will not thoroughly investigate
these possibilities because, without a guiding principle to
dictate the desired properties of the coordinate transfor-
mation, such effort would be mostly moot. Instead, be-
low we illustrate one particular physical scenario given by
the specific choice λ1 = −0.55 and λ2 = 0. For this choice
and for d just above du, two basins of attractions can be
found: one for the Gaussian fixed point and the other for

the strong-coupling fixed point, which is stable here due
to our choice λ = 1.1 ∈ (λaH, 1.19] [Fig. 3(b)]. There, de-
pending on the microscopic details of the model, the de
Almeida-Thouless-Gardner critical line may then do one
of the following: (i) lie completely within the Gaussian
basin, in which case one observes the mean-field critical-
ity; (ii) lie completely within the strong-coupling basin,
in which case one observes non-mean-field criticality; (iii)
cross borders of basins, in which case the line fragments
into several parts; or (iv) not lie within any basin, in
which case one might not observe any criticality.

As d → d+
u , the Gaussian basin shrinks to zero while

the strong-coupling basin remains nonzero. Upon fur-
ther decreasing d, with (λ1, λ2) = (−0.55, 0) the strong-
coupling fixed point goes through a Hopf bifurcation at
d ≈ 4.87, below which it has a stable limit cycle around
it [Fig. 3(a)]. Note that this process is the opposite of
what happens within the minimal two-loop RG scheme,
in which the Hopf bifurcation results in the limit cycle
upon increasing d. In contrast, at least for the specific
coordinate-transformation scheme under discussion, dis-
crete scale invariance is observed in low dimensions. In-
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(a) d = 3 (b) d = 6.005

FIG. 3. Flows in the space of couplings for coordinate-
transformed two-loop RG scheme, with λ1 = −0.55 and
λ2 = 0. (a) At d = 3, a limit cycle (thick orange line) is
observed around the strong coupling fixed point. Its basin of
attraction is delineated by thick black lines. (b) At d = 6.005,
two basins of attraction are observed: one for the Gaussian
fixed point and the other for the strong-coupling fixed point.

terestingly, a nontrivial critical fixed point in high dimen-
sion was also found in Ref. [34], within a Migdal-Kadanoff
RG scheme, but no critical limit cycle was then found
upon lowering dimensions.

In summary, with this choice of transformation, the
basin of attraction for the strong-coupling criticality
stays nonzero around and below the upper critical di-
mension and, if a given model lies within it for all d, a
dimensionally-robust nontrivial criticality is expected.

IV. CONCLUSION

We have analyzed the higher-loop RG flow equations
for the critical RSB transitions to explore scenarios that
are invisible at one-loop order. The analysis of the mini-
mal two-loop RG flow equations reveals a strong-coupling
critical fixed point, as first reported in Ref. [39], and a
more careful analysis of their dimensional dependence
discloses a critical limit cycle in a certain range of di-
mensions. In addition we have partly explored the range
of possible extrapolation of the perturbative RG cal-
culations far from the Gaussian fixed point, especially
through their dependence on the choice of perturbative
coordinate changes in coupling space. For the criti-
cal RSB field theory analyzed herein, such coordinate
transformations on the two-loop equation depict sev-
eral plausible physical predictions, one of which suggests
that the basin of attraction of the critical RSB transi-
tion stays nonzero in all spatial dimensions d, with a
limit cycle in lower dimensions. These scheme depen-
dencies highlight the need for further development in
resummed, coordinate-transformed, and nonperturbative
RG schemes. The critical RSB field theory should serve
as a key testing ground for these advances.

In addition to persistent theoretical investigations, ex-
periments and simulations on a diverse set of systems will

be indispensable to determine the role of RSB transitions
in finite dimensions. To emphasize this point, let us imag-
ine a given model that lies close to the Gaussian fixed
point. In that case, even if a strong-coupling fixed point
exists, the one-loop scenario would still apply, with the
the de Almeida-Thouless line fragmenting upon d→ du,
as proposed in Ref. [71] and criticality being absent be-
low du. It is also possible that a given model might stay
outside the basins of the critical fixed points, in which
case it would not exhibit any sign of criticality, just as in
the droplet scenario. These considerations show that an
absence of RSB criticality in a few model systems may
be due to their unfortunate locations in coupling spaces
and cannot be invoked to exclude the presence of criti-
cality in other systems. By contrast, a single observation
of RSB criticality for d < du would indicate the existence
of a nontrivial critical fixed point. In particular, if dis-
crete scale invariance were observed in any dimension, it
would substantially support the strong-coupling critical-
ity scenario proposed in Ref. [39] and further explored
herein.
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Appendix A: Combinatorial factors

As discussed in Ref. [39], the critical replicon field, φab (x), is symmetric, i.e., φab = φba for replica indices a, b
running from 1 to n, has no diagonal degree of freedom, i.e., φaa = 0, and further satisfies the replicon conditions∑n
b=1 φab = 0. By defining an orthonormal basis

{
eiab
}
i=1,...,n(n−3)/2

through

n∑
a,b=1

eiabe
j
ab = δij , (A1)

eiaa = 0 , (A2)

and

n∑
b=1

eiab = 0 (A3)

for all a = 1, . . . , n, we can expand the replicon field as

φab (x) =

n(n−3)
2∑
i=1

φi (x) eiab . (A4)

The critical Lagrangian can then be expressed as

L =
1

2

n∑
a,b=1

(∇φab)2 − 1

3!

gI
n∑

a,b=1

φ3
ab + gII

n∑
a,b,c=1

φabφbcφca


=

1

2

n(n−3)
2∑
i=1

(∇φi)2 − 1

3!

n(n−3)
2∑

i,j,k=1

(
gIT ijkI + gIIT ijkII

)
φiφjφk (A5)

with

T ijkI ≡
n∑

a,b=1

eiabe
j
abe

k
ab (A6)

and

T ijkII ≡
n∑

a,b,c=1

eiabe
j
bce

k
ca . (A7)

The homogeneous polynomials that appear in Eq. (4) are defined as

I2(g) ≡
∑

X1,X2∈{I,II}

SX1,X2
gX1gX2 , (A8)

IX3 (g) ≡
∑

X1,X2,X3∈{I,II}

aXX1,X2,X3
gX1gX2gX3 , (A9)

I4(g) ≡
∑

X1,X2,X3,X4,X5∈{I,II}

SX1,X5
aX5

X2,X3,X4
gX1gX2gX3gX4 , (A10)

IX5,A(g) ≡
∑

X1,X2,X3,X4,X5∈{I,II}

aXX1,X2,X3;X4,X5
gX1gX2gX3gX4gX5 , (A11)

IX5,B(g) ≡
∑

X1,X2,X3,X4,X5,X6∈{I,II}

aXX1,X2,X6
aX6

X3,X4,X5
gX1gX2gX3gX4gX5 . (A12)
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The one-loop self-energy combinatorial factors, defined through

n(n−3)
2∑

i3,i4=1

T i1i3i4X1
T i2i4i3X2

= SX1,X2
δi1i2 , (A13)

satisfies SX1,X2
= SX2,X1

, the one-loop cubic factors aXX1,X2,X3
, defined through

n(n−3)
2∑

i4,i5,i6=1

T i1i5i6X1
T i2i6i4X2

T i3i4i5X3
=

∑
X∈{I,II}

aXX1,X2,X3
T i1i2i3X , (A14)

are symmetric under permutations of indices (X1,X2,X3), and the two-loop cubic factors aXX1,X2,X3;X4,X5
, defined

through

n(n−3)
2∑

i4,i5,i6,i7,i8,i9=1

T i1i5i6X1
T i2i4i8X2

T i3i7i9X3
T i4i6i9X4

T i5i7i8X5
≡

∑
X∈{I,II}

aXX1,X2,X3;X4,X5
T i1i2i3X , (A15)

are symmetric under permutations of the first three indices (X1,X2,X3) and of the last two indices (X4,X5). Explicitly,
these combinatorial factors are given by (as taken from Ref. [39])

 SI,I

SI,II

SII,II

 =


n3−9n2+26n−22

2(n−1)(n−2)2

3n2−15n+16
2(n−1)(n−2)2

n4−8n3+19n2−4n−16
4(n−1)(n−2)2

 , (A16)


aI

I,I,I aII
I,I,I

aI
I,I,II aII

I,I,II

aI
I,II,II aII

I,II,II

aI
II,II,II aII

II,II,II

 =


n3−11n2+38n−34

2(n−1)(n−2)2
−1

(n−2)3

3n2−19n+20
2(n−1)(n−2)2

−n3+8n2−17n+12
2(n−1)(n−2)3

−n3+5n2+8n−16
4(n−1)(n−2)2

3n3−27n2+64n−48
4(n−1)(n−2)3

−3n
2(n−2)2

n5−10n4+33n3−8n2−104n+112
8(n−1)(n−2)3

 , (A17)



aI
I,I,I;I,I

aI
II,I,I;I,I

aI
I,I,I;II,I

aI
I,I,I;II,II

aI
II,II,I;I,I

aI
II,I,I;II,I

aI
II,II,II;I,I

aI
I,I,II;II,II

aI
I,II,II;I,II

aI
I,II,II;II,II

aI
II,II,II;I,II

aI
II,II,II;II,II



≡



n8−26n7+291n6−1816n5+6840n4−15756n3+21586n2−16088n+5008
4(n−1)2(n−2)6

3n7−66n6+607n5−2960n4+8132n3−12592n2+10236n−3392
4(n−1)2(n−2)6

3n7−66n6+604n5−2930n4+8017n3−12380n2+10048n−3328
4(n−1)2(n−2)6

21n6−366n5+2493n4−8316n3+14536n2−12800n+4480
8(n−1)2(n−2)6

3n7−27n6−59n5+1471n4−6396n3+12496n2−11664n+4224
8(n−1)2(n−2)6

n7−7n6−63n5+819n4−3292n3+6262n2−5776n+2080
4(n−1)2(n−2)6

n9−19n8+145n7−541n6+1018n5−1488n4+4292n3−10192n2+11328n−4608
16(n−1)2(n−2)6

−n7+20n6−110n5+84n4+871n3−2704n2+3040n−1216
4(n−1)2(n−2)6

−7n7+134n6−819n5+1708n4+680n3−7552n2+10144n−4352
16(n−1)2(n−2)6

n9−15n8+95n7−469n6+2196n5−6368n4+8592n3−2176n2−5376n+3584
32(n−1)2(n−2)6

3n8−42n7+169n6+68n5−1750n4+3488n3−1456n2−1984n+1536
16(n−1)2(n−2)6

n(−3n6+54n5−315n4+560n3+376n2−1968n+1440)
16(n−1)(n−2)6



, (A18)
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and



aII
I,I,I;I,I

aII
II,I,I;I,I

aII
I,I,I;II,I

aII
I,I,I;II,II

aII
II,II,I;I,I

aII
II,I,I;II,I

aII
II,II,II;I,I

aII
I,I,II;II,II

aII
I,II,II;I,II

aII
I,II,II;II,II

aII
II,II,II;I,II

aII
II,II,II;II,II



≡



3(n2−7n+8)
(n−1)1(n−2)5

n5−15n4+78n3−165n2+159n−62
2(n−1)2(n−2)5

3n5−42n4+211n3−448n2+436n−168
4(n−1)2(n−2)5

n7−18n6+127n5−420n4+574n3−40n2−608n+416
8(n−1)2(n−2)5

−n5+19n4−118n3+296n2−336n+148
2(n−1)2(n−2)5

−2n5+41n4−260n3+659n2−750n+328
4(n−1)2(n−2)5

3n5−72n4+531n3−1494n2+1848n−864
8(n−1)2(n−2)5

3n6−39n5+151n4−45n3−726n2+1344n−736
8(n−1)2(n−2)5

n7−14n6+81n5−352n4+1412n3−3384n2+3984n−1824
16(n−1)2(n−2)5

3n5−17n4−25n3+243n2−420n+232
2(n−1)2(n−2)5

3n6−24n5+147n4−1006n3+3136n2−4240n+2112
16(n−1)2(n−2)5

3n8−47n7+315n6−1229n5+3110n4−4088n3+336n2+4928n−3648
32(n−1)2(n−2)5



. (A19)

Appendix B: Nonperturbative RG

We consider here the replicon field theory from the nonperturbative RG approach proposed by Wetterich [62]. This
scheme uses the Legendre transform of the Polchinski equation [61], casting the exact RG equations in a way that
naturally leads to various approximation schemes. As such, it has had success with the Lifshitz critical point [77],
random-field spin models [65, 78, 79], fully-developed turbulent flows [80], and others [64, 66].

More specifically, within the nonperturbative RG scheme [64, 66], the microscopic action SΛ [φ] is supplemented by
a cutoff term

∆S [φ] =
1

2

∫
dq

(2π)d
Rµ
(
q2
) n(n−3)

2∑
i=1

φi (q)φi (−q) , (B1)

where the scale-dependent cutoff function, Rµ
(
q2
)
, suppresses low -momentum fluctuations, i.e. with |q| <∼ µ

[cf. Eq. (B30)]. The resulting one-particle-irreducible effective action, Γµ [φ], then obeys the Wetterich equation [62]

µ
∂

∂µ
Γµ [φ] =

1

2

∫
dq

(2π)d

{
µ
∂

∂µ
Rµ
(
q2
)} n(n−3)

2∑
i=1

{(
Γ(2)
µ [φ] +Rµ1

)−1
}
i,i

(q,q) , (B2)

where (
Γ(2)
µ [φ]

)
i,j

(q,q′) ≡ δ2Γµ [φ]

δφi (−q) δφj (q′)
(B3)

and

(Rµ1)i,j (q,q′) ≡ Rµ
(
q2
)
δij (2π)

d
δ(d) (q− q′) . (B4)

Although the Wetterich equation is exact, it is intractable in practice. As mentioned above, it nonetheless provides
a natural starting point for devising various approximation schemes. We here adopt the most commonly employed
scheme, the pseudo-local potential approximation, which implements the derivative expansion on the one-particle-
irreducible effective action. In order to make the analysis tractable in presence of complex index structures, we further
truncate the potential-energy term. We find that the strict truncation to cubic order produces a behavior qualitatively
similar to one-loop perturbative calculations without stable fixed points for d < du, while the inclusion of quartic
terms as independent couplings results in a plethora of spurious, unphysical, fixed points, as was also observed in
simpler models [81]. In order to correctly treat higher-order contributions, we thus follow the systematic approach
of Ref. [82], which reproduces two-loop results for d = du when perturbatively expanded in couplings, while being
similarly robust both at weak and strong couplings; see also Refs. [63, 81] for different schemes.
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Note that to fully imitate the approach of Ref. [82] and, in particular, to successfully reproduce the two-
loop results in the weak-coupling limit we need to expand terms around the vacuum expectation value of
a generic RSB phase and include more derivative terms. Because properly treating Nambu-Goldstone soft
modes around a RSB phase remains an open problem, what follows is a simplified scheme. We nonethe-
less checked that the results are qualitatively robust against various changes of the scheme: (i) excluding

the quintic term, 1
5!

∑n(n−3)
2

i1,...,i5=1 Ṽ
i1i2i3i4i5
(5)∗ φi1φi2φi3φi4φi5 ; (ii) including the cubic term with two derivatives,

1
2

∑n(n−3)
2

i1,j1,j2=1 D̃
i1|j1j2
(3)∗ φi1 (∇φj1) (∇φj2); (iii) including both cubic and quartic terms with two derivatives, the lat-

ter having the form of 1
4

∑n(n−3)
2

i1,i2,j1,j2=1 D̃
i1i2|j1j2
(4)∗ φi1φi2 (∇φj1) (∇φj2); (iv) including all cubic, quartic, and quintic

terms with two derivatives, the last having the form of 1
12

∑n(n−3)
2

i1,i2,i3,j1,j2=1 D̃
i1i2,i3|j1j2
(5)∗ φi1φi2φi3 (∇φj1) (∇φj2); and (v)

changing the sharp cutoff function, Eq. (B30), to a smooth Rµ
(
q2
)

=
Zµq

2

exp(q2/µ2)−1 . Of these, only (iv) qualitatively

changed the results, but this interference and the quantitative disagreement with other approaches mentioned in the
main text would be likely cured if effects of the vacuum expectation value were properly included.

Within this approach, the effective action contains two parts, Γµ [φ] = Γprimary
µ [φ] + Γ̃∗ [φ]. The first is the primary

action

Γprimary
µ [φ] =

∫
dx

Zµ2
n(n−3)

2∑
i=1

(∇φi)2
+
r̃µ
2

n(n−3)
2∑
i=1

φ2
i −

1

3!

n(n−3)
2∑

i1,i2,i3=1

 ∑
X∈{I,II}

g̃Xµ T
i1i2i3
X

φi1φi2φi3

 , (B5)

governed by independent couplings,
{
Zµ, r̃µ, g̃

X
µ

}
. The second is the one-loop improved action

Γ̃∗ [φ] =
1

2

∫
dq

(2π)d

n(n−3)
2∑
i=1

{
ln
(

Γprimary(2)
µ [φ] +Rµ1

)}
i,i

(q,q) , (B6)

from which we discard terms that are already contained in the primary action. The secondary action can then be
written as

Γ̃∗ [φ] =

∫
dx

{
1

4!

n(n−3)
2∑

i1,i2,i3,i4=1

Ṽ i1i2i3i4(4)∗ φi1φi2φi3φi4 −
1

5!

n(n−3)
2∑

i1,...,i5=1

Ṽ i1i2i3i4i5(5)∗ φi1φi2φi3φi4φi5

}
. (B7)

Here, terms beyond the quintic order do not affect the renormalization group equations for independent couplings
and are thus suppressed.

In order to express secondary couplings as functions of independent couplings, we first expand the logarithm in the
prescription of Eq. (B6). At `-th order in φ, the one-loop improved action is given by

(−1)

2`

∑
X1,...,X`∈{I,II}

n(n−3)
2∑

i1,...,i`=1

g̃X1
µ g̃X2

µ · · · g̃X`µ ωi1i2...i`X1,X2,...,X` (B8)

×
∫

dq1

(2π)d
dq2

(2π)d
· · · dq`

(2π)d
A0

(
q2

1

)
A0

(
q2

2

)
· · ·A0

(
q2
`

)
φi1 (q` − q1)φi2 (q1 − q2) · · ·φi` (q`−1 − q`) ,

with

A0

(
q2
)
≡ 1

Zµq2 +Rµ (q2) + r̃µ
(B9)

and

ωi1i2...i`X1,X2,...,X` ≡

n(n−3)
2∑

i`+1,...,i2`=1

T
i1i2`i`+1

X1
T
i2i`+1i`+2

X2
· · ·T i`i2`−1i2`

X` . (B10)

Plugging in homogeneous field configurations then yields dimensionless secondary couplings

V i1i2...i`(`)∗ ≡ Z−
`
2

µ µ
d(`−2)

2 −`
(
Kd

cd

) (`−2)
2

Ṽ i1i2...i`(`)∗ , (B11)
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which we express in terms of the dimensionless independent couplings

r ≡ Z−1
µ µ−2r̃µ , (B12)

gX ≡ Z−
3
2

µ µ
d−6
2

√
Kd

cd
g̃Xµ . (B13)

Here,

Kd ≡
vol(Sd−1)

(2π)d
=

1

2d−1π
d
2 Γ
(
d
2

) . (B14)

We shall later set the normalization constant, cd, such that the final renormalization group equations agree with the
perturbative equations when expanded to one-loop order. Letting (i1i2 . . . i`) denote the symmetric average over `!
permutations of indices, we obtain

V i1i2i3i4(4)∗ = −3s3(r)
∑

X1,...,X4∈{I,II}

ω
(i1i2i3i4)
X1,X2,X3,X4

gX1gX2gX3gX4 , (B15)

V i1i2i3i4i5(5)∗ = 12s4(r)
∑

X1,...,X5∈{I,II}

ω
(i1i2i3i4i5)
X1,X2,X3,X4,X5

gX1gX2gX3gX4gX5 , (B16)

where we have introduced the functions

s` (r) ≡ cd
2

∫ ∞
0

dyy
d
2−1 1

{y + b(y) + r}`+1
, (B17)

with

b(y) ≡ 1

Zµµ2
Rµ(q2 = µ2y) . (B18)

In order to evaluate the right-hand side of the Wetterich equation (B2), we need to invert the matrix{
Γ(2)
µ [φ] +Rµ1

}
i,j

(q,q′) (B19)

to cubic order in φ and evaluate diagonal elements. Along with the identity
∑n(n−3)

2
i=1 T iijX = 0, the following combina-

torial relations prove useful in performing the algebra:

n(n−3)
2∑

i3=1

∑
X1,X2,X3,X4∈{I,II}

gX1gX2gX3gX4ω
(i1i2i3i3)
X1,X2,X3,X4

= δi1i2
(

2

3
I2
2 +

1

3
I4

)
, (B20)

n(n−3)
2∑

i4,i5=1

∑
X1,X2,X3,X4,X5∈{I,II}

gX1gX2gX3gX4gX5ω
(i1i2i4i5)
X1,X2,X3,X4

T i3i4i5X5
=

∑
X∈{I,II}

T i1i2i3X

(
1

3
IX5,A +

2

3
IX5,B

)
, (B21)

n(n−3)
2∑

i4=1

∑
X1,X2,X3,X4,X5∈{I,II}

gX1gX2gX3gX4gX5ω
(i1i2i3i4i4)
X1,X2,X3,X4,X5

=
∑

X∈{I,II}

T i1i2i3X

(
1

2
I2I
X
3 +

1

2
IX5,B

)
, (B22)

all of which can be derived by contracting indices of appropriate tensor products. We further define threshold functions

f`(r) ≡
`cd
2

∫ ∞
0

dyy
d
2−1 c(y)

{y + b(y) + r}`+1
, (B23)

m1(r) ≡ cd
∫ ∞

0

dyy
d
2−1c(y)

[
1 + b′(y) + 2y

d b
′′(y)

{y + b(y) + r}4
− 4y

d

{1 + b′(y)}2

{y + b(y) + r}5

]
, (B24)

with

c(y) ≡ 1

Zµµ2

(
µ
∂Rµ
∂µ

)
(q2 = µ2y) . (B25)
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Noting that the anomalous exponent is given by

η = −µ∂log (Zµ)

∂µ
, (B26)

the resulting nonperturbative RG equations can be written as

η =
1

2
m1 (r) I2(g) , (B27)

βr ≡ µ
∂r

∂µ
= (−2 + η)r +

1

2
f2(r)I2(g) + {f1(r)s3(r)} I2

2 (g) +

{
1

2
f1(r)s3(r)

}
I4(g) , (B28)

βX ≡ µ∂g
X

∂µ
=

(
d− 6 + 3η

2

)
gX − f3(r)IX3 (g) (B29)

−{3f1(r)s4(r)} I2(g)IX3 (g)−
{

3

2
f2(r)s3(r)

}
IX5,A(g)− {3f2(r)s3(r) + 3f1(r)s4(r)} IX5,B(g) .

In order to numerically study these equations, we selected the cutoff function

Rµ
(
q2
)

= Zµ
(
µ2 − q2

)
θ
(
µ2 − q2

)
(B30)

and the normalization constant

cd =
d

6
, (B31)

which give

f`(r) =
`

3 (1 + r)
`+1

(
1− η

d+ 2

)
, (B32)

m1(r) =
1

3 (1 + r)
4 , (B33)

s` (r) =
1

6(1 + r)`+1
+

d

6(2`+ 2− d)
2F1

(
`+ 1, `+ 1− d

2
; `+ 2− d

2
;−r

)
, (B34)

where we used ∫ ∞
0

dyθ(1− y)δ(1− y) =
1

2
(B35)

and 2F1 is the ordinary hypergeometric function. Note that in general there is subtlety in dealing with products of
step and delta functions [63], but within our approximation such subtleties do not arise.

Within this nonperturbative approach, unlike the perturbative dimensional regularization scheme, there is no clean
way to focus on the critical surface from the onset. The analysis must instead include the quadratic coupling, r(µ),
which essentially corresponds to the relevant deformation of the system away from the critical point. The RG flow
is thus governed by three β-functions,

{
βr, β

I, βII
}

, and the critical surface is defined by the global condition that a

flow starting at
{
r, gI, gII

}
must be attracted to the critical fixed point (or the critical limit cycle). In other words, a

codimension-one hypersurface, rc

(
gI, gII

)
, is identified over the range of (gI, gII) that can be made critical by tuning

r, as long as the fixed point (or the cycle) remains critical with a single relevant deformation. Unfortunately the
numerical analysis of the limit cycle then becomes overly arduous due to the need to tune out manually one relevant
deformation. The stability exponents of the fixed point can nonetheless be obtained from the right eigenvalues of a
3× 3 matrix 

∂βr
∂r

∂βr
∂gI

∂βr
∂gII

∂βI

∂r
∂βI

∂gI
∂βI

∂gII

∂βII

∂r
∂βII

∂gI
∂βII

∂gII

 ∣∣∣∣∣
(r,gI,gII)=(r?,gI?,g

II
? )

, (B36)

with the lowest value, λ0, yielding the critical exponent, ν = −1/λ0, while λ1 and λ2 again control subleading
corrections near the critical point. The results in Fig. S1 qualitatively agree with the minimal two-loop RG treatment
and thus bring additional support to the existence of the nontrivial critical fixed point. Quantitatively, however, they
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(a) (b) (c)

FIG. S1. Critical parameters at the nontrivial fixed point derived within the minimal two-loop (solid lines) and nonperturbative
(dashed lines) RG schemes as functions of the spatial dimensions d. (a) Real parts of the stability exponents around the fixed
point within the critical surface, λ1 and λ2. (b) Critical exponents, ν (cyan) and η (navy-blue). (c) Fixed-point values of
running couplings, gI (red) and gII (orange) are of order unity in all d. Note that within the two-loop (nonperturbative) RG
scheme, the nature of the fixed point changes at d0 ≈ 4.8 (5.2) and dH ≈ 5.4 (5.8). Namely, two stability exponents merge
for d > d0, at which point they acquire imaginary parts. The flow thus spirals into the fixed point, but remains stable. Right
above d = dH, the real part of these eigenvalues becomes negative and the flow spirals out of the fixed point to the limit cycle.

do not completely match. Most notably the exponent ν displays an opposite trend with d. This discrepancy may be
stemming from simplifications related to our present inability to properly treat Nambu-Goldstone soft modes around
the RSB phase.

[1] P. W. Anderson, “Absence of diffusion in certain random
lattices,” Phys. Rev. 109, 1492 (1958).

[2] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, “Metal–
insulator transition in a weakly interacting many-electron
system with localized single-particle states,” Ann. Phys.
321, 1126 (2006).

[3] V. Oganesyan and D. A. Huse, “Localization of inter-
acting fermions at high temperature,” Phys. Rev. B 75,
155111 (2007).

[4] A. Pal and D. A. Huse, “Many-body localization phase
transition,” Phys. Rev. B 82, 174411 (2010).

[5] N. F. Mott, “Conduction in non-crystalline materials:
III. Localized states in a pseudogap and near extremi-
ties of conduction and valence bands,” Philos. Mag. 19,
835 (1969).

[6] V. Ambegaokar, B. I. Halperin, and J. S. Langer, “Hop-
ping conductivity in disordered systems,” Phys. Rev. B
4, 2612 (1971).

[7] A. L. Efros and B. I. Shklovskii, “Coulomb gap and
low temperature conductivity of disordered systems,” J.
Phys. C 8, L49 (1975).

[8] Y. Imry and S.-k. Ma, “Random-field instability of the
ordered state of continuous symmetry,” Phys. Rev. Lett.
35, 1399 (1975).

[9] G. Parisi, “Infinite number of order parameters for spin-
glasses,” Phys. Rev. Lett. 43, 1754 (1979).
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