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Scale dependence of electrostatic and magnetostatic properties is investigated in the setting of
spatially random linear lossless materials with statistically homogeneous and spatially ergodic ran-
dom microstructures. First, from the Hill-Mandel homogenization conditions adapted to electric
and magnetic fields, uniform boundary conditions are formulated for a statistical volume element
(SVE). From these conditions, there follow upper and lower mesoscale bounds on the macroscale
(effective) electrical permittivity and magnetic permeability. Using computational electromagnetism
methods, these bounds are obtained through numerical simulations for composites of two types: (i)
2D random checkerboard (two-phase) microstructures and (ii) analogous 3D random (three-phase)
media. The simulation results demonstrate a scale-dependent trend of these bounds towards the
properties of a representative volume element (RVE). This transition from SVE to RVE is described
using a scaling function dependent on the mesoscale δ, the volume fraction vf , and the property
contrast k between two phases. The scaling function is calibrated through fitting the data obtained
from extensive simulations (∼10,000) conducted over the aforementioned parameter space. The
RVE size of a given microstructure can be estimated down to within any desired accuracy using this
scaling function as parametrized by the contrast and the volume fraction of two phases.

I. INTRODUCTION

Multiphase composites can be designed specifically for
multifunctional applications to utilize the unique advan-
tages of each phase in the overall, macroscale response.
As a result, the effective properties, including electric
and magnetic, are affected through the properties of mi-
croconstituents, the microstructural geometry, and the
scale of observation/resolution. One of the main chal-
lenges in the theory of composites lies in homogeniza-
tion, which is the prediction of macroscopic properties
of heterogeneous materials structured in deterministic or
random ways. Various models have been used to study
the effective properties of heterogeneous composites, see
e.g. [1, 2] and references therein. Homogenization of
Maxwell’s equations has been mostly studied for periodic
media; see e.g. [3–6]. In many models of random media,
effective properties or bounds are not explicitly scale-
dependent, nor is the phase distribution accounted for.
For example, simple mixture formulae have been used for
non-periodic structures [7]. The objective of this study is
to discuss the scale-dependent bounds on the predicted
effective electromagnetic parameters of random compos-
ites for linear lossless materials at zero frequency.

Assuming a separation of scales, for any given statis-
tically homogeneous and ergodic microstructure, three
length scales can be identified - the microscale d (such
as the single heterogenity size), the mesoscale L, and the
continuum macroscale Lmacro [8, 9] - satisfying

d < L� Lmacro. (1)

In the above, the inequality on the left allows one to
postulate the existence of a Representative Volume El-
ement (RVE) of continuum physics. Depending on the

geometric randomness and particular properties of the
microstructure (especially, the contrast in the material),
the RVE may be much larger than the microscale, in
which case, < is practically replaced by�. The inequal-
ity � on the right allows one to cover the macroscopic
length scales up from the RVE (playing the role of a
continuum point) where conventional, deterministic con-
tinuum physics applies. If a periodic unit cell is assumed,
it directly plays the role of RVE. We do not assume any
spatial periodicity in our investigation.

In general, L denotes the size of a statistical volume el-
ement (SVE), suggesting the basic question: what is the
size of RVE, i.e. the scale on which the randomness may
be disregarded? In case one wants to work with an SVE,
then the resulting continuum model (between the scales L
and Lmacro) is stochastic, typically leading to a stochas-
tic partial differential equation (SPDE) on tensor-valued
random fields of material properties [10]. This leads to
stochastic initial-boundary value problems (IBVPs) on
macroscales. If one wants to work with a determinis-
tic continuum model, then the PDE has constant coef-
ficients, leading to deterministic IBVPs on macroscales.
The focus of our research is on this SVE-to-RVE scaling,
with our strategy proceeding as follows.

First, a macrohomogeneity condition of Hill-Mandel
type needs to be formulated [11], [12]. This dictates uni-
form boundary conditions of either essential or natural
types, which, in turn, lead to mesoscale (sometimes called
”apparent,” as opposed to ”effective”) material proper-
ties of finite-sized domains. Assuming spatial homogene-
ity and ergodicity of the random medium, upon ensemble
averaging, these lead to upper and lower bounds depen-
dent on the type of boundary conditions applied to the
domain and the size δ of a mesoscale domain. The latter
is the SVE of size L relative to the microscale d, such
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as the single grain size. As δ = L/d increases, the SVE
tends towards the RVE on which a homogeneous con-
tinuum is being set up, which is the right hand side in-
equality in Eq. 1. The effective (also called macroscopic
or global) property is then determined [9, 13]. Such a
scale-dependent homogenization technique has already
been employed in many different settings, e.g. thermal
conductivity [14], [15], [16], linear or finite elasticity or
thermo-elasticity, elasto-plasticity, viscoelasticity, electri-
cal conductivity [17] and permeability [8]. All the linear
continuum mechanics/physics problems have been found
to share common trends in terms of a scaling function,
leading to a question whether they will carry over to elec-
tromagnetism.

In the present paper, the above strategy is employed
to obtain the SVE-to-RVE scaling for electrostatic and
magnetostatic properties of random media, with a nu-
merical illustration for 2D and 3D random checkerboard-
type microstructures with zero spatial correlations. The
article is organized as follows. The problem formula-
tion including the method used for generating random
checkerboards and governing equations is presented in
Section II. This is followed by a Hill-Mandel condition
for electro- and magneto-static fields and next, in in Sec-
tion III, by the resulting boundary conditions, the hi-
erarchies of mesoscale bounds, and a formulation of the
scaling function. Section IV gives the numerical proce-
dure and results for 2D and 3D systems over a range of
parameters and a functional form for the scaling function
based on data fitting. The conclusion and major findings
are summarized in Section V.

II. PROBLEM FORMULATION

A. Random Microstructure

A dimensionless parameter δ = L/d is introduced to
characterize the mesoscale, where d is the size of a statis-
tically average grain. Next, the mesoscale random mate-
rial is a set of all the realizations Bδ(ω) parametrized by
sample events ω in the Ω space

Bδ = {Bδ(ω); ω ∈ Ω}. (2)

Any Bδ(ω), while spatially disordered (i.e., heteroge-
neous), follows the deterministic laws of electromag-
netism, see (b) below.

In this article, the spatial (volume-type) averages are
denoted by an over-bar (·), while the statistical (or en-
semble) averages are denoted by 〈·〉. Basically, the mi-
crostructure is described by a random (n-component,
real valued) field Θ defined over some probability space
{Ω, F, P} (with F being a σ-field and P a probability
measure) and over some domain V ∈ R2 [18]:

Θ : Ω×X → Rn. (3)

The averages are defined explicitly as

Θ(ω) =
1

V

∫
V

Θ(ω,x) dV, 〈Θ(x)〉 =

∫
Ω

Θ(ω,x) dP.

(4)

While the theoretical formulation and strategy outlined
in this paper is quite general, all the numerical results
are obtained for a so-called random checkerboard (also
called random chessboard) in 2D (and 3D), where each
square (respectively, cubic) cell of M sites is occupied, in-
dependent of the realizations at all other cells, with prob-
abilities p1 and p2 = 1 − p1 for phases 1 and 2, respec-
tively. Thus, one cell is the aforementioned grain and,
in the language of probability, the random material is a
Bernoulli lattice process with a site probability. Clearly,
for a square lattice in 2D L × L = M , the number of
different realizations is |Ω| = 2L×L. Given the construc-
tion process, each ω occurs with a probability of 1/|Ω|.
Numerical generation, in a Monte Carlo sense, of such
microstructures will be the first step in a computational
study of scale-dependent electromagnetic properties.

B. Governing Equations

To set the stage for investigation of the scale-dependent
permittivity and permeability, we briefly introduce the
basic concepts of electromagnetic theory. We consider
every realization Bδ(ω) of the random material Bδ to
be lossless and governed by source-free electro- and
magneto-static equations.

Electromagnetism belongs to continuum physics and
hence scaling issues analogous to those of physics of other
types (e.g., thermoelasticity, elastoplasticity, viscoelas-
ticity...) arise in the context of electromagnetic proper-
ties of random heterogeneous materials. The mesoscale
(apparent) and macroscale (effective) properties include
the electric permittivity ε and the magnetic permeability
µ. Under the assumption of simple linear media, the con-
stitutive relations that relate the electric field intensity
E with the electric flux density D and the magnetic field
intensity H with the magnetic flux density B are [19]

D = ε(ω,x)E (5)

B = µ(ω,x)H. (6)

In any domain of a source-free medium, the electro-
magnetic fields are governed locally by Maxwell’s equa-
tions

∇×E = −j (2πf)µH (7)

∇×H = j (2πf)εE (8)

∇ ·D = 0 (9)

∇ ·B = 0 (10)

where f is frequency. As the frequency decreases, the
coupling between the electric and magnetic fields weakens
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and, when the frequency approaches zero (f → 0), the
first two equations become

∇×E = 0 (11)

∇×H = 0. (12)

The static electric field E and static magnetic flux B can
be expressed in terms of the electric scalar potential φ
and the magnetic vector potential A as E = −∇φ and
B = ∇×A, respectively.

Let us consider a body Bδ(ω) with a given microstruc-
ture, in which, as a result of certain boundary condi-
tions and external sources, there are electric and mag-
netic fields E and H. We express these fields as superpo-
sitions of mean values (indicated by overbars) and zero-
mean fluctuations (the primed variables)

E (ω,x) = E + E′ (ω,x) (13)

D (ω,x) = D + D′ (ω,x) (14)

B (ω,x) = B + B′ (ω,x) (15)

H (ω,x) = H + H′ (ω,x). (16)

Assuming that the domain is the RVE, the effective prop-
erties can be defined as

D = εeffE (17)

B = µeffH, (18)

where the randomness (dependence on ω), i.e. the fluc-
tuation, is absent. Also, the response is now independent
of the type of boundary conditions, provided that they
are uniform; this is explained in more detail below.

III. SCALE-DEPENDENT HOMOGENIZATION:
THEORETICAL RESULTS

In this section, a strategy for the problem of size and
response of RVE of spatially random linear lossless ma-
terials is developed. First, a Hill-Mandel condition for
electrostatic and magnetostatic energies is formulated.
Then, the bounds of the effective electrical and magnetic
properties of random microstructures by means of natu-
ral and essential boundary conditions are demonstrated.
The convergence of these bounds to the effective prop-
erties with increasing length scales is discussed. Finally,
the scaling function is formulated as a function of volume
fraction, phase contrast, and the mesoscale.

A. Electric Permittivity

The total electrostatic potential energy in terms of the
electric field can be expressed in the form 1

V

∫
V

D ·E dV .
Now, recalling the Hill-Mandel condition for setting up
the constitutive equations in micromechanics of solid
composite materials [11, 18, 20, 21], by analogy, we set

up an analogous condition for the electrical energy, for
any realization Bδ(ω),

D ·E = D ·E. (19)

This means that the energetic interpretation must be
equal to the electrical interpretation. Splitting the elec-
tric field and flux into their mean and fluctuation parts
according to Eqs. (13) and (14), Eq. (19) becomes

(D + D′) · (E + E′) = D ·E. (20)

Since D′ = 0 and E′ = 0, Eq. (20) yields

D′ ·E′ = 0. (21)

By analogy to statistics, the spatial averages of the elec-
tric flux and electric field may be said to be “spatially
uncorrelated”.

Now, starting from Eq. (21), it can be shown that

D′ ·E′ =
1

V

∫
V

D′ ·E′ dV

=
1

V

∫
V

(D−D) · (E−E) dV

=
−1

V

∫
V

(D−D) · (∇φ−∇φ) dV

= − 1

V

∫
V

(D−D) · [∇φ−∇(∇φ · x)] dV

= − 1

V

∫
V

∇ · [(D−D)(φ− (∇φ · x))] dV

= − 1

V

∫
S

(φ− (∇φ · x))[(D−D) · n] dS

= 0.

(22)

In this derivation, the vector identities ∇φ = ∇(∇φ ·
x) and ∇ · (φD) = φ(∇ · D) + D · (∇φ), the Green-
Gauss theorem, and Eq. (9) are used. It follows that Eq.
(22) can be satisfied by three different types of uniform
boundary conditions on the mesoscale:

(a) the natural (or Neumann, “flux-controlled”)
boundary condition

Dn(x) = D0
n ∀x ∈ ∂Bδ; (23)

(b) the essential (or Dirichlet, “potential-controlled”)
boundary condition

φ(x) = ∇φ0 · x ∀x ∈ ∂Bδ; (24)

(c) the uniform “mixed-orthogonal” boundary condi-
tion

[Dn(x)−D0
n] [φ(x)−∇φ0 · x] = 0 ∀x ∈ ∂Bδ. (25)
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Here D0
n and ∇φ0 are employed to denote, respectively,

a constant vector and a constant gradient, which are pre-
scribed a priori. Each of these boundary conditions re-
sults in a different mesoscale (or apparent) permittivity.
Since a statistically homogeneous and isotropic random
field of electrical properties is assumed, the isotropic re-
sponse of RVE follows from Eq. (17) as

εeff =

√
D ·D
E ·E

. (26)

B. Magnetic Permeability

The total magnetostatic potential energy in terms of
the magnetic field can be expressed in the form 1

V

∫
V

B ·
H dV . Following the same strategy as above, the Hill-
Mandel condition for magnetic fields leads to

B′ ·H′ = 0. (27)

Taking the above equation as the starting point, it can
be shown through a similar (but not the same) derivation
that

B′ ·H′ =
1

V

∫
V

B′ ·H′ dV

=
1

V

∫
V

(B−B) · (H−H) dV

=
1

V

∫
V

(∇×A−∇×A) · (H−H) dV

=
1

V

∫
V

[∇× (A− 1

2
(∇×A)× x)] · (H−H) dV

=
1

2V

∫
V

∇ · [(A− (∇×A)× x)× (H−H)] dV

=
1

2V

∫
S

[(A− (∇×A)× x)× (H−H)] · n dS

= 0.

(28)

In the above, the vector identities B =
1

2
∇×(B×x) and

∇·(A×H) = (∇×A) ·H−A ·(∇×H), the Green-Gauss
theorem, and Eq. (12) are used. Clearly, Eq. (28) can
be satisfied by three different types of uniform boundary
conditions on the mesoscale:

(a) the natural (Neumann, “current-controlled”)
boundary condition

n×H = n×H0 (Js = J0
s) ∀x ∈ ∂Bδ; (29)

(b) the essential (Dirichlet, “potential-controlled”)
boundary condition

n×A = n× [(∇×A0)× x] ∀x ∈ ∂Bδ; (30)

(c) the uniform “mixed-orthogonal” boundary condi-
tion

[ n×H− n×H0] · [ n×A− n× [(∇×A0)× x]] = 0

∀x ∈ ∂Bδ.
(31)

Again, since a statistically homogeneous and isotropic
random field of magnetic properties is assumed, the
isotropic response of the RVE is calculated using Eq. (18)
as

µeff =

√
B ·B
H ·H

. (32)

Note that, for 2D cases, since the magnetic field is
in the xy plane, A has the z component only. It can be
shown that, for the 2D magneto-static case, the governing
equation is simplified to

∇ ·
( 1

µ
∇Az

)
= −Jz, (33)

where Jz is the impressed current source in the z direc-
tion. This is similar to the governing equation for the
electro-static case ∇ · (ε∇φ) = −ρ with ρ being the im-
pressed charge. Therefore, there is a duality between
boundary conditions for the electro- and magneto-static
cases:

∇ · (ε∇φ) = −ρ⇒

{
Dn = D0

n (ρ = ρ0)

φ = ∇φ0 · x,
(34)

∇ ·
( 1

µ
∇Az

)
= −Jz ⇒

{
Jz = J0

z

Az = (∇×A0)× x.
(35)

It should be noted that besides the vector magnetic
potential A, a magnetic scalar potential φm can also be
used. In that case, the governing equation (33) and the
boundary conditions (34-35) are replaced by

∇ · (µ∇φm) = −ρm ⇒

{
Bn = B0

n (ρm = ρ0
m)

φm = ∇φ0
m · x

(36)

where ρm is the impressed magnetic charge.
The fact that the random sample must be large enough

to have relatively small boundary field fluctuations rel-
ative to its size and, simultaneously, be small enough
relative to a macroscopic structure of scale Lmacro in Eq.
(1), forces us to consider the responses stemming from
the various boundary conditions in more detail.

C. Hierarchies of Mesoscale Bounds in
Electro-/Magneto-Static Cases

Since the gradient is prescribed in the essential (e)
boundary condition (24) of the electrostatic problem of
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any realization Bδ (ω), it results in a mesoscale permit-
tivity tensor εeδ(ω). However, since the current is pre-
scribed in the natural (n) boundary condition (23), it
yields a mesoscale resistivity tensor snδ (ω). [We borrow
the terminology ”resistivity” from conductvity phenom-
ena because there is no corresponding term.] Finally, the
mixed (m) boundary condition (25) results in a mesoscale
permittivity tensor εmδ (ω) or, depending on the interpre-
tation, resistivity smδ (ω). The argument ω explicitly indi-
cates the random character of these tensors, while δ indi-
cates their scale dependence, so that these tensors pertain
to the statistical volume element (SVE) responses.

The randomness vanishes as δ → ∞, and this is the
macroscale response C∞ of a representative volume ele-
ment (RVE), where a deterministic continuum picture is
obtained.

By reference to variational principles of electromag-
netism, all these tensors are positive-definite and satisfy
an ordering relation

[snδ (ω)]−1 ≤ εmδ (ω) ≤ εeδ(ω). (37)

The inequalities are understood in the same sense as in
the definition of positive-definiteness: if A and B are the
rank 2 tensors, then A ≤ B means v : A : v ≤ v : B : v,
for any rank 1 tensor v. From the above we obtain a re-
lation between the ensemble averages: 〈snδ 〉

−1 ≤ 〈εmδ 〉 ≤
〈εeδ〉. The response 〈εmδ 〉 displays a much weaker scaling
than the other two; it will not be pursued because, in
contradistinction to 〈snδ 〉

−1
and 〈εeδ〉, it does not have a

bounding property.

Using the variational principles for boundary value
problems under (23) and (24) in combination with the
assumption of spatial homogeneity and ergodicity of ran-
dom microstructure, one arrives at the result that, the
larger is the mesoscale material domain Bδ, the ’softer’
is 〈εeδ〉 and the ’stiffer’ is 〈snδ 〉

−1
. This is analogous to the

scaling of bounds from displacement and traction load-
ings in elasticity of random media [8, 18, 20]. Combin-
ing these results, we have a hierarchy of scale-dependent
bounds on the RVE response ε∞:

〈sn1 〉−1 ≤ 〈snδ′〉
−1 ≤ 〈snδ 〉

−1 ≤ ε∞ ≤ 〈εeδ〉 ≤ 〈εeδ′〉 ≤ 〈εe1〉
∀δ′ < δ. (38)

On account of the spatial homogeneity and ergodicity
of the material, the tensor ε∞ is identified with the so-
called effective εeff. By reference to continuum microme-
chanics, in (38) we also recognize the Reuss-type bound

(sR = 〈sn1 〉
−1

) and the Voigt-bound bound (εV = 〈εe1〉),
which clearly possess no scale dependence.

All the above developments carry over to the magneto-
static problem, where ε (or ε) is replaced with µ (or
µ). In fact, Fig. 1 depicts the corresponding hierarchies
obtained for random checkerboards.

D. Formulation of Scaling Function

Suppose we deal with a random polycrystal. In gen-
eral, for any given realization Bδ (ω) of Bδ (ω), εeδ (ω)
and snδ (ω) are anisotropic. A statistically isotropic re-
sponse applies if all the crystal orientations are uniformly
distributed on a unit sphere, while a deterministically
isotropic response is obtained upon ensemble averaging
on any mesoscale. Thus, we have

〈snδ 〉 = snδ I, ε∞ = ε∞I, εδ = εeδI. (39)

where I is the rank 2 identity tensor. From the above,
we obtain

〈snδ 〉 : 〈εeδ〉 = D εdδ s
n
δ , (40)

where D is the dimensionality of space, i.e. either 2 or 3.
In the infinite volume limit (δ → ∞ on the RVE level),
one tensor is the exact inverse of another

lim
δ→∞

〈snδ 〉 : 〈εeδ〉 = D. (41)

Also in the case of statistically isotropic statistics,
there holds a special case of hierarchy of bounds (38)
on ε∞ in (39):

sR ≤ 〈snδ′〉
−1 ≤ 〈εnδ 〉

−1 ≤ ε∞ ≤ 〈εeδ〉 ≤ 〈εeδ′〉 ≤ εV ,
∀δ′ < δ. (42)

With each crystal’s conductivity being characterized by
three principal values (c1, c2, c3,), the Reuss-type and

Voigt-type bounds are sR = [(1/ε1 + 1/ε2 + 1/ε3) /3]
−1

(harmonic) and εV = (ε1 + ε2 + ε3) /3 (arithmetic), re-
spectively.

Focusing on the 2D case, we set up the following rela-
tionship between the left hand sides of (40) and (41):

〈εeδ〉 : 〈snδ 〉 = lim
δ→∞

〈εeδ〉 : 〈snδ 〉+ g(δ, vf , k) (43)

where f(δ, vf , k) defines the scaling function, with the
volume fraction vf of phase 2, and the contrast k = ε1/ε3
being a non-dimensional parameter. Also, from the above
equations

f(δ, vf , k) = 2 (εeδ s
n
δ − 1) ,. (44)

The scaling function has the property: f
(
δ →

∞, vf , k
)

= f
(
δ, vf , k = 1

)
= 0; the latter is the case

of crystals being locally isotropic with k = 1 (such as for
cubic crystals).

Again, all the above developments carry over to the
magneto-static problem, where ε (or ε) is replaced with
µ (or µ).

IV. NUMERICAL RESULTS

The electro- and magneto-static behaviors of planar
random checkerboard are simulated by the finite ele-
ment method (FEM) using COMSOL Multiphysics via
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FIG. 1: (Color online) Mesoscale bounds on effective (i.e., macroscopic) permittivity of random checkerboards with
increasing volume fraction of second phase (a) vf = 0.4, (b) vf = 0.5, (c) vf = 0.6, and (d) vf = 0.8 for ε1 = 1 and

ε2 = 5.
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Livelink for MATLAB, a commercial FEM solver [22].
The mesh density is important especially for higher val-
ues of k where the interface between two phases has a
jump in the permittivty (or permeability) value. Olariu
et al. [23] conducted a comprehensive analysis of influ-
ence of high contrast on the numerically estimated ef-
fective permittivity. With an increasing contrast k, at a
given size and mesh density, a greater error is expected in
numerically estimated effective properties. Thus, to have
an acceptable accuracy and capture the strong gradients,
a finer mesh is needed for a stronger contrast.

For a given realization Bδ(ω) with volume fraction vf
and contrast k, the mesoscale permittivity εnδ and εeδ will
now be determined using Eqs. (23) and (24), respectively.
First, εnδ , a constant normal electric displacement D0

n is
applied on the boundaries of the domain and the volume
average electric field E and D are calculated from the
numerical solution obtained. Then using Eq. (26), the
mesoscale permittivity εnδ is evaluated. To get εeδ, a con-
stant potential gradient ∇φ0 is applied on the boundaries
and the volume averaged E and D are obtained using the
numerical values. Then, the mesoscale permittivity εeδ is
evaluated using Eq. (26).

Note that the mesoscale permittivity tensor is, in gen-
eral, anisotropic for any realization at any mesoscale δ.
However, if the random field is statistically isotropic, the
statistically averaged permittivity tensor is isotropic, i.e.,
it is approximately isotropic in the Monte Carlo sam-
pling.

The mesoscale bounds of permittivity are plotted as
functions of δ in Fig. 1 when volume fraction of phase 2
is vf = {0.4, 0.5, 0.6, 0.8}. The relative permittivities of
phase 1 and phase 2 are {1, 5} (k = 5), respectively. For
each δ, at least one hundred realizations are simulated,
and the ensemble average is reported.

For a given realization Bδ(ω) with volume fraction vf
and contrast k, the mesoscale permeability µnδ and µeδ can
be calculated using Eqs. (29) and (30), respectively. For
the mesoscale µnδ , a constant surface current J0

z is applied
on the boundaries of the domain and the volume aver-
aged magnetic field H and magnetic flux B are calculated
from the numerical solution. Then, using Eq. (32), the
mesoscale permeability µnδ is evaluated. To obtain µeδ,
a constant potential (∇ × A0

z) is applied on the bound-
aries, resulting in volume averaged H and B. Then, using
Eq. (32), the mesoscale permeability µeδ is evaluated.

The mesoscale bounds of permeability are plotted as
functions of δ in Fig. 2 and Fig. 3 when the volume frac-
tion, vf , of phase 2 is {0.5, 0.8}. The relative permeabil-
ities of phase 1 and phase 2, respectively, are {1, 3} and
{1, 7}. For each δ, at least one hundred realizations are
simulated, and the statistical average is reported.

Figure 4 depicts the magnetic flux norm and magnetic
field norm of the two-phase random checkerboard for L =
16 with vf = 0.5 under the boundary condition (∇ ×
A0
z)× x.
It should be noted that for any given realization at a

finite mesoscale δ the mesoscale permittivity or perme-

ability tensors need not be isotropic, i.e., the values in x
and y directions can be different. As mentioned before,
the entire formulation discussed in the previous sections,
without any limitation, can be applied to 3D cases and/or
anisotropic medium whose ε and µ are tensors. For an
anisotropic medium, the constitutive relations cannot be
expressed in a simple form as in Eq. (17). Instead, they
have to be expressed as{

D = ¯̄ε ·E
B = ¯̄µ ·H

(45)

where ¯̄ε and ¯̄µ are called permittivity and permeability
tensors. Crystals are a special case of general anisotropic
media, which have a diagonal permittivity tensor. Here,
biaxial media which have diagonal permittivity tensors
with different values are considered [19]. If statistically
homogeneous random fields of electrical and magnetic
properties are assumed, the isotropic response of RVE
can be calculated using Eq. (45) as

εeff
xx =

√
Dx ·Dx

Ex ·Ex

, εeff
yy =

√
Dy ·Dy

Ey ·Ey

. (46)

The mesoscale permittivity bounds obtained for x and y
directions of two biaxial phases with vf = 0.5 are shown
in Fig. 5. The relative permittivity tensors for the first

and second phases, respectively, are

[
2 0
0 4

]
and

[
4 0
0 7

]
.

The geometry and corresponding electric field norm of
one realization of the 3D material (for ε = {1, 10} with
vf = 0.5) under the boundary condition ∇φ0 = 10 are
depicted in parts (a) and (b) of Fig. 6; the latter figure is
taken from a 3D animation, attached in GIF format [24].
In part (c) we see the mesoscale permittivity bounds for
this 3D case as well as for a completely analogous 2D
random material with all physical parameters kept the
same. This gives a comparison of scaling trends: evident
here is the much more rapid trend to homogenize, as
the mesoscale increases, of the 3D random material as
compared to situation of the 2D material. This may be
explained qualitatively by a reference to the 3D Green’s

function
1

r
as opposed to the 2D Green’s function

1
2
√
r

.

A 3d movie showing a perspective view of the field of
electric flux density norm, whose snapshot is in Fig. 5(b),
is found in the Electronic Supplementary Material.

Following the study in [9], the scaling function for
a two-phase random checkerboard can be written as
the product of the material-dependent and the scale-
dependent quantities

f
(
δ, vf , k

)
= 2 (εeδ s

n
δ − 1) g(δ)

= 2vf (1− vf )

(√
k − 1√

k

)2

g(δ)
(47)

where g(δ) defines the normalized scaling function, which
depends exclusively on the mesoscale. Inspired by the
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FIG. 2: (Color online) Mesoscale bounds on effective (i.e., macroscopic) permeability of a random checkerboard with
increasing volume fraction of second phase (a) vf = 0.5 and (b) vf = 0.8 for µ1 = 1 and µ2 = 3.
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FIG. 3: (Color online) Mesoscale bounds on effective (i.e., macroscopic) permeability of a random checkerboard with
increasing volume fraction of second phase (a) vf = 0.5 and (b) vf = 0.8 for µ1 = 1 and µ2 = 7.

(a) (b) (c)

FIG. 4: (Color online) (a) Realization of a two phase random checkerboard for L = 16. (b) Magnetic flux norm
density (T). (c) Magnetic field norm (A/m).
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FIG. 5: (Color online) Mesoscale bounds on effective (i.e., macroscopic) permittivity of a random checkerboard in
(a) x direction and (b) y direction with vf = 0.5.
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FIG. 6: (Color online) Two-phase random checkerboard for ε = {1, 10} and vf = 0.5. (a) 3D two-phase random
checkerboard on the L× L× L lattices with L = 10. (b) Electric flux density norm (C/m2) for 3D two-phase

random checkerboard, taken from the attached animation. (c) Comparison of scaling effects for vf = 0.5 in 2D and
3D random two phase checkerboard.
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study conducted in [9], the following stretched exponen-
tial fit of the normalized scaling function is employed

g(δ) = exp
[
A(δ − 1)B

]
. (48)

Figure 7a shows the normalized scaling function ob-
tained for vf = 0.5 and k = {3, 5, 7} with fitting con-
stants A = 0.73± 0.03 and B = 0.5± 0.02. It is interest-
ing to see that the dependence of material contrast (k)
can be removed by normalizing the scaling function with(√

k − 1√
k

)2

.

Figure 7b shows the normalized scaling function ob-
tained for k = 7 and vf = {0.2, 0.4, 0.6, 0.8} with fitting
constants A = 0.73 ± 0.03 and B = 0.5 ± 0.01. It is in-
teresting to see that the dependence of volume fraction
(vf ) can be removed by normalizing the scaling function
with 2vf (1− vf ). From Figs. 7a and 7b, it is clear that
δ = 30 is large enough to be accepted as the RVE size.

Effectively, the mesoscale (δ) dependence of the ran-
dom checkerboard microstructure for any combination of
k and vf can be explained by the normalized scaling func-
tion g(δ). It should be noted that the scale dependency
of scaling function for permittivity (or permeability) only
shows the rate of convergence to RVE, and has nothing to
do with the effective property. However, for a sufficiently
large δ, it provides bounds which are tight enough to
estimate the effective property with very good accuracy.

V. CONCLUSION

In this article, a methodology to study the length scale
effect on the permittivity and permeability of random
checkerboard composites is proposed within the frame-
work dictated by the Hill-Mandel condition. The re-
sponses from two stochastic initial boundary value prob-
lems bound the permittivity and permeability from above
and below, respectively, for essential and natural bound-
ary conditions. Finite element simulations are employed
to illustrate the results of random checkerboards with
varying phase contrasts at arbitrary nominal volume frac-
tions. Hierarchies of mesoscale bounds are also discussed.
This method can be employed to assess the passage from
SVE-to-RVE for a random material with linear lossless,
perfectly bounded microconstituents.

The convergence to the effective medium response can
be predicted for other combinations of microconstituents’
properties and other microstructural geometries using a
scalar-valued scaling function. Numerical simulations are
employed to construct its functional form as a function of
the volume fraction, phase contrast, and the mesoscale.
Its effectiveness in grasping the scaling properties is also
studied.

While the numerical examples are carried out for
planar random checkerboard morphologies, the entire
methodology is also applicable to other 2D or 3D systems
of spatially correlated geometries [10], providing their
spatial statistics are homogeneous and ergodic. However,

the longer-range are the correlations of phase distribu-
tions, the slower is the SVE-to-RVE scaling trend and,
necessarily, the larger are the mesoscale volumes needed
for simulation. Also, while the present report is limited
to linear and lossless media, this methodology can be ex-
tended to homogenization of nonlinear and lossy media.

The reported work is now being used as a stepping-
stone for analysis of electromagnetic properties in the
frequency domain (including a generalization of scaling
laws such as Eqs. (47-48), as will be reported separately.
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FIG. 7: (Color online) Normalized scaling function g(δ) as a function of δ showing a good collapse of the stretched
exponential function for (a) vf = 0.5 and (b) k = 7.
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