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Recent advances on the glass problem motivate reexamining classical models of percolation. Here,
we consider the displacement of an ant in a labyrinth near the percolation threshold on cubic lattices
both below and above the upper critical dimension of simple percolation, du = 6. Using theory and
simulations, we consider the scaling regime part, and obtain that both caging and subdiffusion scale
logarithmically for d ≥ du. The theoretical derivation considers Bethe lattices with generalized
connectivity and a random graph model, and employs a scaling analysis to confirm that logarithmic
scalings should persist in the limit d → ∞. The computational validation employs accelerated
random walk simulations with a transfer-matrix description of diffusion to evaluate directly the
dynamical critical exponents below du as well as their logarithmic scaling above du. Our numerical
results improve various earlier estimates and are fully consistent with our theoretical predictions.

I. INTRODUCTION

Transport in disordered media is anomalous compared
to its counterpart in homogeneous space [1–3]. Diffusion
in systems as diverse as porous rocks, aerogels and bio-
logical cells is indeed much more complex than Einstein’s
description of Brownian motion [3, 4]. The paradigmatic
minimal model for such transport is de Gennes’ ant in
a labyrinth [5], which consists of randomly displacing a
tracer on covered lattice sites, around the percolation
threshold. While, far above that threshold, transport is
unremarkable—other than being more sluggish than an
unimpeded random walk—near the threshold a clear sub-
diffusive regime emerges, and below the threshold trans-
port stops altogether.
Most features of this model have by now been exten-

sively studied by theory and simulations. Scaling rela-
tions, series expansions, and renormalization group treat-
ments are very well developed, and most critical expo-
nents are known with high precision [6]. Many aspects
of the process have even been fully mathematically for-
malized [7–10]. Yet some of its features remain actively
pursued, thus reflecting the continued importance and
elegance of the underlying physical model. Improved nu-
merical estimates of the thresholds, for instance, keep ap-
pearing [11, 12]. Careful studies of the localized regime,
which has traditionally been less studied than the con-
duction side, are also now emerging, especially on higher-
dimensional lattices. Mertens and Moore, for instance,
recently improved the high-dimensional series expansion
for the threshold from a finite-cluster expansion [13], and
employed specialized simulation techniques to compute
more precise Fisher exponents, which describe the large
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cluster size distribution [12].
Recent advances in the field of glasses also motivate

reexamining the subdiffusive and localized regime of the
ant in a labyrinth. The study of the Mari-Kurchan
model, which offers a finite-dimensional mean-field de-
scription of glasses in continuous space [14–16], indeed
suggests that a percolation-like process might play a
role in the dynamical slowing down in finite d [17, 18].
More specifically, it has been observed that a small frac-
tion particles can diffuse even at densities at which the
vast majority of particles are perfectly localized [17].
This process is reminiscent of the dynamics of a random
Lorentz gas, but even this simpler description remains
theoretically challenging to solve [18]. The study of a
simpler lattice-based model could, therefore, provide ad-
ditional insight into the physics of caging. An interesting
putative commonality between Mari-Kurchan glass for-
mers and ants in labyrinths is that the power-law scaling
of subdiffusion could vanish in high spatial dimension, d,
for both models. In the former, true caging is expected
at the dynamical transition in the limit d → ∞, but in
the latter the situation is more ambiguous. While the
power-law exponent of subdiffusion is expected to van-
ish approaching the upper critical dimension for simple
percolation, du = 6, what then follows is unclear. In
particular, is caging taking place? Or, does subdiffusion
rather become slower than power law?
In this article, we provide an answer to these questions

and present a direct evaluation of the critical exponents
associated with caging and with subdiffusion from d = 3
to d = 13. Although caging exponents had not been
previously evaluated directly, our results are fully consis-
tent with the relevant scaling relations. The subdiffusion
exponents we obtain are also consistent with scaling the-
ory predictions, but are one order of magnitude more
accurate than previous numerical estimates in d = 3 and
4. We also derive the logarithmic scaling behavior for
Bethe lattices of arbitrary connectivity and for random

mailto:patrick.charbonneau@duke.edu
mailto:yi.hu@duke.edu


2

graphs, and observe the corresponding scaling form on
hypercubic lattices with d ≥ du. The rest of the paper
is organized as follows. In Section II, we generalize both
the scaling analysis that relate caging and dynamical ex-
ponents and the description of caging on Bethe lattices
and on random graphs. In Section III, we describe the
computational scheme used to evaluate these predictions.
Section IV presents and discusses the numerical results
for d = 3 to 13, and we briefly conclude in Section V.

II. THEORETICAL FRAMEWORK

In this section, we obtain relations between three dy-
namical exponents by scaling analysis below the upper
critical dimension, du, and discuss the case d ≥ du. We
also compute the critical behavior for caging on a Bethe
lattice of arbitrary connectivity and separately consider
the same problem on a random graph, which recovers the
fully-connected limit of the Bethe lattice.

A. Scaling analysis

In order to investigate the dynamical exponents around
the site percolation threshold, pc, we consider the mean-
square displacement of the tracer, D2(t, p) = 〈r2(t)〉, at
covering fraction p and time t. On general grounds [3],
we expect the following scaling forms to be obeyed

D2(t → ∞, p) ∼











(pc − p)−µ− , p < pc
t(p− pc)

µ, p > pc
t2/d

′

w , p = pc

, (1)

where the exponent µ characterizes the decay of the
diffusivity upon approaching pc from above, µ− is
the caging exponent that characterizes the growth of
the infinite-time limit of the mean-square displacement,
limt→∞ D2(p < pc, t) ≡ ∆2(p), upon approaching pc
from below, and d′w > 2 describes the subdiffusive scal-
ing at pc. The subdiffusion behvaior is caused by the
presence of fractal-like infinite cluster. This set of rela-
tionships gives rise to the following (non-unique) scaling
collapse for ǫ ≡ (p− pc)/pc

D2(t, p) = |ǫ|−µ−f(sgn(ǫ)|ǫ|µst), (2)

along with three relations. First, caging for p < pc cor-
responds to

lim
x→−∞

f(x) = cnst.

with a negative argument to f(x). Second, diffusion for
p > pc is recovered if

lim
x→∞

f(x) = x,

and thus tǫµ = tǫµs−µ− . Third, at (reasonably) short
times subdiffusion is recovered if

f(x → 0) = x2/d′

w ,

or, equivalently,

D2(t, p) ∼ |ǫ|−µ−(|ǫ|µs t)2/d
′

w . (3)

Because the subdiffusive scaling should be independent
of ǫ, we must have µ− = 2

d′

w

µs. Altogether, we therefore

obtain

µs = µ+ µ− (4)

d′w = 2

(

µ

µ−
+ 1

)

. (5)

Based on the known critical scaling relations [3, 6], one
can also compute the caging exponent µ− as [6]

µ− = 2ν − β (6)

= 2
τ − 1

σd
−

τ − 2

σ
, (7)

and the subdiffusion exponent as

d′w = 2

(

µ

2ν − β
+ 1

)

(8)

where ν is the correlation length exponent, β is the ex-
ponent that characterizes the fraction of infinite network
sites, τ is the Fischer exponent for the cluster size dis-
tribution at pc, and σ is the exponent that character-
izes the scaling of the large cluster cutoff for p < pc.
Specifically, the cluster distribution Ns(p) ∼ s−τe−cs

with c ∼ |p− pc|
1/σ for p → p−c .

Interestingly, for d ≥ du = 6, which is the upper critical
dimension for simple percolation, these scaling relations
suggest that µ− = 0 and d′w → ∞. The subdiffusive
regime is then either slower than any power law or fully
arrested, as would be a glass former beyond the dynami-
cal transition [19]. In order to settle the issue and, espe-
cially, working out the percolation behavior in the limit
d → ∞, a more detailed treatment is needed. This is the
focus of the next subsections.

B. Upper critical dimension and above

Based on the standard theory of critical phenomena,
the critical behavior in d ≥ du = 6 is expected to be
mean-field like and independent of d. As discussed above,
because 2/d′w vanishes for d → d−u , however, it is not clear
whether the subdiffusive regime is then slower than any
power law or fully arrested. In order to clarify this point,
we briefly recall the physics behind the above scaling re-
lations.
Consider the scaling behavior at p = pc. Percolation

theory [6] indicates that a tracer belongs to a cluster
of size s with probability P (s) ∼ s1−τ . On the infinite
cluster—as well as on a large cluster—a tracer subdiffuses
with a scaling law r(t) ∼ t1/dw , which is distinct from d′w.
Given that a cluster of linear size ℓ and fractal dimension
df contains s ∼ ℓdf sites, after a time t a tracer can fully
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TABLE I. Reference percolation thresholds and critical exponents used in this work

Dimension pc [12] ν [20] β [21] µ† τ [12] σ‡

3 0.3116077(4) [22] 0.8774(13) 0.405(25) 2.00(2) 2.1892(1) 0.4522(8) [23]

4 0.19688561(3) 0.6852(28) 0.639(20) 2.42(2) 2.3142(5) 0.4742 [24]

5 0.14079633(4) 0.5723(18) 0.835(5) 2.74(2) 2.419(1) 0.4933 [24]

≥ 6 ... 1/2 1 3 5/2 1/2
† Computed from the scaling relation, µ = ζ̃R + ν(d − 2), with ζ̃R from Ref. [25]

and ν from this table.
‡ Numerical result for d = 3 and renormalization group (RG) prediction for d = 4

and 5. Existing RG predictions for d = 3 lie outside of the numerical error bars.

explore clusters of size s < s∗ ∼ tdf/dw . For tracers
on larger clusters, only part of the available sites can be
explored. To compute the mean-square displacement one
should thus consider two contributions: one for a tracer
on a cluster with s < s∗, and the other for clusters with
s ≥ s∗. The mean-square displacement then reads

D2(t → ∞, pc) ∼

∫ s∗

1

dsP (s)s2/df +

∫ ∞

s∗
dsP (s)t2/dw

∼ (s∗)2−τ+2/df + (s∗)2−τ t2/dw

∼ t
d
f

dw
(2−τ+ 2

d
f
)
,

(9)
where in the last step we replaced s∗ with tdf/dw . Note
that because the two contributions grow similarly, we can
consider the scaling of either for our analysis.
Using scaling relations, one also gets

2

d′w
=

df
dw

(2− τ + 2/df) =
2− β/ν

dw
. (10)

Given that df → 4, dw → 6 and (2 − β/ν) → 0 upon
approaching du from below [3], one finds that the sub-
diffusion exponent vanishes, which is the result quoted
above. In this case, one should compute the integral in
Eq. (9) as

D2(t → ∞, pc) ∼

∫ s∗

1

dsP (s)s2/df +

∫ ∞

s∗
dsP (s)t2/dw

∼

∫ s∗

1

s−1ds+ (s∗)2−τ t2/dw

∼ ln s∗ + cnst

≈ AD ln t,
(11)

where we explicitly denote the prefactor as a
dimensionally-dependent constant, AD(d). The scaling
analysis thus predicts for d ≥ du that D2(t, pc) grows
logarithmically with time. One can similarly obtain the
scaling behavior of caging for p < pc. Because the power-
law scaling of P (s) is cut off at s∗ ∼ ǫ−1/σ, the singular
contribution to the long-time mean-square displacement
can again be obtained from Eq. (9), after replacing s∗

with ǫ−1/σ. This leads to µ− = 2ν − β, which vanishes
for d → d−u . Integrating similarly gives ∆2 = −A∆ ln |ǫ|,

with the prefactors A∆ and AD satisfying the relation

D2(t → ∞, pc) = −A∆ ln |ǫ| = AD ln t

⇒−A∆ ln
[

(s∗)−σ
]

= AD ln
[

(s∗)dw/df

]

,

and thus

A∆ =
dw
σdf

AD. (12)

Inserting the critical exponents for d ≥ du immediately
gives A∆ = 3AD.
This derivation pinpoints the origin of the phenomenon

we wish to understand. That is, subdiffusion disappears
because the exponent relating the mean-square displace-
ment to s∗(t) vanishes, whereas the time-dependence of
s∗(t) remains a power law. One indeed expects that
above the upper critical dimension s∗(t) scales as tdf/dw =
t2/3. Analogously, the dependence of s∗ on ǫ is ǫ−1/σ with
σ = 1/2 for all d > du.
Mertens and Moore further suggest the Fischer ex-

ponent in du = 6 combines with a logarithmic correc-
tion [12], as suggested by early renormalization group
treatments [26, 27]. Under this correction, we would have

P (s) ∼ s1−τ (ln s)θ, (13)

and Eq. (11) then becomes

D2(t → ∞, pc) ∼

∫ s∗

1

s−1(ln s)θds

≈ AD(ln t)1+θ,

(14)

and similarly

∆2 ≈ A∆(− ln |ǫ|)1+θ, (15)

with A∆ = 31+θAD. The logarithmic correction should
then be observed in both the scaling of the caging and of
the dynamics at pc.
The above analyses, however, only predict a logarith-

mic scaling in d ≥ du, not how its prefactor evolves with
d, and especially whether this prefactor remains finite in
the limit d → ∞. This question can only be resolved by
computing explicitly the full dependence on ǫ, and hence
on s∗, for p < pc, which we do for mean-field lattices in
the following two subsections.
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C. Tracer on a Bethe lattice

0 10 1

(a) (b)

FIG. 1. (a) Sketch of a fragment of a Bethe lattice with z = 3
with occupied (full circles) and unoccupied (empty circles)
sites. A tracer on site 0 connects to one of the branches
through site 1. (b) A sketch of a cluster branch of size s = 8.
This branch can be further decomposed into two sub-branches
of sizes s1 = 4 (blue) and s2 = 3 (red) connected by site 1.

In this section, we extend the computation of Stra-
ley [28], to obtain the mean-square displacement for
p < pc on Bethe lattices of fixed general connectivity
z (Straley only considered the case z = 3). Our main
aim is to establish generically the behavior ∆2(p) ∼
A∆(z) ln |p−pc| and to study A∆(z), especially its large z
behavior, which is equivalent to the d → ∞ limit in a hy-
percubic lattice. As z → ∞, the logarithmic divergence
of the mean-square displacement could indeed vanish and
let weaker divergences or even proper caging emerge.
Consider a tracer initially on site 0. By symmetry, we

can examine any of the branches connected to 0, hence,
without loss of generality, we define the cluster as all oc-
cupied sites that are accessible to the tracer from site 0
in one such branch. Note that by convention the branch
size does not include site 0. (This convention, which dif-
fers from that of Ref. [28], simplifies the analysis for ar-
bitrary z, whilst the alternate convention only simplifies
the case z = 3.) In addition to the branch size, s, another
key quantity is the sum of chemical distance Y =

∑

i di0.
On a finite-dimensional lattice, one would normally com-
pute the sum of Euclidean distances,

∑

i |ri − r0|
2, but

high-dimensional percolation clusters are effectively trees
embedded on an hypercubic lattice. Exploring the tree is
thus equivalent to performing a random walk on that lat-
tice, and because the chemical distance is the number of
steps of the random walk, the mean-square displacement
in chemical distance measurement grows as the Euclidean
distance on the hypercubic lattice: di0 ∼ |ri−r0|

2. (This
identity has long been assumed in physics and is now rig-
orously proven to a large extent [8, 29, 30]). In summary,
if the tracer belongs to a cluster of size s, the mean-square
displacement for large s is given by Y/s.
Following Ref. [28], we then compute the average of

this quantity over the cluster distribution. If site 1 on
the branch is not covered, then the branch size is s = 0
and Y = 0. But if site 1 is covered, then inserting site

0 adds an additional step to each (ri − r1) → (ri − r0)
for a tracer on site 0 instead of site 1. In other words,
a branch with a tracer at site 0 can be decomposed into
(z−1) subbranches that overlap at site 1. The recurrence
equations for s and Y thus read

s = s1 + s2 + ...+ sz−1 + 1

Y = Y1 + Y2 + ...+ Yz−1 + s,

and the probability of having a cluster with given s and
Y is

P (s, Y ) = qδ(Y, 0)δ(s, 0) + p
∑

s1,...,sz−1;Y1,...,Yz−1

δ(s, 1 +

z−1
∑

i=1

si)δ(Y, s+

z−1
∑

i=1

Yi)

z−1
∏

i=1

P (si, Yi),

(16)

where δ denotes the Kronecker delta function; q ≡ 1− p
denotes the probability that a site not be covered. Taking
the Laplace transform on s, we obtain

P̂ (x) =
∑

s,Y

e−xsP (s, Y ) = q + pe−xP̂ (x)z−1 (17)

and

P̂Y (x) =
∑

s,Y

e−xsY P (s, Y )

= −p
d(e−xP̂ (x)z−1)

dx
+ (z − 1)pe−xP̂Y (x)P̂ (x)z−2

= −
dP̂ (x)

dx
+ (z − 1)pe−xP̂Y (x)P̂ (x)z−2,

(18)
where the summation is over all integer s and Y from 0
to infinity.
Considering the whole cluster as z independent

branches joined at site 0, we can then write the expected
displacement

∆2 =

〈∑z
i=1 Yi

∑z
i=1 si

〉

=
∑

s,Y

(

Y1 + Y2 + ...+ Yz

s1 + s2 + ...+ sz + 1

z
∏

i=1

Pi(Yi, si)

)

= z

∫ ∞

0

e−xP̂Y (x)P̂ (x)z−1dx.

(19)

Note that from Eqs. (17) and (18), we have

e−x =
P̂ − q

pP̂ z−1

P̂Y =
dP̂

dx

(

P̂ (x)

P̂ (x)(z − 2)− q(z − 1)

)

Because P̂ (0) = 1 and limx→∞ P̂ (x) = q, we can change
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the integration variable from x to P̂ in Eq. (19) to obtain

∆2 = −
z

p

∫ 1

q

P̂ (P̂ − q)

P̂ (z − 2)− q(z − 1)
dP̂

= −
z(zq + z − 2)

2(z − 2)2
+

q2(z − 1)z

p(z − 2)3
ln

qpc
pc − p

,

(20)

where for a Bethe lattice pc = 1/(z − 1). In the limit
p → p−c , we finally have

∆2 ∼
q2(z − 1)z

p(z − 2)3
ln[(pc − p)−1]

= A∆(z) ln[(pc − p)−1],

(21)

with A∆(z) = z/(z − 2). For z = 3, this expression
reduces precisely to that of Ref. [28, Eq. (2.10)]. Be-
cause in the limit z → ∞, A∆(z) → 1, we conclude that
∆2(p → pc) diverges logarithmically in all dimensions.

D. Random graph analysis

As a validation of the d → ∞ result, we separately con-
sider confinement upon approaching percolation on a ran-
dom graph, which directly evaluates the fully-connected
limit. For convenience, we specifically consider Erdös-
Rényi random graphs [31], which are obtained by consid-
ering s → ∞ vertices and connecting each pair of vertices
by an edge with probability p/s, where p does not scale
with s, i.e., p ∝ O(1). The percolation threshold is then
pc = 1.
In order to compute ∆2, we take site 0 uniformly at

random as the initial position of the tracer, and then let
that tracer diffuse for an infinite amount of time. As on
a Bethe lattice, we then have

∆2 =

〈

∑

i∈S

d0i
s

〉

, (22)

where the sum is over all sites that belong to the cluster,
S, to which site 0 belongs, s = |S| is the cluster’s size,
and the chemical distance d0i is here the smallest number
of edges needed to go from site 0 to site i. The factor of
1/s accounts for the equiprobability of each site in the
infinite-time limit. In the notation of Sect. II C, we have
Y =

∑

i∈S
d0i, which recovers ∆2 = 〈Y/s〉, as above. The

only distinction is that we here treat the whole cluster at
once and do not identify a specific cluster branch.
In order to compute Y , we study the probability dis-

tribution function P (s, Y ) using recurrence relations.
Adding a new vertex to a graph with s vertices merges
into a single cluster all clusters that contain this vertex
(recalling that all such clusters are finite because we are
considering p < pc), and hence

s = s1 + · · ·+ sk + 1,

Y =
k
∑

l=1

∑

i∈Sl

(di,new + 1),

where s1, s2, ..., sk are the sizes of the clusters to which
the new vertex is attached. We can thus write that for
the new site

Ps+1(s, Y ) = ρ0δ(s, 1)δ(Y, 0) +

s
∑

k=1

ρk
∑

s1,...,sk;Y1,...,Yk

δ(s, 1 +

k
∑

i=1

si)δ(Y,

k
∑

i=1

Yi + si)

k
∏

i=1

Ps(si, Yi),

(23)

where ρk = pk

k! e
−p is the probability that a given site has

exactly k neighbors.
Introducing the generating function

G(y, z) =
∑

s,Y

e−yY−zsP (s, Y ),

we can rewrite Eq. (23) as

G(y, z) = e−z exp [p (G(y, z + y)− 1)] , (24)

because in the large s limit the right- and left-hand sides
of that distribution have the same limit. We then have

∆2 = 〈Y/s〉 = −

∫ ∞

0

dz ∂yG(y, z)|y=0 , (25)

where Eq. (24) gives

∂yG(y, z)|y=0 =
pG(0, z)∂zG(0, z)

1− pG(0, z)
.

We finally obtain

∆2 = −

∫ ∞

0

dz
pG(0, z)∂zG(0, z)

1− pG(0, z)

=

∫ 1

0

pG

1− pG
dG = −1−

1

p
ln(1− p),

(26)

which logarithmically diverges when p → pc = 1 with
prefactor A∆(∞) = 1. This result is therefore fully con-
sistent with the limit of infinite connectivity, z → ∞,
for Bethe lattices considered in Sect. II C, and confirms
that a logarithmic divergence of ∆2(p → ∞) is expected
in all d ≥ du with a monotonically decreasing, but non-
vanishing prefactor A∆(z).

III. NUMERICAL SIMULATIONS OF A

HYPERCUBIC LATTICE

In order to validate the above scaling predictions nu-
merically, we separately consider the scaling of the mean-
square displacement on systems around the percolation
threshold and evaluate the dynamical exponent directly
at the percolation threshold. This section details the two
computational schemes employed.
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A. Generating clusters

Below the percolation threshold the mean-square dis-
placement of a random walk eventually approaches a
finite-height plateau. Because the finite state of the
tracer decorrelates from its initial position in the infinite-
time limit, we then have

∆2(p) =
∑

{S}

P (S, p)

s2

∑

i,j∈S

R2
ij , (27)

where S refers to a given finite cluster of size s = |S|,
and P (S, p) is the probability that a tracer falls within
this cluster at covering fraction p. Note that the second
summation is over all pairs of sites within S, with s2

terms in total, hence
∑

R2
ij/s

2 gives the mean square
displacement at t → ∞ for this cluster.

In order to minimize the contribution of finite-size
corrections, we implement the Leath algorithm [12, 32],
which grows a cluster from the origin outward without
storing the whole hypercubic lattice that embeds it. Un-
der this sampling scheme, Eq. (27) becomes

∆2(p) =





∑

{S}

1

s2

∑

i,j∈S

R2
ij





=





∑

{S}

2(
〈

R2
i

〉

− 〈Ri〉
2
)



 ,

(28)

where the inner average 〈. . .〉 is over the different clus-
ter sites and the outer average [. . .] is over the clusters
generated. Because periodic boundary conditions are not
employed by the Leath algorithm, a percolating cluster
cannot be generated for any p < pc. Finite-size effects
are then of a different nature; they arise when the cluster
volume becomes larger than the available memory of the
computer (In practice we here use 60 GB). This weaker
size constraint allows us to push computations by at least
one order of magnitude in |ǫ| compared to the direct gen-
eration of a periodic hypercubic lattice.

Note that in our implementation, the coordinates of
the visited sites, which include both the cluster and the
neighboring sites (the cluster perimeter), are stored in a
tree-based set. While hash tables are generally used to
index sites in the context of percolation [12, 33], an ef-
ficient hash function that would limit hashing collisions
even for large clusters is challenging to design. Because
hashing collisions increase the search complexity by the
maximal size, O(n), of the associated linked lists, their
computational cost can grow quickly for large clusters.
(Although rare, large clusters contribute most to ∆2 as
ǫ → 0−.) Tree-based sets, by contrast, cap the complex-
ity at O(logN), irrespective of the implementation, and
were found to be more robustly efficient in the size regime
studied here.

B. Dynamics

In order to probe the time evolution of the tracer, one
may implement a dynamical equivalent of the Leath al-
gorithm. Specifically, a tracer (blind ant) is first placed
at the origin and then performs a random walk, attempt-
ing to jump over an edge to one of the neighboring sites
with equal probability pb = 1/2d. (Other tracer dynam-
ics are possible, but the critical behavior is unaffected by
this choice.) If the attempted site has never been visited,
occupancy of that site is assigned with probability p, and
the coordinates and occupancy of that site are stored as
key-value pairs in a map. If the site has been previously
or deemed occupied (or vacant), then the tracer position
is updated (or not) and time is incremented.

While straightforward to implement, this brute-force
method encounters a couple of difficulties at and around
pc. First, the time required to approach the asymptotic
scaling can be long, especially near the upper critical
dimension. For instance, performing a random walk on a
single cluster up to t = 1010 steps takes minutes, and is
barely sufficient in d = 6. Second, Eq. (9) suggests that
while both clusters with s <

∼ s∗ and s > s∗ contribute
equally to D2(t), the latter are rarely generated by the
Leath algorithm. In fact, the probability of generating
clusters of size s > s∗ scales as s2−τ . Assuming that a
fixed number of clusters of size s > s∗ is needed to obtain
reliable estimates at times t ∼ (s∗)dw/df , then the total
number of samples, Nsample, should grow with t as

Nsample ∼ 1/(s∗)2−τ ∼ t
d
f

dw
(τ−2), (29)

where the net power-law exponent is about
0.12, 0.20, 0.26 and 0.33 for d = 3, 4, 5 and d → 6−,
respectively. In other words, in order to keep the
accuracy of D2(t) constant while increasing t by an
order of magnitude, one has to generate 1.3, 1.5, 1.8
and 2.1 times more clusters, respectively. The scale
of the numerical challenge thus increases with d ≤ du.
(For d ≥ du, the computational difficulty remains
roughly constant because the critical exponents remain
unchanged.)

In order to mediate these issues, we devise a scheme
to compute the dynamical contribution of small and in-
termediate size clusters without explicitly simulating the
random walk. Our approach relies on approximating the
mean-square displacement of clusters of size s < s∗ by
its infinite-time limit plus corrections (see Eq. (9)). One
then needs to determine an appropriate s∗ (not only its
scaling) at a given time t, or, equivalently, for a given
cluster determine the relaxation time, t∗, such that for
t > t∗ the mean-square displacement can be similarly
approximated.

More specifically, consider a cluster S with sites i =
0, 1, ..., s− 1, and denote P (i, j, t) the probability that a
tracer at site i travels to site j in t steps. For instance,
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for t = 1, we have

P (i, j, t = 1) =











1
2d , j ∈ ∂i,

0, j 6∈ ∂i and i 6= j,

1− |∂i|
2d , i = j,

(30)

where ∂i denotes sites neighboring site i. Obviously, we
have P (i, j, 1) = P (j, i, 1), and for t > 1

P (i, j, t) =
∑

k∈S

P (i, k, t− 1)P (k, j, 1). (31)

For convenience, we define the transfer matrix of diffusion
with entries Pij = P (i, j, 1), and hence P (i, j, t) = Pt

ij .
The mean-square displacement on S is then

D2(t) =
1

s
Tr
(

PtR2
)

=
1

s
Tr
(

ΛtQTR2Q
)

, (32)

where the entry R2
ij is the square distance between sites

i and j. Because P is real and symmetric, its eigen-
decomposition gives orthogonal eigenvectors, such that
P = QΛQT. One can then straightforwardly obtain
D2(t) of a given cluster at arbitrary t by Eq. (32).
From this scheme, it is also possible to determine the

asymptotic dynamics on a finite cluster with arbitrary
accuracy. Because D2(t → ∞) = cnst, the leading eigen-
value of P is Λ0 = 1 and the corresponding eigenvector
q0 has identical elements qi = 1/s(∀i = 0 to s−1). For a
cluster S, we can then consider the i-th dynamical relax-
ation time in relation to the i-th subleading eigenvalue,
Λi,

t∗i (S) = −1/ ln
Λi

Λ0
= −1/ lnΛi, (33)

and thence

D2(t) = ∆2 +

s−1
∑

i=1

q
T
i R

2
qie

−t/t∗
i = ∆2 −

s−1
∑

i=1

cie
−t/t∗

i .

(34)
with prefactor ci = −q

T
i R

2
qi. Because |ci| tends to de-

crease with i, t∗i provides a rough upper bound on the
time at which the pre-asymptotic corrections due by all
cj with j ≥ i are significant. In other words, if one uses
the first i leading eigenvalues and eigenvectors to approx-
imate D2(t), the result is robust when

ci
∆2

e−t/t∗
i ≪ 1,

⇒ t > t∗i = −1/ lnΛi ≈
1

1− Λi
. (35)

The pre-asymptotic behavior of D2(t) can thus be eval-
uated directly at short times, and computed by Eq. (34)
for t > t∗i .
In particular, the mean-square displacement of a tracer

on a single cluster of size s∗ ∼ (t∗1)
df/dw approaches a con-

stant for t > t∗1 = −1/ lnΛ1. This relation suggests that
the distance between the second leading eigenvalue and

unity, 1 − Λ1 ∼ s−dw/df , sets the maximal cluster size
that can be treated by the transfer matrix approach for
a finite machine precision. Here, we apply the transfer
matrix approach only for the clusters smaller than the
threshold cluster size st = 5000. The machine error un-
der double precision is then of order 10−10 times smaller
than 1− Λ1.
Our detailed implementation runs as follows. We first

apply the Leath algorithm to generate a cluster. If the
algorithm stops with s < st, then the transfer matrix ap-
proach is used to compute the long-time dynamics and a
direct evaluation of the dynamics is run for 1 ≤ t < t∗i ,
where i ≤ 19, i.e., up to the 20-th leading eigenvalue. If
the Leath algorithm returns a cluster with a boundary
that is not closed, then we place a tracer at the origin
and simulate the random walk by brute force. Because
the tracer can then reach undetermined sites, the cluster
keeps growing along the walk. Because these brute-force
simulations are only performed for clusters with s ≥ st,
which are rare, using the transfer matrix approach ac-
celerates the computation by orders of magnitude, even
without carefully optimizing st and the eigensolver.

IV. RESULTS AND DISCUSSION

In this section, we evaluate the caging and subdiffu-
sive behavior of tracers on hypercubic lattices by the
simulation methods described in Sect. III, and compare
the results with the theoretical predictions presented in
Sect. II.

A. Cluster size distribution

We first consider the distribution of cluster sizes, Ns,
generated by the Leath algorithm near the percolation
threshold. Figure 2(a) suggests that for ǫ → 0, the in-
termediate decay of Ns can be fitted to a power law; at
larger sizes, Ns systematically deviates from this scaling,
but the closer p is to pc, the more extended the power-
law scaling regime. The specific scaling prediction for the
cluster distribution is that

Ns(p) = s−τ (f0(s̃) + s−Ωf1(s̃) + ...), (36)

for the rescaled cluster size s̃ = |ǫ|1/σs. This form sug-
gests that the largest likely cluster scales as smax ∼
|ǫ|−1/σ, before the cluster size distribution deviates from
the Fisher power law, and that results can be asymp-
totically collapsed by considering the rescaled function
Ñs = sτNs vs s̃.
Figure 2(b) shows that for the reference exponents τ

and σ (Table I), all cluster size distributions asymptoti-
cally collapse onto the single master function f0(s̃). Be-
cause previous numerical results for Ns either considered
a finite periodic box [34] or truncated the cluster size dis-
tribution before smax could be reached [12], this master



8

10
-10

10
0

(3D) 0.3

0.305

0.31

0.3112

0.3114

(4D) 0.19

0.195

0.196

0.1965

0.1968

10
0

10
4

10
8

10
-20

10
-10

10
0

(5D) 0.139

0.14

0.1405

0.1407

0.14076

10
4

10
8

(6D) 0.107

0.108

0.1086

0.1089

0.109

(a)

10
-3

10
-2

10
-1 (3D)

0.3

0.305

0.31

0.3112

0.3114

(4D)

0.19

0.195

0.196

0.1965

0.1968

10
-8

10
-4

10
0

10
-4

10
-3

10
-2

10
-1 (5D)

0.139

0.14

0.1405

0.14076

0.14078

10
-8

10
-4

10
0

(6D)

0.107

0.108

0.1086

0.1089

0.109

(b)

FIG. 2. (a) Cluster size distributions, Ns(s, p), for differ-
ent p < pc in d = 3, 4, 5, 6 (as given in panel labels).
The Fisher power-law scaling (dashed line) describes well the
large-cluster regime. (b) The rescaled cluster size distribu-

tion Ñs(s̃, p), shows a very good collapse for the exponential
cutoff of the cluster size distribution in all dimensions, but
more sizable pre-asymptotic effects for the Fisher tail can be
observed as d increases.

function had not before been seen all at once. The Leath
algorithm here enables us to grow directly clusters up
to 108 sites, hence the master curve clearly displays the
two regimes: a flat τ -dominated regime and a sharply
decaying σ-dominated regime, with a crossover around
smax.

In addition to validating our implementation of the
Leath algorithm, this analysis allows us to validate the
reported values of the relevant critical exponents. While
the most recent estimates τ are seemingly very accu-
rate [12], those for σ are not all consistent [23, 24]. In
d = 3, in particular, the simulation estimate for σ [23]
leads to a better rescaling than the best renormalization

group (RG) prediction [24], especially in the σ-dominated
regime. Because increasing d closer to du makes the RG
predictions increasingly accurate, for the rest of our anal-
ysis, we use σ determined by simulations in d = 3 and by
the RG treatment in d = 4 and 5.

B. Critical caging regime

Using the clusters generated by the Leath algorithm,
we next compute ∆2(p) for a tracer using Eq. (28)
(Fig. 3). Directly evaluating the critical exponent µ− is
challenging because of the growing variance of the clus-
ter size distribution as ǫ → 0, and because of the sizable
pre-asymptotic corrections. In order to assess the con-
vergence of our results and identify the pre-asymptotic
regime, we use the estimate

µ− = −
d ln
(

∆2
)

d ln |ǫ|
=

(pc − p)

∆2

d∆2(p)

dp
, (37)

which becomes exact in the limit ǫ → 0. Clusters being
grown by random addition, the probability that a site
belongs to any generated cluster i ∈ S, with cluster size
s and perimeter b, is uniformly distributed. The weight
of this cluster upon changing p to p′ is then [33]

w(p′)

w(p)
=

(

p′

p

)s(
1− p′

1− p

)b

, (38)

and ∆2(p′) =
〈

D2
〉

w(p′)
is the weighted average of limit-

ing the mean-square displacement, D2, for every cluster
i sampled,

∆2(p′) =

∑N
i=1 wiD

2
i

∑N
i=1 wi

, (39)

where N is the number of clusters sampled. Because
D2 for one single cluster does not depend on p, we can
calculate explicitly the derivative of Eq. (38),

dwi

dp′

∣

∣

∣

∣

p

=
s

p
−

b

1− p
, (40)

and combine the result with Eq. (39) to obtain

d∆2

dp
=

1

N2

(

∑

i∈S

(
s

p
−

b

1− p
)D2

i

−
∑

i∈S

(
s

p
−

b

1− p
)
∑

i

D2
i

)

.

(41)

It is therefore possible to obtain an estimate µ− by gen-
erating a sufficiently large number of clusters and by then
calculating the local slope for a given fixed p (Fig. 3, in-
set). As expected, the numerical results agree with those
obtained by scaling relations in d = 3 and 4 at small
enough ǫ. For these two cases, we can directly read off
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FIG. 3. ∆2 on (a) log-log scale for d = 3 to 6 and (b) on a lin-log scale for d = 6 to 13. Red data points are used for estimating
µ− in Table II. Gray points denote conditions, under which at least 10−3% of the clusters reached the maximal memory size,
and are therefore numerically suspicious. These points are provided for context alone, they are not used in the analysis. (inset)
(a) Estimates of µ− obtained from the local slope of ∆2 by Eq. (41), and (b) estimates for the prefactors obtained from the
finite differentiation. Error bars denote 95% confidence intervals. Dotted lines are (a) the scaling prediction given by Eq. (7)
and (b) the fitting results of the main plot. The error bar on the estimate for d = 6 is denoted by vertical strips.

TABLE II. Caging critical exponent µ− obtained as described
in the text. Scaling predictions use reference exponents in
Table I.

d This work Eq. (6) Eq. (7)

3 1.3377(15) 1.35(2) 1.335(2)

4 0.73(1) 0.73(2) 0.723

5 0.31(2) 0.310(6) 0.301

the proper fitting range and the numerical estimates of
µ− (Table II). In d = 5, however, small systematic de-
viations persist within the whole numerically accessible
regime. Such a slow convergence to the asymptotic scal-
ing is characteristic of approaching du. In this case, we
therefore employ a form with correction terms,

ln∆2 = −µ− ln |ǫ|+ C +B/ ln |ǫ| (42)

to fit the pre-asymptotic estimates. Because the result-
ing estimate of µ− is then to some degree sensitive to the
fitting range, we choose that range, such that µ− is min-
imal. The resulting critical exponent is then consistent
with the scaling relation prediction for d = 5 (Table II).
For d ≥ du, scaling relations predict that µ− = 0, and

the inset in Fig. 3 indeed indicates that no finite µ− value
is reached over the numerically accessible regime in d = 6.
We instead consider the logarithmic scaling prediction,
∆2 ≈ −A∆(d) ln |ǫ|, with a dimensional-dependent pref-
actor A∆(d). Figure 3(b) repeats the above analysis for
this new scaling form. For the critically marginal d = 6,

the growth of ∆2 seems to be accompanied by a fairly
wide pre-asymptotic regime under the local slope analy-
sis. It is also likely that ∆2 actually scales with a differ-
ent form, such as that given in Eq. (15). We come back
to this hypothesis below. For now, we treat the d ≥ 6
results on the same footing by using the fitting form

∆2 = −A∆ ln |ǫ|+B∆ + C∆ǫ, (43)

where the results of A∆(d) are displayed in Table IV.
Unsurprisingly, these values differ from the Bethe lattice
predictions for d = 2z, which would be z/(z − 2) = 1 +
1/(d− 1). Including higher order corrections, such that

A∆(d) = 1+
1

d− 1
+

c2
(d− 1)2

+
c3

(d− 1)3
+ o

(

1

(d− 1)4

)

(44)
indeed fits A∆(d) (Fig. 5). Note that we obtain the fitting
constants c2 ∼ 101 and c2 ∼ 102, which indicates signifi-
cant loop corrections to the Bethe lattice, as the investi-
gated dimensions are still far from the asymptotic regime.
Theoretically computing these loop corrections is left as
a challenge, and thus beyond the scope of this work. The
prefactors do, however, monotonically decrease with in-
creasing d and remain above unity 1, which is the ex-
pected d → ∞ prefactor for both Bethe and hypercubic
lattices.
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FIG. 4. D2(pc) on (a) log-log scale for d = 3 to 6, and (b) on a lin-log scale for d = 6 to 13. Fitted results for d′w are given
in Table III. (inset) Pre-asymptotic corrections captured by the evolution of the local slope, i.e., (a) 2/(∂ lnD2/∂ ln t) and
(b) (∂D2/∂ ln t). Dotted lines are (a) the scaling predictions given by Eq. (8), and (b) the predicted prefactor relationship,
AD(d) = A∆(d)/3, where A∆(d) is obtained from Fig. 3(b). Note that quantitative agreement for the prefactors is observed in
d ≥ 7, but that in d = 6 discrepancies are observed, despite the large error bar (See Fig. 3(b))

TABLE III. Subdiffusion exponent d′w obtained as described
in the text along with earlier numerical estimates. Scaling
predictions use reference exponents in Table I.

d This work Eq. (8) Ref. [35]

3 4.94(1) 4.96(8) 5.04(1)

4 8.64(4) 8.6(2) 8.37(1)

5 20(3) 19.7(13) -

TABLE IV. Prefactors of logarithmic grows of ∆2(ǫ) and
D2(t, pc) for d ≥ 6.

d A∆ 3AD

6 7.7(4) 6.4(1)

7 3.79(7) 3.69(3)

8 2.62(6) 2.57(1)

9 2.14(5) 2.24(2)

10 1.83(4) 1.88(1)

11 1.70(10) 1.73(1)

12 1.63(2) 1.63(1)

13 1.53(2) 1.55(1)

C. Subdiffusive scaling

Thanks to the availability of very precise estimates of
the percolation threshold [12], d′w can be obtained by run-
ning dynamical simulations essentially at pc. The growth
of the mean-square displacement with time is shown in
Fig. 4. In order to estimate the pre-asymptotic scaling

for d < du, we consider the empirical form

D2(t, pc) = Ct2/d
′

w +B + o(t−1). (45)

where B and C are fitting constants. The constant B is
chosen because we expect the sub-leading term after a
positive power law would be constant (0-th order). Note
that in practice, the fit is done on a logarithmic scale,
that is

lnD2(t, pc) ≈
2

d′w
ln t+ lnC +

B

C
t−2/d′

w . (46)

We use t ≥ 216 as fitting range, which appears to fall
near the end of the pre-asymptotic corrections that are
not captured by this form.
In order to identify the pre-asymptotic regime,

we also consider the evolution of the local slope,
2/(∂ lnD2/∂ ln t) with ln t. Here again, for d = 3 and
4 the numerical estimates of d′w agree with the scaling
predictions given by Eq. (8). Note that our implemen-
tation of the transfer matrix scheme allows us to aver-
age over many more clusters and to run longer trajec-
tories than was previously possible, which likely explain
the discrepancy with older numerical estimates [35]. For
d = 5, however, the computationally accessible regime
remains nonetheless somewhat distant from the asymp-
totic scaling. Although no precise numerical estimate is
thus available, Eq. (46) plausibly gives dw ≈ 20, which is
consistent with the scaling prediction.
From the scaling analysis of Sect. II, we expect ∆2(t)

for d ≥ du to grow logarithmically with time. Figure 4(b)
explicitly tests this prediction, and we implement the fit-
ting form

D2(t, pc) = AD ln t+BD + CD/t (47)



11

0 0.05 0.1 0.15 0.2

1

1.5

2

2.5

3

3.5

4

FIG. 5. Prefactors A∆ and 3AD in the logarithmic scaling
for d = 7 to 13, from right to left. The curves are fitted with
Eq. (44).

to approximate the prefactor AD of the logarithmic
growth. The numerical results supports the logarithm
scaling, and the values of 3AD are displayed in Table IV.
As expected, AD(d) monotonically decreases with in-
creasing dimension, and are remarkably consistent with
the expected relation A∆ = 3AD for d ≥ 7, as shown in
Table. IV and Fig. 5, although not for d = 6. The dis-
crepancy in d = 6 may be caused either by the large pre-
asymptotic corrections, as suggested by Fig. 4(b, inset)—
the local slope does not reach the expected value given
by the caging side—or by the more subtle critical scaling
at du.

D. Logarithmic correction for d = 6

We have thus far assumed that discrepancies from loga-
rithmic scaling in d = 6 were due to large pre-asymptotic
corrections. We shall now examine the possibility that
a logarithmic correction to the logarithmic scaling might
be applied to exponent τ . By explicitly presenting the
constant term in equation (14) as

D2(t, pc) = AD(ln t)1+θ +B,

and taking the logarithm on both side gives

logD2 = (1 + θ) ln ln s+ lnAD + ln

(

1 +
B

AD(ln s)1+θ

)

.

(48)
Fitting this nonlinear equation, however, gives results
that are sensitive to the number of short time data we
discard (as observed in Ref. [12]). For instance, we get
θ = 0.58(4) by fitting the results for t ≥ 215 or 0.40(4) for
t ≥ 220, both of which are inconsistent with Ref. [12] and
the theoretical prediction θ = 2/7. This inconsistency

1 3 10 30
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10
2
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7D

8D

FIG. 6. Growth of ∆2 with ln t at pc for d = 6. For compari-
son, results for d = 7 and 8 as well as the fitting to Eq. (48)
are plotted on the same scale.

might be the result of the large pre-asymptomatic correc-
tions in d = 6. It is also not possible determine whether
or not θ is actually 0, which would correspond to a simple
logarithmic scaling. By comparison, similar fitting gives
θ(d = 7) = 0.06(10) and θ(d = 8) = 0.003(3), both of
which are consistent with the expected simple logarith-
mic scaling. Note that attempting to extract θ from the
caging side dubiously gives θ ≈ 1, which likely reflects
even more significant pre-asymptotic behaviors on this
quantity. In short, the current results show only limited
evidence in support of θ 6= 0.

E. Rescaled mean-square displacement

As a final test of the above critical exponents, we ex-
plicitly consider the scaling collapse discussed in Sect. II
for d ≤ du. Figure 7(a) shows that the mean-square
displacement qualitatively exhibits the trend caging-
subdiffusion-diffusion, as p traverses the critical regime.
The long time dynamics is either caged or diffusive, sep-
arated by the subdiffusion line at pc. The subdiffusion
behavior is also observable at intermediate times for p
around pc. Note also that at short times the slope of
all dynamical curves tends to 1 with an intercept at
D2(t = 1) = p, which is characteristic of the blind ant
tracer dynamics.
Rescaling time and D2 as

t̃ = |pc − p|µ+µ− t (49)

D̃2 = |pc − p|µ−D2 (50)

further reveals the quality of the expected collapse,

shown in Figure 7(b). In the long time, D̃2 collapses onto
a plateau for p < pc, or a single line with slope of 1 for
p > pc. While in d = 3 and 4, a reasonably good collapse
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FIG. 7. (a) Original and (b) rescaled time and MSD for d = 3, 4, 5, and 6. The dashed-line in (b) denotes the subdiffusive

scaling of D̃ ∼ t̃2/d
′

w .

can be obtained, for d = 5 no neat collapse emerges over
the accessible dynamical regime. This relatively poor
scaling reflects the large pre-asymptotic corrections to
scaling in both the caging and the subdiffusive regimes.
For d ≥ 6, the power-law scaling of ∆2 is replaced by a
logarithmic growth and a collapse is, therefore, not ex-
pected for any ǫ < 0, as observed.

V. CONCLUSION

We have investigated the mean-square displacement of
an ant in a labyrinth on hypercubic lattices in d = 3
to 13. For d < du = 6, the expected power-law scal-
ings of µ− and d′w are observed in simulations. Although
pre-asymptotic corrections partially obfuscate the mea-
surement of d′w in d = 5, in d = 3 and 4, we manage
to obtain critical exponents that are almost an order of
magnitude more accurate than previous estimates. For

d ≥ 6, we derive the logarithmic scaling of both caging
and subdiffusion, as well as the relation between their
prefactors from the scaling analysis, which we validate
in simulations. By our explicit consideration of Bethe
lattices and random graphs, we confirm that this loga-
rithmic growth persists in the limit d → ∞, because its
prefactor is nonvanishing. The ant in a labyrinth thus
never undergoes a glass-like caging transition. Whether
that is true for off-lattice percolation processes, which
would be more akin to the Mari-Kurchan model, how-
ever, remains to be studied.
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