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Abstract

Super-diffusion, characterized by a spreading rate t1/α of the probability density function

p(x, t) = t−1/αp
(

t−1/αx, 1
)

, where t is time, may be modeled by space-fractional diffusion equa-

tions with order 1 < α < 2. Some applications in biophysics (calcium spark diffusion), image

processing, and computational fluid dynamics utilize integer-order and fractional-order exponents

beyond than this range (α > 2), known as high-order diffusion, or hyperdiffusion. Recently, space-

time duality, motivated by Zolotarev’s duality law for stable densities, established a link between

time-fractional and space-fractional diffusion for 1 < α ≤ 2. This paper extends space-time duality

to fractional exponents 1 < α ≤ 3, and several applications are presented. In particular, it will be

shown that space-fractional diffusion equations with order 2 < α ≤ 3 model sub-diffusion and have

a stochastic interpretation. A space-time duality for tempered fractional equations, which models

transient anomalous diffusion, is also developed.
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I. INTRODUCTION

Non-Fickian, or anomalous, diffusion is observed in many areas of physics, includ-

ing hydrology [1–3], turbulent transport [4], and biophysics [5, 6]. Anomalous super-

diffusion is characterized by a spreading rate t1/α of the probability density function

p(x, t) = t−1/αp
(

t−1/αx, 1
)

that is faster than the classical t1/2 rate predicted by Fick-

ian diffusion [7], where t is time, while anomalous sub-diffusion is characterized by a

spreading rate that is slower than t1/2. Fractional PDEs (FPDEs), where local time- and

space-derivatives are replaced by non-local fractional derivatives, are often used to study

anomalous diffusion. FPDEs with a γ-fractional derivative in time and an α-fractional

derivative in space lead to a scaling rate of tγ/α. Sub-diffusion may be modeled by a time-

fractional derivative (e.g., Caputo derivative) with order γ < 1 and a second derivative in

space (α = 2) [7], whereas super-diffusion may be modeled by a space-fractional derivative

(e.g., Riemann-Liouville derivative) of order 1 < α < 2 and a first order derivative in time

(γ = 1) [8]. These FPDEs may be derived from a continuous time random walk (CTRW)

framework: time-fractional diffusion equations involve long-waiting times between particle

jumps, where the chance of waiting longer than some time t > 0 is proportional to t−γ,

while space-fractional diffusion equations involve long particle jumps, where the chance of

jumping longer than some distance x > 0 is proportional to x−α. Transient anomalous

sub- and super-diffusion, which transition from early-time anomalous behavior to late-time

diffusive behavior, may be modeled with tempered time-fractional [9] and space-fractional

[10, 11] derivatives, respectively.

Recently, we have established a link between time-fractional and space-fractional diffusion

equations, called space-time duality [12, 13]. Zolotarev [14, 15] first proved a duality law

between stable densities with indices 1 < α ≤ 2 and 1/2 ≤ 1/α < 1. The duality principle

was applied to the space-fractional diffusion equation in [12], and later to the space-fractional

advection-dispersion equation in [13]. The latter study was motivated by a controversy

in river-flow hydrology: both space-fractional dispersion (diffusion) equations and time-

fractional PDEs provide reasonably good fits to breakthrough curve (BTC) measurements

[16]. From a stochastic point of view, space-time duality established a connection between

long, power-time waiting times and long negative jumps, thereby justifying a space-fractional

PDE for modeling retention of contaminant particles. In short, a particle that rests while the
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plume moves downstream ends up in the same position as a particle that moves downstream,

but then makes a long upstream jump.

In both [12] and [13], the equivalence was restricted to space-fractional PDEs modeling

super-diffusion (1 < α < 2). The equivalent time-fractional equation has order γ = 1/α.

Space-fractional derivatives of order α > 2 have recently been used to model sub-diffusion of

calcium sparks in cardiac myocytes by Chen et al. [17] and Tan et al. [18], exhibiting good

agreement with experimental data. This sub-diffusion results from the multi-scale nature

of cytoplasm, which has polymer networks and complex macro-molecules that immobilize

diffusing particles. Recall that time-fractional PDEs are often used to model sub-diffusion

since the time-fractional Caputo derivative results from long waiting times in the CTRW

formalism. A question arises: can the space-fractional model with order 2 < α ≤ 3 proposed

in [17, 18] be linked with time-fractional [5] and CTRW [6] diffusion models also used in

biophysics? Space-fractional exponents with α > 2 (high-order diffusion, or hyperdiffusion)

are also found in fluid mechanics [19], image processing [20], and transport of cosmic rays

[21].

The goal of this paper is to extend space-time duality to fractional (and integer) spatial

derivatives of order 1 < α ≤ 3. Our duality result shows how both super-diffusion and

sub-diffusion can be modeled by a space-fractional PDE. Then we illustrate the method

with applications to the time-fractional diffusion wave equation, multi-dimensional time-

changed Brownian motion, and tempered fractional diffusion. In Section II, we briefly

review the space-fractional diffusion equation and hyperdiffusion. Section III generalizes

the space-time duality argument presented in [13] to all space-fractional exponents 1 <

α ≤ 3. Section IV connects solutions of the time-fractional diffusion-wave equation to

a corresponding system of space-fractional diffusion equations. A governing equation for

subordinated multi-dimensional Brownian motion is proposed in Section V using a vector

space-fractional PDE. Section VI extends space-time duality to tempered fractional diffusion,

followed by conclusions in Section VII.
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II. SPACE-FRACTIONAL DIFFUSION

The two-sided space-fractional diffusion equation is given by [22, Equation (1.26)]

∂

∂t
u(x, t) =

(

1 + θ

2

)

C
∂α

∂xα
u(x, t) +

(

1− θ

2

)

C
∂α

∂(−x)α
u(x, t) (1)

where C is a fractional diffusion coefficient, the fractional index is α > 1, and the skewness

is θ ∈ [−1, 1]. The positive (left) and negative (right) Riemann-Liouville (RL) fractional

derivatives are defined by [23, p. 87]

∂α

∂xα
f(x) =

1

Γ(n− α)

∂n

∂xn

∫ x

−∞

f(y)(x− y)n−1−α dy (2a)

∂α

∂(−x)α
f(x) =

(−1)n

Γ(n− α)

∂n

∂xn

∫

∞

x

f(y)(y − x)n−1−α dy, (2b)

where n = ⌈α⌉ and Γ(z) is the Gamma function. For 1 < α ≤ 2 subject to an impulse initial

condition u(x, 0) = δ(x), the fundamental solution of (1) is a stable probability density

function (PDF) with index α and skewness θ [24]. In river-flow hydrology, breakthrough

curve measurements of relative concentration u(x, t) with x fixed are well fit by negatively-

skewed (θ = −1) PDFs [16].

For the special case of θ = −1, (1) reduces to the negatively skewed space-fractional

diffusion equation
∂

∂t
u(x, t) = C

∂α

∂(−x)α
u(x, t). (3)

The coefficient C is chosen such that the eigenvalues of (3) have a non-positive real part so

energy is not created. Denote the Fourier transform (FT) of u(x, t) by û(k, t) and apply a

FT to (3), yielding
∂

∂t
û(k, t) = C(−ik)αû(k, t).

Since the real part of C(−ik)α is C cos(πα/2), we take C = (−1)m+1 where 2m− 1 < α <

2m+ 1 and m ∈ N to produce eigenvalues with non-positive real part. In particular, C = 1

if 1 < α ≤ 3 and C = −1 if 3 < α ≤ 5. Under this condition, (3) reduces to a hyperdiffusion

equation [19, 25]
∂

∂t
u(x, t) = (−1)m+1 ∂α

∂(−x)α
u(x, t). (4)

For integer α = 2m, (4) is used in turbulence modeling [19], stabilizing numerical methods

such as the spectral element method [26], and modeling the transport of cosmic rays [29].
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In the remainder of this paper, we consider (3) with C = 1 for 1 < α ≤ 3, which is a special

case of (4).

We consider solutions with an impulse initial condition u(x, 0) = δ(x). For 1 < α ≤ 2,

solutions to (3) are negatively skewed stable densities [24], which model anomalous diffusion

where particles experience large jumps in the negative direction. This equation, comple-

mented with a drift term, successfully models contaminant transport in rivers [2, 30], as well

as source identification problems in groundwater hydrology [31], where u(x, t) is the release

location/time PDF. These hydrology applications assume a fractional exponent 1 < α ≤ 2,

so that the contaminant particles experience super-diffusion and there is stochastic inter-

pretation to u(x, t).

Remark II.1. The term “hyperdiffusion” has several usages in the literature. For example,

Metzler et al. [27] define hyperdiffusion as a process with mean-squared displacement that

has a scaling rate of tα, where α > 2. In this paper, the term “hyperdiffusion” refers to the

FPDE (4) with α > 2 and its solutions. Hyperdiffusion (or hyperviscosity) is popular in

turbulence modeling and computational fluid dynamics (CFD), where integer powers greater

than two are used to stabilize numerical methods by reducing the range of scales over which

dissipation acts [19]. Hyperdiffusion is used in spectral element models to damp high-order

modes and eliminate numerical noise [26]. The most commonly used value for hyperdiffusion

is α = 4 (m = 2) [26, 28]. Wei [20] applied integer-order hyperdiffusion for image denoising

and edge detection problems, while Malkov and Sagdeev [29] derived a hyperdiffusion model

with α = 4 (m = 2) for cosmic ray transport. Fractional-order hyperdiffusion with orders

larger than two have also been used in the surface generation of proteins by Hu et al. [32]

and modeling calcium sparks in cardiac myocytes by Tan et al. [18]. Recently, Tawfik et

al. [21] used a space-time hyperdiffusion equation with a Riesz derivative in space of order

α > 2 and Caputo derivative in time of order 0 < γ < 1 to model cosmic rays.

III. SPACE-TIME DUALITY

Although space-time duality was first noted using stable PDFs [14, 15], the basic idea may

be illustrated using Fourier transforms and dispersion relationships. Applying a space-time

FT to (3) using the relationship
∫

∞

−∞

∂α

∂(−x)α
f(x)e−ikx dx = (−ik)αf̂(k) yields a dispersion

relationship iω = (−ik)α, where ω is angular frequency and k the wavenumber, and f̂(k)
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is the spatial FT of f(x). Formally take the α-th root, yielding an equivalent dispersion

relationship (iω)γ = −ik, where γ = 1/α, which characterizes a time-fractional PDE of

order γ < 1.

Although this argument is heuristic, it motivates a Fourier-Laplace transform (FLT)

argument first presented in [13]. In [13], we restricted our attention to fractional orders

1 < α ≤ 2 in (3) with C = 1. In this section, this restriction on α is relaxed, allowing

the fractional order to be larger than two and less than or equal to three and providing a

stochastic model for hyperdiffusion. Our motivation comes from Hu et al. [32]: “Currently,

most attention in the field is paid to the fractional derivatives of order less than 2. High-

order fractional derivatives are hardly used, partly due to the limited understanding of their

physical meanings.” In this section, we assign a physical meaning to (3) with 2 < α ≤ 3

using a space-time duality argument.

Define the FLT of u(x, t) via

u(k, s) =

∫

∞

0

∫

∞

−∞

u(x, t)e−ste−ikx dx dt (5)

and the Laplace transform by ũ(x, s). Then apply (5) to (3) with C = 1, yielding

u(k, s) =
1

s− (−ik)α
. (6)

The inverse FT of (6) can be expressed as [35, (4.8.18)]

ũ(x, s) =
1

2π
lim
R→∞

∫ R+iτ

−R+iτ

eikx

s− (−ik)α
dk, (7)

where τ > 0 is chosen to avoid the branch cut along the negative real axis.

For 1 < α ≤ 3, the integrand of (7) has a single, simple pole at k∗ = is1/α and remains

analytic for all other points in the upper half-plane (UHP) for any choice of 1 < α ≤ 3. To

prove this, write the wavenumber in polar form k = |k|eiθ, where |θ| ≤ π is the phase angle.

The poles k∗ then satisfy

|k∗|αeiα(θ−π/2) = s (8)

where s is positive and real. Hence, the phase angle satisfies α(θ− π/2) = 2πn with n ∈ N.

Since we are only interested in poles that reside in the UHP, take 0 < θ < π. Solving for n

yields −α/3 < n < α/3. Hence, if 1 < α ≤ 3, the only integer solution is n = 0, implying

that only one pole lies in the UHP. If 3 < α ≤ 5, then the coefficient on the right hand side of

(4) is negative, yielding a FLT of u(k, s) = (s+ (−ik)α)−1. Repeating the pole calculation
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yields at least two poles in the UHP for 3 < α ≤ 5, while for α > 5, there are at least three

poles in the UHP. Hence, the complex plane argument described below is not applicable and

we cannot assign a stochastic interpretation to the space-fractional diffusion equation for

α > 3.

By converting the path of integration in (7) into a closed contour in the upper half-plane

by attaching a semi-circle of radius R (see Appendix A in [13] for details), (7) is evaluated

using the Cauchy residue theorem as

ũ(x, s) = γsγ−1 exp (−xsγ) (9)

where 1/3 ≤ γ = 1/α < 1. The contribution along the semi-circle CR vanishes as R → ∞

using the bounds in Appendix A of [13].

Inverting the LT yields

u(x, t) = γhγ(x, t) (10)

where hγ(x, t) is the inverse stable density (see Remark III.1 below) with index γ [36]. To

derive the governing equation of the inverse stable density, take the FT of (9), yielding

ũ(x, s) =
γsγ−1

ik + sγ
. (11)

Recall that the LT of the Caputo derivative ∂γ
t u(x, t) is given by Lt [∂

γ
t u(x, t)] = sγũ(x, s)−

sγ−1u(x, 0) for 0 < γ < 1 [40, Equation (1.27)]. Cross-multiply and invert, yielding

∂γ
t u(x, t) = −

∂

∂x
u(x, t); u(x, 0) = γδ(x), (12)

which is valid for any 1/3 ≤ γ < 1. Hence, we have transformed the space-fractional

equation (3) into an equivalent time-fractional equation (12) on the half-axis. This result

extends the results of [12] and [13] to a larger range of fractional (and integer) exponents

1 < α ≤ 3 and time-fractional exponents 1/3 ≤ γ < 1.

For α 6= 2, 3, the spatial nonlocality of the negative RL derivative is exchanged for the

temporal nonlocaity of the Caputo derivative. The time-fractional equation (12) governs the

long term limit of a random walk where the particles experience power-law waiting times

T with tail probability P (T > t) ≈ t−γ for t ≫ 1. Hence, we can assign a stochastic

intepretation to (3) for 2 < α ≤ 3: the fractional order α codes long, power-law waiting

times that scale like t−1/α. Note that the tail of the waiting time distribtion associated

with (3) is heavier than those considered in [13], indicating a higher probability of very long

waiting times.

7



Remark III.1. The time-fractional equation (12) is the governing equation of the inverse

stable subordinator [36]

Et = inf {x > 0 : Dx > t} (13)

that models the first passage times of the stable subordinator t = Dx, where Dx has density

g(t, x) with Laplace transform e−xsγ . From a CTRW perspective, the inverse process Et

models the local times of particles undergoing long waiting times.

Example III.2. The inverse γ-stable subordinator of order γ = 1/3 satisfies the integer-order

PDE
∂

∂t
h1/3(x, t) = −

∂3

∂x3
h1/3(x, t) (14)

which is a linearized KdV equation [37] used to model long wavelength water waves. Equa-

tion 14 may be evaluated in closed form [15, Equation (2.10.3)]

h1/3(x, t) =
1

γ
F−1

x

[

exp
(

t(−ik)3
)]

=
3

2π

∫

∞

−∞

exp
(

i(kx+ tk3)
)

dk

=
3

(3t)1/3
Ai

(

x

(3t)1/3

)

(15)

where Ai(z) is the Airy function. Hence, h1/3(x, t) spreads at rate t1/3, which is clearly

sub-diffusive.

Remark III.3. The density hγ(x, t) is self-similar with a scaling relationship hγ(x, t) =

t−1/αhγ(xt
−1/α, 1) [36]. We can distinguish three types of behavior: (i) if 1 < α < 2,

the plume spreads faster than the diffusive rate of t1/2; (ii) if α = 2, the solution is classi-

cally diffusive; and (iii) if 2 < α ≤ 3, the solution spreads slower than the diffusive rate of

t1/2. Hence, a wide range of anomalous diffusion may be modeled with a negatively skewed

space-fractional diffusion equation.

Remark III.4. Space-time duality may be applied to the positively-skewed case θ = 1 on

the negative half-axis x < 0 by the same argument. Zolotarev wrote a general duality law

involving stable PDFs for α ≤ 2 [15, Equation 2.3.3] and trans-stable distributions for α > 2

[15, Equation 2.11.7]. This duality law is valid for a range of skewness parameters θ. These

duality relations may be extended to the negative half-axis using the reflection property

of stable and trans-stable PDFs. Using these relationships, we derived a time-fractional

equation involving both positive and negative temporal RL derivatives that is equivalent
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to (3) for x < 0 in Appendix C of [13]. It should be possible to extend this result to

the two-sided diffusion equation (1) by a similar argument. Unlike the negative spatial RL

derivative, it is not known how to assign any physical meaning to a negative (right) temporal

RL derivative, which models temporal nonlocality into the future.

Remark III.5. It is also interesting to consider the physical meaning of a time derivative of

order γ > 1. Some results in this direction can be found in [43] for the case 1 < γ < 2. For

a diffusion with drift, introducing a fractional time derivative of order 1 < γ < 2 results in a

kind of superdiffusion, where the plume variance spreads like t3−γ, see [43, Section 6.2]. We

do not know whether there is a duality result for γ > 1.

Remark III.6. Conservative explicit Euler [42] and implicit Euler [33] methods are available

to solve (3) subject to the reflecting boundary condition (A.3). Feng [44] proposed an

unconditionally stable Crank-Nicolson scheme for fractional orders 2 < α < 3 that is first-

order accurate in space and second-order accurate in time. Baeumer et al. [25, Proposition

4.2] proposed a stable scheme for (4) for any α that is high-order in space based on a

Grünwald discretization [41] with shift m, where m is given by 2m− 1 < α < 2m+ 1.

IV. TIME-FRACTIONAL DIFFUSION-WAVE EQUATION

A wide variety of anomalous phenomena can be modeled by the time-fractional diffusion-

wave equation on the real line

∂β
t u(x, t) =

∂2

∂x2
u(x, t), (16)

where 0 < β ≤ 2, β = 2γ, and the left hand side is the Caputo derivative of order β.

Equation (16) interpolates between the diffusion equation (β = 1) and the wave equation

(β = 2). For 0 < β < 1, (16) models anomalous sub-diffusion and Hamiltonian chaos [38].

In particular, u(x, t) is the limiting density of a CTRW with a Pareto (power-law) waiting

time distribution P (Jn > t) = Bt−β [39]. For 1 < β < 2, (16) models wave propagation

in viscoelastic materials [40], including seismic waves [45] and acoustic waves in biological

media [46].
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A. Analytical Solution

Fundamental solutions to (16) on the real line are computed using the initial condition

u(x, 0) = βδ(x). For 1 < β ≤ 2, we impose the additional initial condition ut(x, 0) = 0. The

Laplace transform of the Caputo derivative with order 1 < β ≤ 2 is given by [40, Equation

(1.27)]

Lt

[

∂β
t u(x, t)

]

= sγũ(x, s)− sγ−1u(x, 0)− sγ−2ut(x, 0) (17)

while for 0 < β ≤ 1, the Laplace transform is merely the first two terms. Apply a FLT to

(16), yielding

u(k, s) =
βsβ−1

k2 + sβ
. (18)

Factor the denominator into (sβ/2 + ik)(sβ/2 − ik) and expand in partial fractions, yielding

u(k, s) =
γsγ/2−1

ik + sγ
+

γsγ/2−1

−ik + sγ
(19)

where 1/2 < γ = β/2 ≤ 1. Noting that the first term has a pole k∗ = isγ in the upper-half

k plane, and the second term has a pole k∗ = −isγ in the lower-half k plane, we see that

the first term has support on x > 0 while the second term has support on x < 0. Applying

an inverse FLT to each term in (19) yields a pair of one way fractional wave equations

∂γ
t u+(x, t) = −

∂

∂x
u+(x, t) for x > 0 and (20a)

∂γ
t u−(x, t) =

∂

∂x
u−(x, t) for x < 0. (20b)

Much like the classical wave equation, (16) consists of left and right moving components.

A similar decomposition was reported in [46, Equation (5.4)] for 1 ≤ β ≤ 2. The solution

of (20a) is the density of the inverse γ-stable subordinator

hγ(x, t) =
t

x1+1/γ
gγ

(

tx−1/γ
)

, (21)

where gγ(x) is the density of the γ-stable subordinator with Laplace transform e−sγ . The

left-moving component is given by u−(x, t) = γhγ(−x, t). Combining these two components

yields

u(x, t) =
γ

2
hγ(|x|, t), (22)

which is also given in Mainardi et al. [24, Equation (4.23)] using the Wright function. Note

that (22) is continuous but not differentiable at x = 0 with a “cusp” at x = 0 [47, Proposition

6.1]. See also [7, 48].
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B. Duality Solution

By duality, the system of one way time-fractional equations (20) may be converted into

a system of space-fractional equations on the real line. We see that u+(x, t) also solves (3)

with α = 1/γ = 2/β and C = 1. Applying Remark III.4, the solutions to (16) also solve a

system of space-fractional PDEs

∂

∂t
u(x, t) =

∂α

∂(−x)α
u(x, t) for x > 0 and (23a)

∂

∂t
u(x, t) =

∂α

∂xα
u(x, t) for x < 0, (23b)

which may be expressed for any real x via

∂

∂t
u(x, t) = Aα

xu(x, t) (24)

using the operator

Aα
xf(x) =











∂α

∂(−x)α
f(x) x > 0

∂α

∂xαf(x) x < 0,
(25)

In the case of sub-diffusion (2/3 ≤ β < 1), 2 < α ≤ 3, while for super-diffusion (1 < β < 2),

1 < α < 2.

Remark IV.1. For 1 < α ≤ 2, (23a) complemented by the boundary condition (A.3) govern

spectrally negative Lévy motion conditioned to stay positive [34], while (23b) governs spec-

trally positive Lévy motion conditioned to stay negative. On the positive half-axis, particles

may drift to the right or jump to the left. On the negative half-axis, particles may drift left

or jump to the right.

Remark IV.2. Note that solutions to either (23a) or (23b) on the entire real line are not

positive for α > 2, which may be shown by calculating moments using
∫

∞

−∞
xnu(x, t) dx =

inû(n)(0, t). Hence, these solutions on the real line are not PDFs. Numerical solutions to (3)

on the real line are shown in Figure 1 for α = 2.5 and 3, illustrating this non-positivity.

Remark IV.3. The space-fractional diffusion equation of order α = 2.25 was proposed by Tan

et al. [18] to model sub-diffusion of calcium sparks in the heart. Since the space-fractional

diffusion equation (3) of order 2 < α ≤ 3 is mathematically equivalent to a time-fractional

diffusion equation of order 1/α, (3) is the limit of a CTRW with waiting times Jn that are

asymptotically Pareto with index 1/3 ≤ γ < 1/2. Hence the space-fractional PDE with

2 < α ≤ 3 models anomalous sub-diffusion caused by particle sticking or trapping.
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FIG. 1. Numerical solutions of the space-fractional diffusion equation (3) on the entire real line

using the implicit Euler scheme outlined in [42] and [33] for α = 2.5 (left) and α = 3 (right). Note

that the solutions are non-negative for x > 0 but assume both positive and negative values for

x < 0.

C. Numerical Experiments

As noted in [12, Section 5], Equation (21) is the solution of the space-fractional PDE (3)

on the half-line x > 0. To make the problem (3) well-posed on the half-line [34, Theorem 2.3],

it is necessary to impose a fractional reflecting boundary condition given by (A.3) at x = 0

(see Appendix). We numerically solved the negatively skewed space-fractional equation

(3) subject to the reflecting boundary condition (A.3) at x = 0 on the domain [0, 3] and an

impulse initial condition using an implicit Euler scheme with reflecting (Neumann) boundary

conditions outlined in [42] and [33]. Since 2 ≤ α ≤ 3 in these examples, a shift of m = 1

was applied to the Grünwald discretization. The simulation was stopped before the signal

reached the right boundary in order to mimic an infinite domain. A total of n = 1501 grid-

points and a time step of ∆t = 0.00001 was utilized to ensure sufficient accuracy. Figure 2

displays these numerical solutions of (3) evaluated at t = 0, 0.001, 0.002, 0.005, and 0.01

for α = 2, 2.5, and 3, while the analytical solution (21) is shown in circles. For α = 2, the

solution is a normal density, while for α = 3, the dual solution is given by the Airy function

(15). For α = 2.5, the solution was checked against a numerical inverse Fourier transform

hγ(x, t) =
α

2π

∫

∞

−∞

exp (t(−ik)α) exp(ikx) dk (26)
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FIG. 2. Numerical solutions of (3) with a reflecting boundary condition evaluated at t = 0, 0.001,

0.002, 0.005, and 0.01 (lines) for α = 2 (top left), 2.5 (top right), and 3 (bottom) and dual solution

(21) (circles).

evaluated using adaptive quadrature. There is excellent agreement between the inverse

stable density hγ(x, t) and these numerical solutions.

V. SUBORDINATED BROWNIAN MOTION IN MULTIPLE DIMENSIONS

All of the above examples are limited to one spatial dimension. In this section, we

show that multi-dimensional Brownian motion subordinated to a vector of independent

inverse stable subordinators, defined by (13) in each dimension, is governed by a vector

space-fractional PDE. This multi-dimensional subordinated Brownian motion model may
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be useful for modeling contaminant transport in anisotropic media (multiscaling anomalous

subdiffusion) [51], where the retardation rate differs along each coordinate axis.

A. Inverse stable subordinator vector

Let (u, v) = (E1
t , E

2
t ) be a pair of independent, inverse stable subordinators with densities

hγ1(u, t) and hγ2(v, t) with indices 1/3 ≤ γ1, γ2 < 1. Physically, the indices γ1 and γ2 code

the retention (retardation) that particles experience due to heterogeneity. By independence,

the joint density of (E1
t , E

2
t ) is given by

h(u, v, t) = hγ1(u, t)hγ2(v, t). (27)

Since the FLT of each density is sγ1−1/(sγ1 + iku) and sγ2−1/(sγ2 + ikv), respectively, the

convolution theorem [52] yields

h(ku, kv, s) = sγ1−1/(sγ1 + iku) ∗ s
γ2−1/(sγ2 + ikv) (28)

where the convolution “*” is with respect to s. Since the FLT is not a simple algebraic

expression, it is difficult to find a simple time-nonlocal governing equation for the joint-

density (27).

Although the order of the time fractional derivative in one dimension determines the re-

tardation factor, here there are two different retardation factors, and only one time variable.

Hence, a time-fractional operator does not have enough degrees of freedom to code for both

retardation factors. However, we may find a vector space-fractional equation. By space-time

duality, each factor in (27) satisfies a space-fractional PDE

∂

∂t
hγ1(u, t) =

∂α1

∂(−u)α1

hγ1(u, t) for u > 0 and (29a)

∂

∂t
hγ2(v, t) =

∂α2

∂(−v)α2

hγ2(v, t) for v > 0. (29b)

where α1 = 1/γ1 and α2 = 1/γ2. Apply a time-derivative to (27) and apply the chain rule

and (29), yielding

∂

∂t
h(u, v, t) =

∂α1

∂(−u)α1

h(u, v, t) +
∂α2

∂(−v)α2

h(u, v, t) (30)

for u > 0 and v > 0, which is the space-fractional governing equation of the process (E1
t , E

2
t ).

Note that (30) also governs operator stable Lévy motion [22] with backward, independent

jumps in both the u and v directions.
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B. Application to 2D Independent Brownian Motion

Next, we consider a pair of independent Brownian motions subordinated (time-changed)

by a pair of independent inverse stable subordinators. Anisotropic super-diffusion may be

modeled with the multi-dimensional fractional advection dispersion equation (FADE) [53];

however, we are not aware of any FPDE that models sub-diffusion in anisotropic media

where the retardation factor in each coordinate is different. In this section, we write the

density of this 2D process, and determine the corresponding governing equation.

Let x = B1(u) and y = B2(v) be independent Brownian motions with densities p(x, u)

and p(y, v), respectively. Let (u, v) = (E1
t , E

2
t ) be a pair of independent, inverse stable sub-

ordinators with densities hγ1(u, t) and hγ2(v, t) with indices 0 ≤ γ1, γ2 < 1, respectively. By a

conditioning argument, we can write the joint density q(x, y, t) of (x, y) = (B1 (E1
t ) , B

2 (E2
t ))

as

q(x, y, t) =

(
∫

∞

0

p(x, u)hγ1(u, t) du

)(
∫

∞

0

p(y, v)hγ2(v, t) dv

)

=

∫

∞

0

∫

∞

0

p(x, u)p(y, v)h(u, v, t) du dv.

The variables u and v are the temporal scaling of B1(u) and B2(v). Hence, q(x, y, t) is

characterized by two time-scales.

Using a partial fraction expansion, we may evaluate the subordination integrals above in

closed form. For example,

∫

∞

0

p(x, u)hγ(u, t) du =
1

2
hγ/2 (|x|, t) (31)

and similarly for the v integral. Alternatively, one may use the composition formulas in

Mainardi et al.[24, Section 5] to derive (31). Applying (31) yields

q(x, y, t) =
1

4
hγ1/2 (|x|, t)hγ2/2 (|y|, t) . (32)

Hence, the density q(x, y, t) is symmetric about the x and y axes, but is not radially sym-

metric in general.

Now let 2/3 ≤ γ1, γ2 ≤ 1 and α1 = 2/γ1 and α2 = 2/γ2. For x > 0 and y > 0, space-time

duality implies that the the density of each inverse stable subordinator satisfies

∂

∂t
hγ1/2 (x, t) =

∂α1

∂(−x)α1

hγ1/2 (x, t) for x > 0 and (33a)
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∂

∂t
hγ2/2 (y, t) =

∂α2

∂(−y)α2

hγ2/2 (y, t) for y > 0. (33b)

Apply the product rule to (32), yielding

∂

∂t
q(x, y, t) =

1

4

∂hγ1/2(x, t)

∂t
hγ2/2(y, t) +

1

4
hγ1/2(x, t)

∂hγ2/2(y, t)

∂t

=
1

4

∂α1

∂(−x)α1

hγ1/2 (x, t) hγ2/2(y, t) +
1

4
hγ1/2(x, t)

∂α2

∂(−y)α2

hγ2/2 (y, t)

=
∂α1

∂(−x)α1

q(x, y, t) +
∂α2

∂(−y)α2

q(x, y, t)

for x > 0 and y > 0. Using the argument in Sec. IVB, we see that hγ1/2(x, t) satisfies

(23b) for x < 0. By the same token, hγ2/2(y, t) satisfies a similar system of space-fractional

equations, yielding the two-dimensional governing equation

∂

∂t
q(x, y, t) = Aα1

x q(x, y, t) + Aα2

y q(x, y, t), (34)

where Aα
x is defined by (25). The governing equation (34) is the two-dimensional gener-

alization of (24). Since 2/3 ≤ γ1, γ2 ≤ 1, it follows that 2 ≤ α1, α2 ≤ 3. We conclude

that the governing equation of (B1 (E1
t ) , B

2 (E2
t )) is the space-fractional PDE (34) utilizing

both negative (right) and positive (left) RL fractional derivatives with orders greater than or

equal to two. This is another example of sub-diffusion modeled with a space-fractional PDE.

Generalization of (34) to n-dimensional Brownian motion time-changed by n independent

inverse stable subordinators
(

E1
γ1
, · · · , En

γn

)

is straightforward.

Figure 3 displays contour plots of the joint density (32) of (B1(E1
t ), B

2(E2
t )) for Brownian

motion γ1 = γ2 = 1 (top left), sub-diffusion in the x dimension and Brownian motion in

the y dimension γ1 = 0.5 and γ2 = 1 (top right), Brownian motion in the x dimension and

sub-diffusion in the y dimension γ1 = 1 and γ2 = 0.5 (bottom left), and sub-diffusion along

both axes γ1 = γ2 = 0.5 (bottom right). Except for the top left panel (Brownian motion),

these densities do not have radial symmetry, including the bottom right panel, where the

inverse stable indices are the same in both directions. In the case of sub-diffusion along both

axes (bottom right), the density is not differentiable along the lines x = 0 and y = 0, which

follows from [47, Proposition 6.1].

VI. TEMPERED DUALITY

Tempered fractional time derivatives impose an exponential cutoff to power-law waiting

times [9, 47], while tempered fractional space derivatives cool power-law jumps in space
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FIG. 3. Contour plots of the solution (32) to the fractional diffusion equation (34) for delayed

Brownian motion in two dimensions, with delay factors γ1 = 1 and γ2 = 1 (top left), γ1 = 1 and

γ2 = 0.5 (top right), γ1 = 1 and γ2 = 0.5 (bottom left), and γ1 = 0.5 and γ2 = 0.5 (bottom right).

[10, 11]. Tempered fractional diffusion equations transition from anomalous to Fickian

transport [9]. This transition is governed by the spatial tempering rate λ > 0 or the

temporal tempering rate µ > 0, which is typically small relative to the characteristic spatial

or temporal scales, respectively. For tempered space-fractional diffusion, the cross-over time

(relaxation time) from anomalous to Fickian transport is proportional to λ−α, while for
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tempered time-fractional diffusion, the cross-over time is proportional to µ−1/γ [11]. The

tempering parameter also increases the effective diffusivity, which is given by Equation

(31) in [11]. An alternative approach for modeling the transition from anomalous short

time behavior to Fickian long term behavior are persistent random walks [49], where a

self-propulsion mechanism competes with random fluctuations.

In this section, we apply space-time duality to connect tempered space-fractional and

tempered time-fractional diffusion equations. A negative Riemann-Liouville tempered frac-

tional derivative of order α may be defined via

∂α,λ

∂(−x)α,λ
f(x) = eλx

∂α

∂(−x)α
[

e−λxf(x)
]

− λαf(x) (35)

where ∂α/∂(−x)α is the negative RL fractional derivative given by (2b). The negatively-

skewed tempered space-fractional diffusion equation is written using non-dimensionalized

units as
∂

∂t
u(x, t) =

∂α,λ

∂(−x)α,λ
u(x, t). (36)

The second term in (35) is needed to ensure that solutions to (36) are proportional to a

PDF (mass-conserving). For 1 < α ≤ 2, solutions to (36) with an impulse initial condition

are given by [10]

u(x, t) = eλxp(x, t)e−tλα

(37)

where p(x, t) is a negatively-skewed α-stable density that solves (3). By space-time duality,

p(x, t) also satisfies

∂γ
t p(x, t) = −∂xp(x, t) (38)

for x > 0, where γ = 1/α and the left hand side is the Caputo derivative or order γ. Solving

(37) for p(x, t), inserting into (38), and applying the product rule yields

e−tλα

∂γ
t

[

etλ
α

u(x, t)
]

− λu(x, t) = −
∂

∂x
u(x, t).

Letting µ = λα, we see u(x, t) solves the equivalent tempered time-fractional PDE

∂γ,µ
t u(x, t) = −

∂

∂x
u(x, t) (39)

where

∂γ,µ
t f(t) = e−µt∂γ

t

[

etµf(t)
]

− µγf(t). (40)
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Hence, the tempered time-fractional equation (39) has the same solution as the tempered

space-fractional equation(36), where the tempering rates are related by µ = λα. From a

stochastic point of view, (36) governs tempered spectrally negative Lévy motion conditioned

to stay positive with negative jumps, while (39) governs power-law waiting times with an

exponential cutoff. By the equivalence between (39) and (36), backward jumps with power-

law index α and tempering parameter λ have the same governing equation as waiting times

with power-law index 1/α and tempering parameter λα.

VII. CONCLUSIONS

This paper extends space-time duality to fractional diffusion for orders 1 < α ≤ 3. An

equivalence with a time-fractional PDE is established using a Fourier-Laplace transform ar-

gument. Since the equivalent time-fractional PDE governs the long-term limit of a power-law

waiting time process, space-fractional diffusion equations with 2 < α ≤ 3 gain a stochastic

interpretation. Using space-time duality, we show that the time-fractional diffusion-wave

equation is a equivalent to a system of space-fractional diffusion equations. Then we show

that multi-dimensional Brownian motion subordinated to an independent inverse stable sub-

ordinator in each dimension is governed by a vector space-fractional PDE. Finally, we extend

the space-time duality to tempered fractional models for transient anomalous diffusion.
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Appendix: Reflecting Boundary Condition

We demonstrate that (3) restricted to the half-line x > 0 is equivalent to a boundary-

value problem with a reflecting boundary condition at x = 0 [42, 54]. Observe that since

hγ(x, t) is a PDF with support on the half-line x > 0, the total mass
∫

∞

0
u(x, t) dx on the

half-line is a constant γ for all times t. Write (3) in a conservation form

∂

∂t
u(x, t) = −C

∂

∂x
q(x, t) (A.1)

where q(x, t) is the fractional flux constitutive equation

q(x, t) = C
∂α−1

∂(−x)α−1
u(x, t), (A.2)

which has been proposed for super-diffusion (α < 2) by Paradisi et al. [55] and Schumer et

al. [56] and for hyperdiffusion (α > 2) by Wei [20] and Hu et al. [32]. Due to the factor

of (−1)n in (2b), the derivative of the (α− 1) negative RL derivative is − ∂α

∂(−x)α
. Assuming

that u(x, t) is bounded for t > 0, we have

∂

∂t

∫

∞

0

u(x, t) dx = −

∫

∞

0

∂

∂x
q(x, t) dx = q(0, t),

where the flux is assumed to be zero at infinity. Mass conservation on x > 0 yields the

no-flux (or reflecting) boundary condition

∂α−1

∂(−x)α−1
u(0, t) = 0, (A.3)

which were studied by Baeumer et al. [54].
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[34] B. Baeumer, M. Kovács, M. Meerschaert, R. Schilling, and P. Straka, Trans. Am. Math. Soc.

368, 227-248 (2016).

[35] P. M. Morse and H. Feshbach. Methods of Theoretical Physics (Part 1) (McGraw-Hill, New

York, 1953).

[36] M. M. Meerschaert and P. Straka. Math. Mod. Nat. Phenom. 8, 1-16 (2013).

[37] G. B. Whitman, Linear and Nonlinear Waves (Wiley, New York, 1974).

[38] G. Zaslavsky, Physica D 76, 110–122 (1994).

[39] B. Baeumer and M. M. Meerschaert, Frac. Calc. Appl. Anal. 4, 481-500 (2001).

[40] F. Mainardi. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to

Mathematical Models (Imperial College Press, London, 2010).

[41] M. M. Meerschaert and C. Tadjeran, Appl. Numer. Math. 56, 80-90 (2006).
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