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It is often regarded that the dwell time (or residence time, escape time, and trapping

duration) of trapped Brownian particles is described by the multiplication of two

separate factors, i.e., the diffusive traveling time of the trapping domain size without

taking into account the trapping force, and the stochastic event of overcoming the

trapping energy by thermal one instantaneously. However, we show that the ratio of

dwell time to the typical traveling time for the trapping domain size depends on the

shape of the force field. The shape of the trapping potential affects this ratio even if

the trapping energy gap is the same and the smooth potential has a single minimum.

Our finding suggests the possible application of the potential shape to realize the

desired trapping characteristics.
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I. INTRODUCTION

It has long been recognized that the technology to precisely control the position of a

nanoscale object is important for the progress of nanoscience and nanotechnology in gen-

eral1–4. One of the typical techniques to achieve such control is the optical trapping, where

small particles with diameters less than or equal to micro meters can be trapped in space

near the focus of a laser beam by the optical force based on the gradient of the electric

field5. Optical trapping has found many applications in the physical and life sciences, rang-

ing from single-molecule force measurements to optical particle sorting6–11. However, optical

trapping of nanoparticles, especially smaller than 100 nm, is still challenging because the

gradient optical force becomes much weaker with the smaller particles, scaling with the third

power of its size12. The main approach to stably trap nanoparticles has been to increase the

laser intensity and consequently the depth of the trapping potential. In fact, the trapping

techniques are not necessarily based on the optical principle, but there are some other prin-

ciples such as electrostatic fluidic trap13, dielectrophoretic tweezer in microfluidic device14

and Paul trap15–17.

The escape event from the trapped state of a Brownian particle subject to the conservative

force field with trapping energy ∆E(≥ 0) is often modelled by the Arrhenius type equation,

i.e., the simplest form of chemical reaction with the rate constant kTST as follows18–22:

kTST = k0 exp
(

−∆E

kBT

)

, (1)

where kB is the Boltzmann’s constant, T is the absolute temperature, and k0 corresponds

to the rate constant without energy barrier, i.e., the travel of a particle subject to Brownian

motion. This functional form is widely used in the context of stochastic event subject to

thermal fluctuation, where traveling distance or duration by Brownian motion is negligible

in the reaction event. With this assumption, the dwell time (or residence time, escape time,

trapping duration) τTST is expressed as

τTST = τ0 exp
(

∆E

kBT

)

. (2)

The time scale τ0 is usually regarded as the characteristic for a Brownian particle with a

diffusion coefficient D to travel a distance ds/2 from the bottom of potential to the boundary,

which can be expressed as

τ0 =
d2s
8D

, (3)

2



considering that
√
2Dτ0 = (ds/2)

2. The diffusion coefficient of a spherical particle with

a diameter dp in a fluid with a viscosity η is described by the Stokes-Einstein relation as

follows:

D =
kBT

3πηdp
, (4)

and D is directly related to the friction coefficient γ by the Einstein relation as follows:

D =
kBT

γ
. (5)

where the validity range of the Stokes-Einstein relation and linear Langevin picture in terms

of molecular drag has been studied recently23,24. Eq. 2 is widely used in the field of laser

trapping or optical force on colloidal particles18–22. This equation indicates that the dwell

time τd does not depend on the details of force field, but the energy difference ∆E alone. The

trend of pursuit to achieve as high laser power as possible in order to realize the trapping of

as small particle as possible originates from this picture of simplified mechanics. Depending

on the situations, the higher laser power also cause heating of the medium5, which is desired

to be circumvented since it blurs the pure optical effect and sometimes undermines the

functionality for bio-medical applications25,26.

However, the typical trapping force fields in reality have finite breadth of the trapping

domain, and the trapped particles exhibit Brownian motion in the domain with finite time

duration before escaping from it. Although the assumption of Eq. 2 does not take into

account the finite spatio-temporal effect in terms of overcoming the energy difference, the

particle climbs the force field with finite time, instead of instantaneously jumping the finite

energy gap with infinite force and vanishing slope length. Therefore, we examine the validity

range of this apparently oversimplified model through the numerical analysis. We show

that there exists significant finite spatio-temporal effect of the trapping force field, which is

promising for the stable trapping of smaller particles. If we look into each of the specific

principle of trapping techniques, there are diversity in the factors that affects the dwell time.

For example, non-conservative scattering force is also important in the case of laser trapping

in the bulk environment. On the other hand, the effect of proximity to the solid wall in

the fluid is also important in the case of electrostatic fluid trap in the nanochannel. Partly

because of such diversity in specific situations, the basic and universal characteristics with

respect to the conservative trapping force field in fluid has not been fully addressed. We

focus on this common aspects of the role of force field on the dwell time of the Brownian
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particles.

II. MODEL AND METHODS

We consider the Brownian dynamics of particles suspended in fluid subject to trapping

force field. The schematic diagram of the model system is shown in Fig. 1. The essential

parameters that affects the dynamics is the trapping energy ∆E, the domain of this force

field ds , and the diameter dp of the trapped particle. It should be noted that dp affects only

D through the Stokes-Einstein relation, i.e., Eq. 4. We assume that these parameters can be

independently tuned, even if such a fine tuning is still challenging in laboratory experiments

today.

As widely used in many literature and experimental data analysis27, we employ the har-

monic force field as follows28:

∆E(r) = E(r) =















kBT

2σ2
r2 (0 ≤ r ≤ ds/2)

kBTd
2
s

8σ2
(r > ds/2)

, (6)

where σ is the essential parameter that determines the trapping energy. In order to vary

α ≡ ∆E/kBT without affecting the rest of the parameters, ∆E(r) for r = ds/2 can be tuned

through σ by ∆E = αkBT = kBT/2σ
2 · (ds/2)2 as follows:

σ =
ds

2
√
2α
. (7)

We also examine the effect of the potential shape on the system characteristics by the

variation of a single parameter n to define the simple potential energy function as follows:

∆En(r) =
αkBT

(ds/2)n
rn, (8)

where n = 2 corresponds to Eq. 6. The effect of potential steepness in the vicinity of the

boundary r = ds/2 can be varied by n without changing other parameters such as α and ds.

Namely, variation of ds keeping ∆E(ds/2) fixed leads to the variation of the spring constant

ks:

ks =
αkBT

(ds/2)n
(9)

where n = 2 corresponds to the cases of Eq. 6. ∆E, ds or ks, and dp are independent factors

of the particle dynamics although it is still challenging to perform such an experiment using

optical trapping based on current status of the technology.
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The particle exhibits Brownian motion governed by the over-damped Langevin equa-

tion28,29:

∆r(t) ≡ r(t+∆t)− r(t) =
fc(r)D

kBT
∆t +

√
2D∆tψ(t), (10)

where ∆r(t) is the displacement at time t, D is the diffusion coefficient as mentioned in

Eq. 4, fc(z) is the conservative force, ∆t is the time step of the dynamics, and ψ is the

normal random number. The force fc(r) is simply derived from the trapping energy:

fc(r) = − ∂

∂r
∆E(r). (11)

We numerically solve this equation28,29 with a time resolution of ca. τ0/∆tdyn = 106, where

∆tdyn is the time step of numerical integration of the equation. The simulations are run until

the number of the frames of ∆tfrm = 10−2 s without any escaping event reaches 105, or the

number of time steps reaches 1012. The escaping event means the particle’s stepping out of

the force field domain with a width of ds. We define the ambient temperature T = 298.15 K

and use the corresponding viscosity η = 0.890 × 10−3 P of water. The random number

generator is the Box-Muller method. When the particle reaches the boundary of the force

field, the position is initialized at the bottom of the potential (i.e., r = 0). The dwell time τd

is defined as the time required for (the center of) the particle to reach the boundary r = ds/2

of the trapping force field from its initial position r = 0.

III. RESULTS AND DISCUSSION

In fact, Eq. 10 can be non-dimensionalized by employing the unit length scale of ds/2

and unit time scale of τ0 (cf. Eq. 3) as follows:

∆r∗(t∗) ≡ r∗(t∗ +∆t∗)− r∗(t∗) = −1

2
nα(r∗)n−1∆t∗ +

√
∆t∗ψ(t), (12)

where the specific form of the potential defined in Eq. 8 is taken into account. This dimen-

sionless equation indicates that the system behavior is fundamentally determined by α and

n. Hereafter, we examine how these parameters affect the dwell time τd. The dependence of

the dwell time τd on α and n is shown in Fig. 2. The dwell time is evaluated by the dimen-

sionless form τd/τ0, which enables the essential characterization of α dependence without

being affected by the growth of τd by the mere increase of ds. Fig. 2 clearly shows that τd/τ0
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depends not only on α but also n. The actual τd/τ0 is always smaller than τTST/τ0. Larger

τd/τ0 is realized for the smaller n.

According to the Arrhenius equation (2), the height of the potential should be the only

factor to affect the dwell time irrespective of its shape. But as seen in Fig.2(a), the devi-

ation from such classical formula is clearly observed. From the comparison of the data for

different n, one can see that higher n results in smaller dwell times. This observation can

be quantitatively rationalized using an analytical expression τA to estimate the dwell time.

Indeed, as detailed below, we derive the following expression

τA = τ0 2F2

(

2

n
, 1;

n + 1

n
,
n + 2

n
;α

)

(13)

for any even number n, where 2F2 is a generalized hypergeometric function. (A generalized

hypergeometric function pFq is defined as pFq(a1, . . . , ap; b1, . . . , bp; z) =
∑

∞

m=0
(a1)m···(ap)m
(b1)m···(bq)m

zm

m!
,

where (a)m is the Pochhammer symbol: (a)0 = 1 and (a)n = a(a+1)(a+2) · · · (a+ n− 1).)

In Fig.2(a), we plot this analytical expression τA for n = 2 and 20, which show excellent

agreements with the numerical simulations. The dependence of numerical errors on the time

resolution of the simulation is shown in Fig. 3. The hypergeometric function 2F2 has the

following asymptotic form for large α:

2F2

(

2

n
, 1;

n+ 1

n
,
n+ 2

n
;α

)

∼ 2Γ(1/n)

n2α1+1/n
eα, (14)

where Γ(z) is the gamma function. (The gamma function is defined as Γ(z) =
∫

∞

0 tz−1e−tdt.)

The Arrhenius equation eα is thus recovered as the leading term of this asymptotic form,

showing the consistency between our result (13) and the classical Arrhenius equation. Note

however that in the range of α that we consider in this paper, there are substantial deviations

from the Arrhenius equation. To get an intuition how varying n affects these deviations, we

take the large n limit in the hypergeometric function, which leads to

2F2

(

2

n
, 1;

n + 1

n
,
n + 2

n
;α

)

= 1 +
1

n
g(α) +O

(

1

n2

)

, (15)

where g(α) consists of the derivatives of the hypergeometric function. (More precisely, g(α)

is defined as
[

2 2F
(0,0;0,1)
2 (1, 0; 1, 1;α) + 2F

(0,0;1,0)
2 (1, 0; 1, 1;α) + 2 2F

(0,1;0,0)
2 (1, 0; 1, 1;α)

]

,

where 2F
(na1

,na2
;nb1

,nb2
)

2 (a1, a2; b1, b2;α) is the (na1 , na2 ;nb1 , nb2)-th order partial deriva-

tive of 2F2 (a1, a2; b1, b2;α) by (a1, a2; b1, b2), respectively.) This indicates that the dwell

time converges to τ0, which is the one without any trapping potential, as n increases:
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limn→∞ τA = τ0. For a fixed potential height, softer the potential increases, much longer

the particle can be trapped. In the large n limit, the potential barrier resembles a solid

wall that might give an impression that the particle can be trapped longer. However, this

is wrong: the particle can easily escape from such an extreme potential shape.

Next we briefly explain how to derive the result (13). We use a well-known method to

study the escape time of Brownian particles from a given domain. Since good textbooks to

refer the detail of the derivation are largely available, we here only describe the outline of

the derivation based on Ref.30. We first consider a probability density P (r, t|r0, 0) of r at

time t with the initial condition r0 at time 0. The boundary conditions of P (r, t|r0, 0) are
absorbing boundary conditions P (±ds/2, t|r0, 0) = 0 or P (r, t|±ds/2, 0), in order to describe

our setup of simulations in which we reset the position of the particle each time it reaches

the boundaries r = ±ds/2. Using this probability density P (r, t|r0, 0), the probability that

the particle still remains in the potential trap at time t is given as

Q(r0, t) ≡
∫ ds/2

−ds/2
P (r, t|r0, 0)dr. (16)

Since the derivative of−Q(r0, t) is the probability rate to escape the trap at time t, we get the

escaping probability R(r0, t)dt during the time interval between t and t+ dt as R(r0, t)dt =

− [∂Q(r0, t)/∂t] dt. By taking the integral of this escaping probability multiplied by t, we

thus get an equation to describe the average first-passage time, T (r0) =
∫

∞

0 tR(r0, t)dt =
∫

∞

0 Q(r0, t)dt. This means that once we know the time-evolution equation of the remaining

probability Q(r0, t), we can get an equation to determine T (x0). Using the Fokker-Planck

equation as such a time-evolution equation30, the following ordinary differential equation is

derived:
fc(r)D

kBT

dT (r)

dr
+D

d2T (r)

dr2
= −1. (17)

By solving this differential equation with boundary conditions T (±ds/2) = 0 and by noticing

T (0) = τA, we get (13).

It is worth addressing the sensitivity and numerical values between the relevant basic

physical quantities under such circumstances. In particular, the spring constant ks is an

important property to link the intuition of many scientists and engineers engaged in exper-

imental works to our numerical and analytical results. As far as we employ the definition

of spring constant ks in Eq. 9, the increase of n means that of ks. If we consider the case of

technologically realistic order of ds = 10−6 m, the numerical value of ks is drastically varied
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by the variation of n, compared to the variation of α. In spite of this apparent numerical

values, Fig. 2, τd/τ0 is much more sensitive to α compared to n at first sight. However, the

physically important range of α today is rather mainly close to the kBT partly because of

the available potential for smaller nanoparticles, and partly because of the relevance to the

soft matter physics and biological context.

The variation of n in Eq. 8 causes the variation of the functional shape of the potential

and the generalized spring constant ks of the potential as shown in Fig. 4. The larger n

causes the steeper potential in the vicinity of r = ds/2 whereas it is less steep in the vicinity

of r = 0 as shown in Fig. 4(a). The larger spring constant for a linear spring corresponds to

the stiffer spring. The variation of the spring constant with a fixed n is realized by α (Eq. 9),

but it corresponds to the increase of potential energy gap. The variation of ds leads to that

of the spring constant ks as well. It leads to the increase of τ0 but τd/τ0 remains the same as

far as α and n is kept constant. For example, ks for the case of n = 2 does not affect τd/τ0

as far as α is kept the same, although the variation of ks by that of ds causes the variation

of both τd and τ0. The dependence of τd/τ0 on n is essentially important, considering the

fact that Eq. 2 has long been employed in many situations of research without caring about

the potential shape. Furthermore, it should also be noted that the potential shape depends

on the specific systems of interest. Even within the case of laser trapping, the shape of the

trapping potential depends on the specification of the laser31.

Since the escape of the trapped Brownian particle is obviously the stochastic event, it is

scattered around the mean dwell time. Therefore, we also examine the distribution of τd to

understand the system characteristics by the numerical analysis. Fig. 5 shows the distribu-

tion of τd scaled by its mean values for different combinations of α and n. The scaling of

each result for (α, n) by the mean values almost collapse into a single curve. The peak is

located at the values smaller than the mean, and the distribution beyond the peak value

appears linear in the semi-log plot. In other words, the probability distribution of τd/〈τd〉
follows the exponential distribution for the most part, except for sufficiently small τd. The

exponential distribution of the event indicates that the escape event of the particle originates

from the probability that does not explicitly depend on time. The distributions also resem-

bles those of Gumbel distribution. The Gumbel distribution often appears for the stochastic

event of extreme values. In this case, the escape event takes place when sufficiently large

displacement(s) by thermal fluctuation for a fixed kBT takes place. The same probability
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distribution when scaled by the mean value indicates that the breadths of distribution are

wider for the cases with larger mean values 〈τd〉. The standard deviation of the dwell time

is important when evaluating its mean value from the experimental measurements. Fig. 6

shows the dependence of the standard deviation of τd scaled by τ0 on α and n. The standard

deviation of τd/τ0 drastically increases for large α (closer to 101), and it is smaller for large

n. The sensitivity of this standard deviation to n grows with increasing α. In other words,

the trend of the standard deviation of τd/τ0 with respect to α and n is the same as the mean

value of τd/τ0 (cf. Fig. 2).

IV. CONCLUSIONS

We have shown both numerically and analytically that the dwell time is affected not

only by the trapping energy but also by the force field shape. We have revealed that the

smaller spring constant by smaller number of exponent in the polynomial potential function

is advantageous for the longer dwell time when the trapping energy is the same. This is of

fundamental importance in the application to the optical tweezers, and plasmon trapping

in particular. The desired characteristics of optical force field to control crystallization32

and those to trap a single particle precisely in a desired position are likely to be different.

“Soft yet long” trapping may be preferred for the former situation compared to the “tight

yet short” one. This specification is also likely to be more nontrivial when considering the

capacity of the number of trapped particles.
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FIG. 1. Schematic diagram of the model system. A Brownian particle with a diameter dp is

suspended in a fluid. The particle is subject to a laser trapping force field of harmonic potential

that depends only on the distance r from the focal point. The trapping force field acts in the

finite domain of r ≤ ds, and the trapping energy is denoted as ∆E(r). The escape event is judged

with the position of the central position of the particle. dp affects only the diffusion coefficient D

through the Stokes-Einstein relation (cf. Eq. 4).
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FIG. 5. Distribution of τd for different α ≡ ∆E(ds/2)/(kBT ) when the exponent n of the potential

shape is (a) 2, (b) 4, (c) 10, and (d) 20, respectively. 〈τd〉 indicates the average of τd for each

combination of α and n.
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FIG. 6. Dependence of the standard deviation of the dwell time on (a) the trapping energy

α ≡ ∆E(ds/2)/(kBT ) and (b) the potential shape represented by the exponent n of Eq. 8.
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