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Studies of random organization models of monodisperse spherical particles have shown that a
hyperuniform state is achievable when the system goes through an absorbing phase transition to a
critical state. Here we investigate to what extent hyperuniformity is preserved when the model is
generalized to particles with a size distribution and/or nonspherical shapes. We begin by examining
binary disks in two dimensions and demonstrate that their critical states are hyperuniform as two-
phase media, but not hyperuniform nor multihyperuniform as point patterns formed by the particle
centroids. We further confirm the generality of our findings by studying particles with a continuous
size distribution. Finally, to study the effect of rotational degrees of freedom, we extend our model
to noncircular particles, namely, hard rectangles with various aspect ratios, including the hard-
needle limit. Although these systems exhibit only short-range orientational order, hyperuniformity
is still preserved. Our analysis reveals that the redistribution of the “mass” of the particles rather
than the particle centroids is central to this dynamical process. The consideration of the “active
volume fraction” of generalized random organization models may help to resolve which universality
class they belong to and hence may lead to a deeper theoretical understanding of absorbing-state
models. Our results suggest that general particle systems subject to random organization can be a
robust way to fabricate a wide class of hyperuniform states of matter by tuning the structures via
different particle-size and -shape distributions. This in turn enables the creation of multifunctional
hyperuniform materials with desirable optical, transport and mechanical properties.

I. INTRODUCTION

Periodically driven colloidal suspensions were observed
to have a phase transition in terms of the reversibility
of the dynamics one decade ago [1, 2]. A simple model
named random organization [2], which is an absorbing
phase transition model [3, 4], successfully captured the
phenomenology. At around the same time, the concep-
tion of hyperuniformity, which describes the unusual sup-
pression of number fluctuations of point configurations at
large length scales, came to the fore [5]. Hyperuniform
point configurations possess a structure factor S(k) that
goes to zero as the wavenumber k vanishes, i.e.,

lim
|k|→0

S(k) = 0. (1)

A hyperuniform system in d-dimensional space R
d is

poised at a special critical point [5] in which the direct
correlation function, defined via the Ornstein-Zernike re-
lation [6], is long-ranged, which is the diametric oppo-
site behavior of traditional critical points in which the
total correlation is long-ranged. Since 2003, many differ-
ent types of disordered hyperuniform systems, including
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equilibrium and nonequilibrium varieties, have been iden-
tified; see the recent review [7]. Surprisingly, it was
only recently that Hexner and Levine showed that the
critical absorbing states associated with random organi-
zation models are actually hyperuniform [8]. They fall in
a special class of hyperuniform point configurations called
class III [7], where the structure factor scales as a power
S(k) ∼ kαN with 0 < α

N
< 1 as k → 0, and the local

number variance scales as a power-law Rd−α
N .

Many variants of such models and systems have been
studied numerically [9–13]. Moreover, experimentally,
such protocols suggest that hyperuniform state of matter
can be made in a self-organized fashion [14–16]. However,
previous numerical studies have focused on models that
are based on monodisperse spherical particles, which is
an idealization that may not be achievable nor tunable
in practice. Interestingly, it is not known whether mul-
ticomponent systems subjected to random-organization
dynamics preserves hyperuniformity, and, if so, how it is
preserved. If it is preserved, would the multicomponent
system also be “multihyperuniform” [17, 18] (each species
the system consists of is hyperuniform by its own) at the
critical point? Should we consider the system as a two-
phase medium, and apply the corresponding generaliza-
tion of hyperuniformity associated with volume-fraction
fluctuations [19]? In this case, hyperuniformity is defined
for a two-phase medium in terms of the spectral density
χ̃

V
(k) (the Fourier transform of the autocovariance of the
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FIG. 1. (a) A representative image of a configuration of a 2D binary disk system in an absorbing state with the small-to-large
particle size ratio γ = 0.5 and the relative number fraction of small disks x = 0.5. (b) Critical volume fraction φc as a function
of γ with fixed x = 0.5. The smooth curve is fit well by a polynomial of degree 4 (blue curve). Interestingly, it is seen that
there is a local minimum at γ ≈ 0.2.

phase indicator function [20]), which approaches zero as
the wavenumber |k| vanishes [21]

lim
|k|→0

χ̃
V
(k) = 0. (2)

This implies that the infinite-wavelength volume-fraction
fluctuations vanish identically. Equivalently, hyperuni-
formity condition states that the local volume-fraction
variance σ2

V
(R) decreases more rapidly than R−d for large

R [19, 21]. Another unexplored question is whether the
system would maintain hyperuniformity if nonspherical
(noncircular) particles are used, in which case the rota-
tional degree of freedom is introduced.
This paper investigates all of these extensions of ran-

dom organization models and their consequences. In Sec.
II, we briefly describe the simulation procedure that we
employ. In Sec. III, we investigate the hyperuniformity
of the critical absorbing states of two-dimensional models
of binary mixtures of circular disks as well as disks with
a size distribution. In Sec. IV, we carry out a similar
study for hard rectangles of various aspect ratios, includ-
ing the needle-like limit. Finally, in Sec. V, we discuss
our results and their consequences, including preliminary
results concerning the universality class of the critical ab-
sorbing states.

II. SIMULATION PROCEDURE

Throughout the paper, we consider the isotropic ver-
sion of the random organization model and use the vol-
ume fraction φ as a control parameter [22]. Each system
starts from a collection of randomly placed particles. At
a given instant of time t, any pair of particles that overlap
with one another are considered “active” and are given
a random kick in the next time step, while nonoverlap-
ping particles are considered “inactive” and will stay at

their current positions. The system dynamics are fol-
lowed until a steady-state is established. The eventual
number fraction of active particles fa is either zero or a
steady positive value, depending on whether φ is below
or above the critical volume fraction φc. Unless otherwise
specified, the amplitude of a kick is always randomly and
uniformly chosen between 0 and c

√

φ/N , where N is the
total number of particles and the constant c is 1/2

√
π

for disks and 1/4 for noncircular particles. The system
size used throughout this paper is 100,000 particles and
ensemble averages of 10–100 configurations at the critical
states are carried out for all of the reported results.
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FIG. 2. Critical volume fraction φc as a function of the relative
number fraction of small disks x = NS/(NS +NL) with fixed
small to large particle size ratio γ = 0.5.

III. BINARY MIXTURES OF DISKS

We begin by considering two-dimensional models of bi-
nary mixtures of overlapping disks that under random or-
ganization dynamics lead to binary hard disks at the cor-
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responding critical points. We let γ = RS/RL denote the
small-to-large particle size ratio and x = NS/(NS +NL)
denote the relative number fraction of small disks. Since
the parameter space is infinite, we restrict our study to
two regimes: one in which we vary γ at fixed x = 0.5 and
another in which we vary x at fixed γ = 0.5.
We first study the regime in which the small-disk frac-

tion is fixed at x = 0.5. We study a sequence of systems
with γ ranging from 0 to 1 and identify their critical ab-
sorbing states respectively. An example of a 2D binary
disk system in an absorbing state is shown in Fig. 1(a).
We find that the critical volume fraction φc varies non-
monotonically over the entire range of γ, as shown in
Fig. 1(b). This also holds for systems with fixed γ (see
Fig. 2), suggesting that the function φc(x, γ) is a smooth
function bounded in a small interval. Note that in Fig.
1, as γ decreases away from 1, φc decreases over a certain
wide range of γ. However when γ = 0, the small particles
become effectively points and the system behaves like a
monodisperse system again. As γ increases away from
0, φc decreases again such that there is a local minimum
at around γ = 0.2. A similar dip is observed at around
x = 0.8 in Fig. 2.
To ascertain the possible hyperuniformity exhibited by

these critical absorbing states, we first compute the struc-
ture factors associated with the particle centroids for each
species as well as for the whole system for these systems
in Fig. 3. As the size discrepancy increases (γ decreases),
the larger particles become more and more ordered, while
the smaller particles goes in the opposite direction. The
overall long-range density fluctuations increase as size dis-
crepancy increases, as evidenced by a structure factor at
the origin S(k = 0) that increases. Observe that there is
always a small kink at small wavenumbers.
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FIG. 3. Structure factors of the centers associated with large
particles SL(k), small particles SS(k) and the whole system
S(k) for different size ratios with fixed x = 0.5. Note that
as the size discrepancy increases, large particles become more
uniformly distributed while small particles become more dis-
ordered, but none of them are hyperuniform.
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FIG. 4. (a) Spectral densities of binary-disk mixtures with
different size ratios but fixed relative number fraction of small
disks x = 0.5. (b) Small-k behavior of the spectral densities
presented in (a).

Clearly, these binary systems are not hyperuniform if
they are seen as point patterns determined by the particle
centroids, as the case for monodisperse disks. However,
by applying the appropriate generalization of hyperuni-
formity to two-phase systems [19], we find that the bi-
nary systems at criticality are indeed hyperuniform. We
compute the spectral densities χ̃

V
(k) of the resulting two-

phase systems by taking the space interior to particles as
one phase and the space exterior as the other. The re-
sults are shown in Fig. 4. Notice that while the spectral
densities for different compositions vary greatly, they all
go to zero as k → 0, meaning that they are all hyperuni-
form with respect to volume-fraction fluctuations. The
scaling behavior of spectral densities, i.e., χ̃

V
(k) ∼ kαV

as k → 0, is shown in the log-log plot of the small-k re-
gion in Fig. 4(b). Interestingly, it further reveals that all
of the spectral densities go to zero with the same scaling
[23], implying that these systems have similar large scale
structures despite their different compositions.
Similarly, we find that for fixed small-to-large particle

size ratio γ = RS/RL = 0.5, although the spectral den-
sity profiles at the critical point change as the composi-
tion is varied, the spectral density profiles at the critical

points have the same small-k scaling. To better visual-
ize this point, we show in Fig. 5 the spectral densities
rescaled by their first peaks for both fixed x = 0.5 and
γ = 0.5. Note that these curves approximately collapse
onto a single curve in the small-k region, while for the
region that k > kpeak they vary greatly.
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FIG. 5. Spectral densities rescaled by their first peaks (kpeak,
χ̃

V
(kpeak)) for (a) binar-disk mixtures with fixed relative num-

ber fraction of small disks x = 0.5 and (b) fixed small-to-large
particle size ratio γ = 0.5, as well as a mixture of disks with a
continuous size distribution. Note that these curves approxi-
mately collapse onto a single curve in the small-k region.

We find the exponent α
V
= 0.42± 0.04, which is con-

sistent with previously reported values [8, 15, 22]. We
notice that the exponent α

V
, given by the least square

fit, is sensitive to the choice of fitting intervals due to the
fluctuations in the small-k region. In order to obtain a re-
liable value, we ran over 100 samples of the monodisperse
system consists of 100,000 particles, and averaged over
the results of 87 samples that finally reached absorbing
states. We find that as the fitting interval shrinks from
the first 50 k-points to the first 5 k-points, the best fitted
exponent gradually increases from 0.38 to 0.45; however,
the corresponding uncertainty increases from ±0.005 to
±0.1. To balance the bias induced by the large intervals
and the fluctuations in the small intervals, we report the
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result 0.42± 0.04, which lies in the middle of the two ex-
tremes.
The hyperuniformity of the resulting two-phase me-

dia, as quantified by the spectral density, along with
the nonhyperuniformity of particle centroids, implies that
the rearrangement of particles to suppress their volume-
fraction (“mass”) fluctuations rather than the number
fluctuations is at the heart of random organization dy-
namics. Since the former implies the latter in the
monodisperse case, this discovery could not have been
made if we had treated number fluctuations associated
with the centroids of the particles, as was done in previ-
ous studies of monodisperse spheres (circles).

To further generalize our findings, we investigate disks
with a continuous size distribution (with radius chosen
from a uniform distribution U(R, 1.5R)); see Fig. 6(a)
for a representative image. We find again that the
two-phase medium at the critical point is hyperuniform,
as shown in Fig. 6(f).

IV. NONSPHERICAL/NONCIRCULAR
PARTICLE SHAPES

Our findings thus far have revealed that the random
organization mechanism provides a robust means of gen-
erating hyperuniform systems that consist of a variety
of mixtures of spherical (circular) particles. This natu-
rally leads us to consider a wider class of particle shapes.
Specifically, we extend this model to noncircular particles
[24], namely hard rectangles of certain aspect ratios L/W
(where L is the length and W is the width of the rect-
angle), including the hard-needle limit. This allows us to
study the effect of rotational degree of freedom. For every
random kick, we also need to include a random rotation
δθ of the active particle. Here we chose δθ uniformly
from [−θ0, θ0]. We did not find fundamental differences
between different choices of θ0 except for a shift of the

critical point, and thus we use θ0 = π/2 for the ensuing
discussion.
Representative images of squares (L/W = 1) and nee-

dles (L/W = ∞) in absorbing states are shown in Fig.
6(b) and (c). For rectangles, we find that the critical
packing fraction φc decreases monotonically as the as-
pect ratio L/W increases. This is not surprising, since
in the limit L/W → ∞, the problem is reduced to the
random organization of hard needles. Since the packing
fraction is diminishing to zero in this limit, a more proper
quantity to focus on is ρcL

2, which we refer to as a criti-
cal reduced density. We plot the critical reduced density
as a function of L/W in Fig. 6(d), one can see that it
converges as L/W → ∞.
Unlike the quasi-long-range correlation found in the

XY model [25] and two-dimensional hard rods at equilib-
rium [26], the orientational correlation function

gθ(r) = 〈cos(2(θ(0)− θ(r)))〉 (3)

for hard needles decays to zero almost immediately
beyond r = L (see Fig. 6(e)). This definitively
demonstrates that only short-range orientational order is
present in these noncircular particle systems. Note that
the critical reduced density is well below the isotropic-
nematic transition density [27, 28]. Indeed, we did not
observe any nematic order in these systems.
We have also theoretically determined the orientational

correlation function based on hard needles in equilibrium
in the dilute limit. We assume the needle has unit length
and the distance between the centroids of two needles is
r. Let

θ1(x; r) = sin−1

(

r sin(x)
√

r2 − r cos(x) + 0.25

)

, (4)

θ2(x; r) = sin−1(2r sin(x)). (5)

By averaging over all of the feasible configurations of
two hard needles, the orientational correlation function
gθ(r) = 〈cos(2(θ(0)− θ(r)))〉 can be written as

gθ(r) =




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















































∫ cos−1(r)

0
sin(2θ1(x;r))+sin(2θ2(x;r))

θ1(x;r)+θ2(x;r)
dx+

∫
π

2

cos−1(r)
sin(2θ2(x;r))

θ2(x;r)
dx

π
, 0 < r ≤ 1

2
,

∫ cos−1( 1

2r )
0

sin(2θ2(x;r))−sin(2θ1(x;r))
π−θ1(x;r)+θ2(x;r)

dx+
∫ cos−1(r)

cos−1( 1

2r )
sin(2θ1(x;r))+sin(2θ2(x;r))

θ1(x;r)+θ2(x;r)
dx+

∫ sin−1( 1

2r )
cos−1(r)

sin(2θ2(x;r))
θ2(x;r)

dx

π
,

1

2
< r ≤

√
2

2
,

∫ cos−1(r)

0
sin(2θ2(x;r))−sin(2θ1(x;r))

π−θ1(x;r)+θ2(x;r)
dx

π
,

√
2

2
< r ≤ 1,

0 r > 1.
(6)

We find our formula agrees qualitatively well with our
simulations, as shown in Fig. 6(e).
The spectral densities (see Fig. 6(f)) show that for

these noncircular particles, hyperuniformity is still pre-
served. For hard needles, it is crucial to employ the spec-
tral density for interface to obtain the result [19, 29].
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FIG. 6. (a) A representative image of a configuration of a 2D disk system with continuous size distribution in an absorbing
state. (b) A representative plot of a configuration of a 2D square system in an absorbing state. (c) A representative image of
a configuration of a 2D hard-needle system in an absorbing state. (d) The critical reduced density ρcL

2 as a function of the
aspect ratio L/W for rectangles, L/W = 1 corresponds to the image in (b) and L/W = ∞ corresponds to the image in (c).
(e) Simulated and predicted orientational correlation function gθ(r) as well as their corresponding derivatives for hard-needle
systems at low densities, notice that the second derivative has a discontinuity at r = L/2 for both ones. (f) Comparison of
spectral densities rescaled by their first peaks (kpeak, χ̃V

(kpeak)) for corresponding configurations in (a) (Mixture of disks), (b)
(L/W = 1) and (c) (L/W = ∞) near the critical point.

Interestingly, as the aspect ratio L/W increases, one can
clearly see the destruction of short-range order from the
increasingly diffusive tails in the spectral densities. This
can also be seen from the damped oscillations in the struc-
ture factors of the centroids for the particles (see Fig. 7)
[30]. The reason is that less symmetric particles would
broaden the distribution of short-range particle-particle
spacing. However, as one can see from the Fig. 6(f), de-
spite the fact that the spectral density profiles appear to
be quite different from one another, they all exhibit the
same small-k behavior [31].
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FIG. 7. Comparison of structure factors for configurations of
monodisperse particles with different shapes near their corre-
sponding critical points under the random organization dy-
namics.
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V. DISCUSSION

The results of our investigation expand our under-
standing of random organization as a model for absorbing
phase transitions of continuous media by going beyond
the previously studied monodisperse systems. Our anal-
ysis reveals that the redistribution of the “mass” of the
particles rather than the particle centroids is central to
this dynamical process.
The more general treatment of the systems as two-

phase media leads us to the proposition that the “active
volume fraction” va (i.e., the common volume between
overlapping particles) is the appropriate general quantity
to examine rather than the number fraction of active par-
ticles’ fa. The use of va may help to resolve the undeter-
mined universality class of the absorbing phase transition
exhibited by the random organization model [2, 8, 22].
We show some preliminary results that support this pos-
sibility. We have computed the final fa as a function of
(φ− φc)/φc for a few systems in Fig. 8(a). We find that
the critical exponent β ≃ 0.56 ± 0.02 (fa ∝ (φ − φc)

β),
which is close to the value for directed percolation in
2+1 dimensions [32], as suggested by previous work [22].
However, although for different mixtures, the values of fa
have approximately the same scaling, those curves never
collapse onto a single one. Interestingly, if the number
fraction of active particles is replaced by active volume
fraction va, then the corresponding curves collapse onto
a single one, as one can see in Fig. 8(b). This implies
that the active volume fraction is a more appropriate
quantity to employ and investigate. Moreover, by using
the active volume fraction, we find a different exponent
β′ ≃ 0.68±0.08, which is closer to the value of the univer-
sality class of conserved directed percolation [32]. This
agreement and the fact that the particle number/mass
is conserved suggest that conserved directed percolation
may be the correct universality class to which random or-
ganization models belong. This remains an outstanding
question for future research.

Our work also demonstrates that random organization
provides a robust and versatile means of generating a
wide class of disordered hyperuniform two-phase media.
This includes a broad spectrum of mixtures of particles
(discrete and continuous) of circular or noncircular
shape. Practically, our findings imply that hyperuniform
materials can be made in the laboratory without the
need to use monodisperse particles, which eases the
preparation process. Moreover, different structures can
be made in the laboratory by changing the composition
of periodically driven colloids via their size and shape
distributions. These structures will maintain hyperuni-
formity in the small-k region, while functional form of
the spectral densities away from the origin can vary

widely. Note the spectral density (or equivalently its
corresponding direct-space two-point correlation function
[20]) controls a variety of different effective properties
of two-phase media, including the effective dielectric
tensor [33], fluid permeability [34], mean survival time
[35], structural-color characteristics [36], and mechanical
properties [37], among other quantities. Thus, the
tunability of the functional form of the spectral density
and associated structures enables the fabrication of
hyperuniform dispersions by self-organization that fall
into the class of multifunctional materials that has been
recently studied [38].
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FIG. 8. (a) The number fraction of active particles fa and
(b) the rescaled active volume fraction va as functions of the
scaled volume fractions for different small to large particle size
ratios γ with x = 0.5.
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