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The second law of thermodynamics requires the overall thermal current to flow from hot to cold.
However, it does not forbid a local thermal current from flowing from cold to hot. By coupling a
harmonic system of three masses connected by a few springs to two Langevin reservoirs at different
temperatures, a local atypical thermal current is found to flow from cold to hot in the steady
state while the overall thermal current is still from hot to cold. The direction of the local thermal
current can be tuned by the mass, spring constant, and system-reservoir coupling. The local thermal
current can vanish if the parameters are tuned to proper values. We also consider nonlinear effect
from the system-substrate coupling and find that the local atypical thermal current survives in
the presence of the nonlinear potential. Moreover, the local atypical thermal current is robust
against asymmetry of the system-reservoir coupling, inhomogeneity of the nonlinear potential, and
additions of more masses and springs. In molecular or nanomechanical systems where the setup
may find its realization, the direction of the local thermal current may be controlled by mechanical
or electromagnetic means, which may lead to applications in information storage.

I. INTRODUCTION

One consequence of the second law of ther-
modynamics is that in the macroscopic world,
the overall heat flow is from a hot object to a
cold one [1] since the entropy is non-decreasing
in an isolated system. However, there are loop-
holes allowing a reversal of the direction of the
thermal current from cold to hot in specific sys-
tems without violating the second law of ther-
modynamics. Maxwell noted the second law is
”a statistical, not a mathematical, truth, for it
depends on the fact that the bodies we deal with
consist of millions of molecules...Hence the sec-
ond law of thermodynamics is continually being
violated, and that to a considerable extent, in
any sufficiently small group of molecules belong-
ing to a real body” [2]. Ref. [3] has shown that
inducing an oscillatory thermal current allows
a reversal of the heat flow in the time domain,
but the time-averaged behavior does not vio-
late the second law. When a viscous electron
fluid is driven by a voltage difference across a
temperature gradient, it was argued that [4] the
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circulation of electric current can lead to local
flows from cold to hot. It was also demonstrated
in [5] that exploiting quantum correlations be-
tween the constituents, the thermal current de-
fined in conventional thermodynamics can flow
from cold to hot without violating the second
law of thermodynamics.

Classical electrodynamics requires the overall
electronic current to flow from high bias to low
bias [6]. Similarly, Fourier’s law in conventional
thermodynamics describes thermal transport in
macroscopic objects, formulating the thermal
current to be opposite to the temperature gra-
dient [7, 8]. However, it is possible to tune the
direction of particle or heat flow if no prefer-
ential direction is specified. There have been
studies discussing controls of the overall direc-
tion of thermal or particle current in thermal
ratchets or Brownian motors [9–14]. However,
the particle or thermal currents in those studies
are not atypical because a preferred, normal di-
rection (such as a thermal current from hot to
cold in steady-state thermal transport) has not
been chosen. Thus, those studies do not ad-
dress whether an atypical thermal current flow-
ing from a stationary hot reservoir to a cold one
is possible.

Here we analyze a simple classical system
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of coupled harmonic oscillators driven by two
Langevin reservoirs at different temperatures
and unambiguously demonstrate a local atyp-
ical thermal current from cold to hot in the
steady state. Our approach of inducing the local
atypical current is based on geometric means al-
lowing multi-paths between two points. For in-
stance, negative differential thermal conductiv-
ity has been predicted in a triangle spin-boson
system coupled to three reservoirs [15]. Ref. [16]
shows that when the quantum electronic cur-
rent flows through a multi-path triangular ge-
ometry, the current on one path may flow from
low bias to high bias while the overall current
always flows from high bias to low bias.

By exploiting the analogue between quantum
transport of fermions and thermal transport in
classical harmonic systems [17, 18], we propose
a simple multi-path geometry for thermal trans-
port in classical harmonic systems shown in Fig-
ure 1. An analytic expression for the total ther-
mal current in the steady state through the har-
monic system exists [19], and the total current
will be shown to exhibit a dip as the masses and
spring constants are tuned in the regime with
weak system-reservoir coupling. Following stan-
dard molecular-dynamics simulations [20, 21],
we will show that the dip indicates a local ther-
mal current flows from cold to hot in the steady
state after the transient behavior has decayed
away. Thus, we offer a simple yet unambiguous
example of Maxwell’s vision [2]

By analyzing the normal modes of the har-
monic system and system-reservoir coupling, we
will show the local atypical heat flow is a combi-
nation of the internal properties of the harmonic
system and external couplings to the reservoirs.
Thus, there are many knobs for tuning the lo-
cal thermal current, including the mass, har-
monic coupling constant, and system-reservoir
coupling. Moreover, we will show that the atyp-
ical local current is robust against nonlinear on-
site potentials. One may envision molecular [22]
or nanomechanical [18] systems for realizing the
phenomenon discussed here.

The rest of the paper is organized as follows.
In section II we describe the system for studying
multi-path thermal transport and its modeling

FIG. 1. Schematic plot of the classical mass-spring
system coupled to the Langevin reservoirs (red
square boxes) at temperatures TL and TR, respec-
tively. m1 and m3 are connected to the hard walls
(the slabs) via springs with spring constant K0 and
to each other with two springs with spring constant
K3/2. m2 is connected to both m1 and m3 through
springs with spring constant K2.

using the Langevin equation. Numerical meth-
ods for simulating the thermal current will be
discussed. In section III, we present the ana-
lytic formula and its results along with the nu-
merical results for the harmonic system driven
by two Langevin reservoirs. We will show un-
ambiguously a local atypical thermal current
from cold to hot. Next, we discuss how nonlin-
ear effects influence the local thermal currents
and present phase diagrams showing where the
local atypical thermal current survives. We
also show the robustness nature of the atypi-
cal of the local atypical thermal current against
asymmetric system-reservoir coupling, inhomo-
geneous system-substrate coupling, and addi-
tions of more masses and springs. In section IV,
we comment on possible ways of tuning the cou-
pling to the reservoirs and propose applications
based on the controllable local thermal current.
Section V concludes our work.

II. THERMAL TRANSPORT OF
CLASSICAL HARMONIC OSCILLATORS

We consider a system of three masses m1, m2,
and m3 connected by some springs and coupled
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to two Langevin reservoirs at different temper-
atures, as illustrated in Figure 1. We only con-
sider the motion of the masses in one transverse
direction labeled by their displacements xn with
n = 1, 2, 3. The system is described by Newto-
nian mechanics with the Hamiltonian

H =
∑
n

[
1

2
mnẋ

2
n+V (xn−xn+1)+U(xn)], (1)

where V is the nearest-neighbor interaction po-
tential and U is the on-site potential. The sys-
tem is confined by two hard-walls with harmonic
coupling K0, so one may supplement x0 = 0 and
x4 = 0. The hard-walls prevent overall transla-
tional motions of the whole system [23]. The re-
sults we will present only depend quantitatively
on K0, and all the conclusions are insensitive to
K0.

Here we focus on the case with only harmonic
couplings between the masses, and we model the
coupling to the substrate by U(xn) = 1

4gx
4
n with

coupling constant g [24, 25]. Explicitly, the
potentials of the three masses have the following
forms:

(V + U)1 =
K0

2
(x1 − x0)2 +

K2

2
(x1 − x2)2

+
K3

2
(x1 − x3)2 +

g

4
(x1)4,

(V + U)2 =
K2

2
(x2 − x1)2 +

K2

2
(x2 − x3)2

+
g

4
(x2)4,

(V + U)3 =
K0

2
(x3 − x4)2 +

K2

2
(x3 − x2)2

+
K3

2
(x3 − x1)2 +

g

4
(x3)4. (2)

Here K2 is the spring constant of the spring con-
necting m2 to m1 or m3 and K3/2 is the spring
constant of the two identical springs connecting
m1 and m3 directly.

Thermal transport through the system is
driven by two reservoirs at temperatures TL and
TR. In this work we consider the commonly
used Langevin reservoirs [26–28]. The coupled
equations of motion [29] of the driven system

are

m1,3ẍ1,3 = F1,3 − bL,Rẋ1,3 + ηL,R(t),

m2ẍ2 = F2. (3)

Here Fn = −∂(U+V )n/∂xn is the deterministic
force on the n-th mass. The subscripts L and
R denote the left and right reservoirs, respec-
tively. bL,R are the friction coefficients coupling
the system to the reservoirs, and ηL,R(t) are the
stochastic forces from the reservoirs. ηL,R(t)
satisfy 〈ηL,R(t)〉 = 0 and

〈ηL,R(t1)ηL,R(t2)〉 = 2bkBTL,Rδ(t1 − t2), (4)

where kB is the Boltzmann constant. The latter
relation guarantees the fluctuation-dissipation
theorem [20, 27, 30]. In the following, we con-
sider m1 = m3 = m and K0 = K3 = K. More-
over, we will show that slightly different values
of bL and bR do not change the results quali-
tatively, so we will use the symmetric system-
reservoir coupling, bL = bR = b, unless stated
specifically.

The local thermal current from site i to site
j can be defined with the help of the continu-
ity equation [31]. The general form is Jij =
〈Fij ẋj〉, where Fij is the force acting on mass
j due to mass i. For a harmonic system in the
steady state, Jij = −Jji. The explicit form of
the total thermal current from m1 to m3 is

〈J13〉 = 〈ẋ3(K2x2 +K3x1)〉. (5)

In the steady state, it is equal in magnitude but
in the opposite direction of the thermal current
from m3 to m1. Similarly, we can find the local
current flowing from m1 to m2, which is the
same as the local current through m2 to m3 in
the steady state. Explicitly,

〈J12〉 = 〈ẋ2(K2x1)〉, (6)

which is also equal to 〈J23〉 in the steady state.
We will numerically evaluate the local currents
through each path for the harmonic system as
well as the case including nonlinear effects via
the onsite potential U(xj) modeling the sub-
strate effect.
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Dimensionless quantities can be constructed
by using m, K, kB , and ~. For instance,
the units of energy, temperature, time, angu-
lar frequency, length, thermal current, system-
reservoir coupling, and system-substrate cou-

pling are E0 = ~
√

K
m , T0 = ~

kB

√
K
m , t0 =

√
m
K ,

ω0 =
√

K
m , l0 =

√
~√
mk

, J0 = ~K
m , b0 =

√
mK,

and g0 =
√
mK3

~ , respectively. Take a nano sys-

tem [32, 33] for example, m ' 10−26 kg,
√

K
m '

1012 rad/s, l0 ' 10−10 m, and T0 is around 73K.
The setup of Fig. 1 is generic and may be appli-
cable to molecular or nano-mechanical systems
in the classical regime [22, 34], or even macro-
scopic objects as long as the Langevin equa-
tion (3) applies.

Available computer simulation methods for
the Langevin equation include the first-order
Euler-Maruyama method [35], the hybrid Heun
method [20], and the complete second-order
method [21], etc. The white noise is simulated
by a Weiner process. In absence of nonlinearity,
the results from those methods are practically
indistinguishable if the time increment is care-
fully chosen. To handle nonlinearity, however,
the Heun or complete second-order method al-
lows a larger step size in the simulation and
gives more reliable results.

We follow the algorithms from Refs. [20, 21]
and present the results accurate up to the
second-order of the time increment. The time
step size in our simulations is ∆t/t0 = 10−4.
We present the results averaged over an ensem-
ble of 1600 independent realizations. To ensure
that the system is in the steady-state regime,
we monitor the time evolution of the thermal
current and wait until the transient behavior
decays away. In general, we start taking the
steady-state value after t > 300t0 and then av-
erage the value over a time period of τ/t0 = 500
afterwards. Importantly, we have checked there
is no energy accumulation in the system in the
steady state by verifying the thermal current
coming into each mass equals the current out
of each mass. For instance, 〈J12〉 = 〈J23〉,
〈J13〉 = −〈J31〉, etc. Unless specified otherwise,
the reservoirs were maintained at TL/T0 = 2

and TR/T0 = 1. To map out the flow direc-
tion of the thermal current through m2, we
vary K2/K3, m2/m3, bL,R, and g and check the
steady-state current in each case.

III. ATYPICAL LOCAL THERMAL
CURRENT FROM COLD TO HOT

A. Analytic formula for total current

We will start with the case with the harmonic
case with g = 0 and investigate the thermal
currents in the linear system. A general formal-
ism for the thermal conductance of harmonic
systems coupled to Langevin reservoirs can be
found in Refs. [19, 27]. For a harmonic system
consisting ofN masses connected by springs and
coupled to two Langevin reservoirs with a tem-
perature difference ∆T = TL − TR at the ends,
the total thermal current is given by

J = ∆TbLbR

∫ ∞
−∞

dω

π
ω2|ClN |2[(K1,N

−ω2bLbRK2,N−1)2 + ω2(bRK1,N−1

+bLK2,N )2]−1. (7)

Here one constructs the force matrix Φ speci-
fying the harmonic couplings between pairs of
masses, the mass matrix M is diagonal with the
masses m1,m2, · · · ,mN along the diagonal, and
the matrix Z = Φ −Mω̈ − iωB, where B has
only two nonvanishing elements B11 = bL and
BNN = bR. Then, Ki,j denotes the determinant
of the matrix from the i-th row (column) to the
j-th row (column) of the matrix (Φ − Mω2).
C1N is the cofactor of the (1, N)-th element of
Z. For the setup shown in Fig. 1, the force ma-
trix is

Φ =

 K0 +K2 +K3 −K2 −K3

−K2 2K2 −K2

−K3 −K2 K0 +K2 +K3

 .

(8)
The numerical value of the total thermal current
J13 flowing through the device shown in Fig. 1
can be obtain from Eq. (7) after one obtains
the cofactor and determinants needed for the
evaluation.
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Figure 2 shows the total thermal current J13
as a function of m2/m3 and K2/K3 according
to Eq. (7) with m1 = m3, K0 = K1 = K3,
∆T/T0 = 1, and selected values of bL = bR = b.
When b is small, for instance b/b0 = 0.1, one ob-
serve the surface of J13 exhibits a dip, implying
a non-monotonic dependence of J13 on the pa-
rameters m2/m3 and K2/K3. However, the dip
disappears when b increases. We have checked
the more general cases with 0.5 ≤ bL/bR ≤ 2,
and the total current behaves qualitatively the
same. Moreover, the observation of a dip (or no
dip) when bL, bR are small (or large) remains.
At this stage, the dip of J13 may look mysteri-
ous. In the next section, we will show that, by
numerically analyzing the local thermal current
through each path, the dip of the total thermal
current is associated with a local atypical ther-
mal current flowing through the mass m2 from
cold to hot.

Incidentally, simplified expressions based on
Eq. (7) are available for 1D harmonic chains
with certain patterns in the infinite-chain
limit [19, 36–38]. The analytic formula also
helps clarify the influence of topological edge
states on thermal transport in 1D harmonic sys-
tems [18].

B. Atypical local current in harmonic
System

The anomalous behavior of the total thermal
current in Fig. 2 actually encompasses an inter-
esting phenomenon of a local atypical thermal
current flowing opposite to the total current.
We start with the linear system by setting the
nonlinear substrate coupling g to zero and use
numerical simulations to obtain the local ther-
mal current. Figure 3 shows the atypical behav-
ior of a selected example with bL = bR = b =
0.1b0, where the total thermal current J13 from
the hot reservoir to the cold one is shown in (a)
and the local thermal current J12 through m2

is shown in (b).
The opposite directions of J13 and J12 in the

steady state for the case with b/b0 = 0.1 demon-
strate unambiguously the existence of a local

FIG. 2. Total thermal current J13 through the har-
monic system shown in Fig. 1, according to the
analytic formula, Eq. (7). Here bL = bR = b,
m1/m3 = 1, K0/K3 = K1/K3 = 1, g = 0,
∆T/T0 = 1, and b/b0 = 0.1 for (a) and b/b0 = 1.0
for (b).

atypical thermal current from cold to hot. We
emphasize the steady-state values are taken af-
ter t > 300t0 to ensure the transient behavior
has decayed away. In the inset, we show the typ-
ical, normal behavior of another example with
b/b0 = 1.0, where J12 and J13 show the same
sign in the steady state. We found that, in gen-
eral, the local thermal current through m2 can
flow from cold to hot only in the weakly cou-
pling regime when b/b0 is small compared to the
other parameters. The dependence of the ther-
mal current of a one-dimensional (1D) harmonic
system on b has been studied in Refs. [31, 39],
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FIG. 3. (a) The total thermal current J13 and
(b) the local thermal current J12 through m2 with
b/b0 = 0.1, showing the local atypical current from
cold to hot. The insets present the corresponding
quantities for the case with b/b0 = 1.0, showing all
currents flowing from hot to cold. The dots show
the average over 1600 realizations. The thick blue
lines show the average over a period of 500t0 in
the steady state (t > 300t0). Here K2/K3 = 0.35,
m2/m3 = 0.3, ∆T/T0 = 1, and g/g0 = 0. (c) The
total and local thermal currents vs. ∆T for the two
cases shown in (a) and (b).

but the setup shown in Fig. 1 is not a simple
1D system.

To verify the local thermal current from cold
to hot is not an artifact, we vary the temper-
ature difference ∆T between the two reservoirs

and show in Figure 3 (c) the local current from
cold to hot indeed scales linearly with ∆T/T0
just like the total current. The result thus es-
tablishes the existence of a local atypical ther-
mal current from cold to hot in a simple classical
harmonic system driven by Langevin reservoirs.
By sweeping the values of (K2/K3,m2/m3) in
the parameter space when b/b0 is small, we
found the steady-state thermal current through
m2 can be either in the direction from m1 to
m3 (from hot to cold) or vice versa (from cold
to hot) when TL and TR are fixed.

FIG. 4. (a) The dependence of the local current J12

on the system-reservoir coupling bL/b0 for asym-
metric couplings bR = 0.5bL (triangles) and bR =
2.0bL (squares) and symmetric coupling bR = bL
(circles). (b) The local temperatures of the three
sites as functions of b/b0 for the case of symmetric
coupling in the steady state. Here m2/m3 = 0.3,
K2/K3 = 0.35, ∆T/T0 = 1, and g = 0.

Away from the small b/b0 regime, the sys-
tem only exhibits the normal behavior for rea-
sonable values of m2/m3 and K2/K3. In the
insets of Fig. 3, we present the total and lo-
cal thermal currents of the case with the same
parameters except b/b0 = 1.0, showing all the
currents flow from hot to cold. The depen-
dence of J12 on b is illustrated in Fig. 4 (a)
with the selected parameters m2/m3 = 0.3 and
K2/K3 = 0.35. For symmetric system reser-
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voir coupling, bR/b0 = bL/b0 as b increases, J12
changes from the atypical (cold to hot) direction
to the normal (hot to cold) direction. Impor-
tantly, there is a critical point (b/b0 ≈ 0.4 for
this case), where the local current J12 vanishes
in the steady state. We note that there is still
an overall thermal current flowing through the
two springs coupling m1 and m3 directly, but
the path through m2 carries no thermal current
in the steady state.

Asymmetric system-reservoir couplings with
bR/bL of order 1 yields qualitatively the same
results as the case with symmetric system-
reservoir coupling. As shown in Fig. 4 (a), the
local current J12 can change from the atypical
to normal behavior as bL increases if we choose
bR = 0.5bL or bR = 2bL.

We also evaluate the local temperatures of the
three masses and verify that m1 is really hotter
than m2 in the steady state. The local tem-
perature of mass j (with j = 1, 2, 3) is defined
as

Tj =
1

kB
mj〈v2j 〉. (9)

In Fig. 4 (b), we show the steady-state local
temperatures of the three masses as a func-
tion of b for the case with symmetric system-
reservoir coupling. One can see that regard-
less of the presence the atypical local thermal
current, the local temperatures always follow
T1 > T2 > T3. The local temperatures thus
firmly establish the atypical behavior of the lo-
cal thermal current because it can indeed flow
from cold to hot if the system and system-
reservoir coupling are tuned to the right param-
eters.

Figure 5 (a) shows the phase diagram of the
system with b/b0 = 0.1, where the blue tri-
angles (red dots) indicate where a local atyp-
ical (normal) thermal current through m2 is
observed when b/b0 = 0.1. Increasing b/b0 in
the atypical regime always drives the system
from one with a local atypical current to one
with only normal currents, similar to the result
shown in Fig. 4 (a). On the other hand, varying
m2/m3 and K2/K3 leads to more complicated
behavior of the local current and the atypical

FIG. 5. (a) Phase diagram showing where a local
atypical thermal current from cold to hot can be
found. The blue triangles (red dots) indicate where
the local current is atypical (normal). Here b/b0 =
0.1 and g/g0 = 0. (b) and (c) show the normal mode
frequencies, ω/ω0, of the system shown in Fig. 1
without the reservoirs for (b) K2/K3 = 0.35 and
(c) K2/K3 = 0.15.

regime may be sandwiched in between the nor-
mal regimes.

The dependence of the direction of the lo-
cal thermal current on the system-reservoir cou-
pling b, shown in Fig. 4 (a), indicates the mech-
anism behind the atypical local current is not
an intrinsic property of the harmonic system.
To corroborate the observation, we evaluate the
normal-mode frequencies of the harmonic sys-
tem shown in Fig. 1 without the reservoirs and
show the spectra in Fig. 5 (b) and (c) for two
selected cases.

As shown in Figure 5 (b) and (c), the normal-
mode frequencies for both values of K2/K3 ex-
hibit level crossings. We found the locations of
the level crossings are close to the left bound-
ary of the region exhibiting the atypical current
in the phase diagram shown in Figure 5 (a).
On the other hand, no additional level cross-
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ing appears as m2/m3 increases, but the phase
diagram shows that the system changes from
the atypical regime to the normal regime when
m2/m3 becomes large. With the observation
that tuning the system-reservoir coupling b also
controls the direction of the local thermal cur-
rent even when m2/m3 and K2/K3 are fixed, as
shown in Fig. 4 (a), the atypical current cannot
be solely attributed to the normal-mode spec-
trum of the harmonic system. Instead, it is a
combined effect of the system and reservoirs.

Moreover, the location of the dip in the to-
tal current from the analytic formula, exempli-
fied by Fig. 2 (a), is close to the left boundary
of the atypical regime shown in Fig. 5 (a) for
small b/b0. We found this to be generic and one
can use the dip in the total current from the
analytic formula to estimate where the atypical
local current emerges. There is no indication
of the right boundary of the atypical regime
from the analytic formula, though. Therefore,
it is insufficient to determine the whole atypical
regime by analyzing the total thermal current
or the normal-mode spectrum. One has to nu-
merically analyze each local current as we did
here.

For quantum transport of electrons through a
triangular quantum dot metastructure [16], the
local atypical electric current is due to the wave
nature of quantum particles. Thermal trans-
port in classical harmonic systems is carried
by the normal modes coupled to the reservoirs.
The normal modes may be viewed as mechani-
cal waves. As the reservoirs pump in and take
out energy through the normal modes, there is
no rule forbidding a path from overshooting the
overall thermal current. Moreover, the conser-
vation of charge in electronic transport imposes
Kirchhoff’s law requiring the net electric current
through a node should be zero [6]. Similarly, in
steady-state thermal transport the net thermal
current through a mass in a harmonic system
should vanish. Therefore, if an overshoot occurs
along a path, another path will compensate for
the excess thermal current by carrying the ther-
mal current backward, resulting in the atypical
local thermal current.

C. Atypical local current and nonlinear
onsite potential

The harmonic system with the Langevin
reservoirs is a linear system, allowing a de-
tailed analysis of its dynamics. After establish-
ing the local thermal current from cold to hot,
we consider an effective nonlinear onsite poten-
tial U(xn) = (1/4)gx4n modeling the coupling
between the masses and the substrate following
Refs. [24, 25]. In the presence of the nonlinear
potential, the vibrational spectrum of the sys-
tem cannot be described by the normal modes.
Nevertheless, our simulations of the system with
the nonlinear substrate effect using the second
order method can test the robustness of the lo-
cal thermal current from cold to hot against the
onsite nonlinear potential.

Figure 6 (a) and (b) show the phase dia-
grams of the system with g/g0 = 0.1 and 0.5
at fixed b/b0 = 0.1. As g/g0 increases, the
regime with a local atypical thermal current
(the blue triangles) remains almost the same.
Therefore, the atypical local thermal current is
robust against the nonlinear onsite potential.
On the other hand, the dependence on m2/m3

and K2/K3 shows similar behavior as the case
with g/g0 = 0. Figure 6 (c) shows the de-
pendence of the local thermal current J12 on
the system-reservoir coupling for the symmetric
(bL = bR) and asymmetric (bL 6= bR) cases for
m2/m3 = 0.9, K2/K3 = 0.35, ∆T/T0 = 1, and
g/g0 = 0.5. As one can see, the local thermal
current can be tuned from the atypical regime
to the normal regime by increasing the system-
reservoir coupling in both the symmetric and
asymmetric cases.

D. Robustness of atypical local current

We have shown that the atypical local ther-
mal current in the steady state is robust against
asymmetric system-reservoir coupling (bL 6=
bR) in both the linear (g/g0 = 0) and non-
linear (g/g0 = 0.5) cases, as demonstrated in
Fig. 4 (a) and Fig. 6 (c). Next, we found the
atypical thermal current survives after intro-
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FIG. 6. (a) and (b): Phase diagrams of the system
with nonlinear substrate effect. Here g/g0 = 0.1 in
(a) and g/g0 = 0.5 in (b). The blue triangles (red
dots) show where a local thermal current from cold
to hot can (cannot) be observed. Here b/b0 = 0.1.
(c) The local thermal current as a function of the
system-reservoir coupling for the symmetric case
with bR = bL (circles) and asymmetric cases with
bR = 0.5bL (triangles) and bR = 2.0bL (squares).
Here m2/m3 = 0.9, K2/K3 = 0.35, ∆T/T0 = 1,
and g/g0 = 0.5.

ducing inhomogeneity to the nonlinear system-
substrate coupling. Explicitly, we consider
U(xn) = (1/4)gnx

4
n with tunable gn for each

mass. For the extreme case with g1 = g3 = 0
and g2/g0 = 0.5, the phase diagram is still sim-
ilar to the one with gn/g0 = 0.5 for all n shown
in Fig. 6 (b) with the same b/b0. The robustness
of the atypical thermal current against inhomo-
geneous nonlinear onsite potential is in contrast
to the atypical local electronic current in the tri-
angular quantum-dot metastructure of Ref. [16].

The latter was shown to be sensitive to inhomo-
geneous onsite interactions.

FIG. 7. (a) Illustration of a four-mass setup. The
addition of m4 avoids a direct coupling between
m1 and m3, which are connected to the Langevin
reservoirs at temperatures TL and TR, respectively.
The convention follows Fig. 1. (b) The local ther-
mal current J12 through m2 in the steady state as
a function of the symmetric system-reservoir cou-
pling bR = bL = b. Here m1/m3 = 1, m2/m3 =
0.4, m4/m3 = 0.5, K0/K3 = 1, K2/K3 = 0.35,
∆T/T0 = 1, and g = 0.

Another test of the atypical local current is to
introduce a more complicated setup, where the
direct coupling between m1 and m3 in Fig. 1 is
avoided. The setup is illustrated in Fig. 7 (a),
where two paths with m2 and m4 in the mid-
dle, respectively, connecting m1 and m3. The
Hamiltonian is given by

H4 =

4∑
n=1

[
1

2
mnẋ

2
n+V (xn, xn+r)+U(xn)], (10)

where V and U denote the harmonic coupling
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and onsite potentials, similar to Eq. (1). Two
hard-walls are introduced with x0 = x5 = 0.
The potentials have the following forms:

(V + U)1 =
K0

2
(x1 − x0)2 +

K2

2
(x1 − x2)2

+
K3

2
(x1 − x4)2 +

g

4
(x1)4,

(V + U)2 =
K2

2
(x2 − x1)2 +

K2

2
(x2 − x3)2

+
g

4
(x2)4,

(V + U)3 =
K0

2
(x3 − x5)2 +

K2

2
(x3 − x2)2

+
K3

2
(x3 − x4)2 +

g

4
(x3)4,

(V + U)4 =
K3

2
(x4 − x1)2 +

K3

2
(x4 − x3)2

+
g

4
(x4)4. (11)

HereK2 is the spring constant of the two springs
connecting m2 to m1 and m3, and K3 is the
spring constant of the springs connecting m4 to
m1 and m3.

The equations of motion when the system is
connected to two Langevin reservoirs at tem-
peratures TL and TR can be derived accord-
ingly. We will focus on the harmonic case
when g = 0 and tune m2,m4,K2,K3 to look
for atypical behavior in the system. For sim-
plicity, we set m1/m3 = 1, K0/K3 = 1, and
bL = bR = b. Fig. 7 (b) shows the local ther-
mal current flowing through m2 in the steady
state when m2/m3 = 0.4, m4/m3 = 0.5, and
K2/K3 = 0.35. Apparently, the local atypi-
cal thermal current survives in the more com-
plicated setup with no direct coupling between
the two masses connected to the Langevin reser-
voirs. Moreover, the dependence of the local
current on the system-reservoir coupling is sim-
ilar to the result shown in Fig. 4 (a). There-
fore, the local atypical thermal current is robust
against asymmetry in the system-reservoir cou-
pling, inhomogeneity in the system-substrate
coupling, and additions of more masses and
springs to the system.

IV. EXPERIMENTAL IMPLICATIONS
AND POSSIBLE APPLICATIONS

Although the Langevin equation (3) does not
differentiate the size of the system, it may be
more feasible to realize the system in molecular
or nano-mechanical systems due to the proper-
ties of the reservoirs. As shown in Fig. 4, in-
creasing the value of b can switch the direction
of the local thermal current. On the other hand,
the nonlinear system-substrate coupling has lit-
tle effect on the direction of the local thermal
current, as shown in Fig. 6.

In principle, all the parameters of the har-
monic system and its couplings to the reservoirs
and substrate should be tunable. There are
studies and techniques for tuning the coupling
between a molecular or nano-mechanical sys-
tem and its environment [40–48]. Tuning tech-
niques are usually classified into two categories:
mechanical or electromagnetic. In mechanical
methods, one may use the atomic force mi-
croscopy [45, 46] to locally strain the material.
The contacts between the system and the reser-
voirs can then be modified. For example, using
density-functional theory calculations, Ref. [48]
shows that the thermal current in a molecu-
lar junction can be manipulated through me-
chanical compression for a wide range of tem-
peratures, essentially due to mode localization.
Ref. [49] shows, also using density functional
theory, a significant suppression in the phononic
thermal conductance of a molecular junction
due to its structure.

On the other hand, electromagnetic methods
use tunable, high frequency pulsed laser [47] to
adjust the interactions between the system and
reservoirs on the nano or atomic scale, thereby
changing b. Alternatively, for substrates that
are conducting or piezoelectric [50], an electric
current can be sent through the substrate to
modify its coupling with the system. The mod-
ification will also affect the connections between
the system and reservoirs, so the value of b can
be tuned indirectly. In this case, it is likely
the nonlinear coupling g may be unintentionally
modified as well. However, since the system-
substrate coupling has minimal influence on the
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direction of local thermal current as shown in
Fig. 6, tuning properties of the substrate to ad-
just the system-reservoir coupling b indirectly
becomes a viable option.

Since the direction of the local thermal cur-
rent can be tuned by a variety of techniques, one
can envision possible applications of the setup
shown in Figs. 1 and 7 in molecular or nano-
scale mechanical devices. For example, tun-
ing the system-reservoir coupling by mechanical
pressing or electromagnetic field as mentioned
above can reverse the local thermal current, and
one may design a thermal switch in a local re-
gion embedded in a multi-path geometry. This
will allow an active control of the thermal cur-
rent through a designated region.

As another example, one may identify the two
directions of the local thermal current (cold-to-
hot vs. hot-to-cold) with the two binary digits
0 and 1 and design classical memory elements
where the local current is tuned by mechanical
or electromagnetic means to perform writing.
One may couple additional masses and springs
to m1 and m2 to siphon a small amount of the
thermal current in order to read out the infor-
mation. The geometry-based thermal-current
switch and memory element complement topo-
logical thermal switch and logic [51] and enrich
the thriving fields of phononics [52] and heat-
tronics [22].

V. CONCLUSION

In summary, we have demonstrated a steady-
state local thermal current from cold to hot
in a classical harmonic system coupled to two
Langevin reservoirs at different temperatures.
The overall thermal current, nevertheless, is al-
ways from hot to cold, as required by the second
law of thermodynamics. The regime exhibiting
the local atypical current is not only determined
by the parameters of the harmonic system, but
also by the coupling to the reservoirs. Inter-
estingly, there exist parameters where the local
thermal current vanishes in the steady state.
Moreover, the local atypical thermal current
is found to be robust against nonlinear effects
modeling the system-substrate coupling, asym-
metric system-reservoir coupling, and additions
of more masses and springs.

While topological effects can lead to inter-
esting quantization of classical thermal trans-
port [18] and thermal logic [51], geometric ef-
fects such as the multi-path setup studied here
can also give rise to unconventional thermal
transport behavior and lead to interesting ther-
mal devices.
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