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We consider a finite-time Otto engine operating on a quantum harmonic oscillator and driven
by shortcut-to-adiabaticity (STA) techniques to speed up its cycle. We study its efficiency and
power when internal friction, time-averaged work, and work fluctuations are used as quantitative
figures of merit, showing that time-averaged efficiency and power are useful cost functions for the
characterization of the performance of the engine. We then use the minimum allowed time for validity
of STA protocol relation to establish a physically relevant bound to the efficiency at maximum power
of the STA-driven cycle.

I. INTRODUCTION

Heat engines were the fulcrum of the first industrial
revolution and, remarkably, still play a major role in to-
day’s technological landscape, all the way down to the
nanoscale. However, at such length-scale, quantum fluc-
tuations and effects become relevant and their influences
on the performance of thermodynamic devices should be
treated cum grano salis [1].

Recently, this realisation has led to the substantive de-
velopment of a quantum-based framework for the ther-
modynamics of non-equilibrium processes and systems.
The pathway towards the construction of a fully oper-
ative quantum engine has been paved by the demon-
stration of the first single-particle heat engine based on
trapped-ion technology [2]. The perspectives for full-
fledged quantum thermo-machines are promising.

The efficiency of an engine, defined as the ratio of en-
ergy output to energy input, is maximum for adiabatic
modified processes [3–5]. Such maximum performance is
however associated with vanishing power that hinders its
any practical purposes [6]. A major challenge is to design
energy efficient thermal machines that deliver more out-
put for the same input, without sacrificing power [7]. One
of the ways to achieve this goal is to employ a shortcut-
to-adiabaticity (STA) approach [8], where a perfectly adi-
abatic process is mimicked by the use of a suitably ar-
ranged fast manipulation of the system, designed in a way
to drive it towards the desired physical configuration and
suppress any final-state excitation that might have been
induced by the finite-time dynamics. Different STA tech-
niques have been developed, from counterdiabatic driv-
ing (also known as transitionless quantum driving) [9–12]
to local counterdiabatic driving [13–15], from methods
based on the use of dynamical invariants [16], to the so-
called fast-forward technique [17, 18]. The effectiveness
of such approaches has been addressed in a significant
number of experimental endeavours [19–27], which have
demonstrated the viability of STA-based approaches to
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quantum dynamical control. Remarkably, recent theo-
retical studies have shown that STA methods may be
employed to enhance the performance of thermal heat
engines [28–35].

Despite such promising developments, the energetic
cost of shortcut driving of STA techniques and their im-
pact in the performance of quantum heat engines are not
yet fully understood [36]. Recently, the cost of achieving
the desired adiabatic state has been related to the time-
energy uncertainty relation [37–41] and time-averaged ex-
cess of the work fluctuations [42, 43]. Another approach
that has been put forward to quantify the cost of STA
approaches is based on the quantification of the energy
invested to operate the controller and the system [44].

A specific scenario is of particular relevance in this con-
text, namely the performance/efficiency of heat engines
optimized to yield maximum power. As a significant
case, it is worth considering the case of an Otto cycle,
whose efficiency at maximum power in the adiabatic limit
has been shown to corresponds to the so-called Curzon-
Ahlborn efficiency [45–48]

ηCA = 1−
√
βC/βH ,

where βC and βH are the inverse temperature of a cold
and a hot heat reservoir, respectively. This expression is
not universal and depends on the assumption that the
cycle time is constant. Thus, an interesting point is to
understand the bounds imposed on the efficiency of en-
gines such as the Otto one when operating at maximum
power and driven by STA-based protocols.

Motivated by such observation and the somehow
paradigmatic nature of the Otto cycle, in this paper we
analyze the performance of a STA quantum Otto heat en-
gine that uses a harmonic system as its working medium.
We calculate the internal friction, time-averaged work,
and work fluctuations to illustrate the energy cost of
driving it through a STA technique. We further show
the time-averaged efficiency and power of the engine are
faithful and meaningful criteria to evaluate the perfor-
mance of a STA-based engine. In addition, the bound on
the efficiency at maximum power of STA Otto engine is
derived considering the time imposed by the energy-time
uncertainty relation on the system evolution during the
STA protocol.
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FIG. 1: Diagram of a quantum Otto cycle. The thermo-
dynamic cycle consists of two isentropic (compression and
expansion steps 1 and 3) and two isochoric processes (heat-
ing and cooling steps 2 and 3). Here, 〈Wj〉 (j = 1, 3) and
〈Qj〉 (j = 2, 4) stand for the average work done and heat
exchanged during the relevant stroke of the cycle. The red-
blue-colored areas represent the wave-function of the oscilla-
tor embodying the working medium of the cycle.

The remainder of this paper is organized as follows. In
Sec. II we illustrate the non-equilibrium thermodynamics
of a quantum Otto cycle, providing explicit formulae for
work done, heat exchanged, and entropy produced dur-
ing the relevant strokes of the cycle. Sec. III is dedicated
to the illustration of a STA-driven version of the cycle
and the effect that the drive has on relevant thermody-
namic quantities. In addition, we quantify the cost of
such quantum control strategy using a number of phys-
ically different figures of merit, including work friction
and time-averaged work variance. In Sec. IV we set phys-
ically rigorous bounds on the efficiency of the STA-driven
cycle run at maximum power, showing the effectiveness
of the quantum control strategy in achieving values of
power and efficiency close to the adiabatic ones. Finally,
in Sec. V we draw our conclusions and set up the path
to further investigations.

II. QUANTUM OTTO CYCLE

In a quantum Otto heat engine, the working medium
undergoes a four-stroke cycle by being alternatively cou-
pled to two baths at different temperatures. The Hamil-
tonian of the working medium H(λt) depends on time-
dependent work parameter λt that determines the overall
evolution of the medium. As shown in Fig. 1, the cycle
is made of the following steps:

(i) An isentropic compression (branch AB of the cy-
cle), during which the working medium is isolated
from the environment and its work parameter λt is
increased from λ1 to λ2 in a time τ1. As a result of
this transformation, work 〈W1〉 = 〈H〉B − 〈H〉A is

performed on the medium.

(ii) A hot isochore (branch BC of the cycle), during
which heat 〈Q2〉 = 〈H〉C − 〈H〉B is transferred –
in a time τ2 – from the hot bath at inverse tem-
perature β2 to the working medium. During such
process, the working parameter takes the constant
value λ2.

(iii) An isentropic expansion (branch CD of the cycle)
where the work parameter is decreased – in a time
τ3 – from value λ2 to λ1. During such transforma-
tion, an amount of work 〈W3〉 = 〈H〉D − 〈H〉C is
extracted from the medium.

(iv) A cold isochore (branch DA of the cycle) where
heat 〈Q4〉 = 〈H〉A−〈H〉D is transferred – in a time
τ4 – from the working medium to the cold bath at
inverse temperature β1 > β2. The work parameter
is again kept constant at value λ1.

The control parameters are the time-length of the dif-
ferent branches, the temperatures of the baths, and the
modulated frequency. We will assume, as it is custom-
ary [36, 47–50], that the thermalization times τ2,4 are
much shorter than the compression/expansion times τ1,3.
The total cycle time is then τcycle = τ1+τ3 = 2τ for equal
step duration.

For an engine, the produced work is negative, 〈W1〉+
〈W3〉 < 0, and the absorbed heat is positive, 〈Q2〉 >
0. The two important quantities characterizing thermal
machines are efficiency and power. The total change in
entropy for one complete cycle reads

∆Stot = −β2 〈Q2〉 − β1 〈Q4〉 ≥ 0, (1)

where we used the fact that the entropy change during
the isentropic processes AB and CD are zero. From the
first law of thermodynamics we have

−(〈W1〉+ 〈W3〉) = 〈Q2〉+ 〈Q4〉 . (2)

In light of Eqs. (1) and (2), the efficiency of the cycle can
be written as

ηO = −〈W1〉+ 〈W3〉
〈Q2〉

≤ 1− β2

β1
:= ηC . (3)

That is, the efficiency is always less than Carnot efficiency
ηC = 1−β2/β1 and the equality holds only when β2/β1 =
λ1/λ2. On the other hand, the power of the engine is
given by the ratio of the work done to the time taken for
one complete cycle, i.e.

P = −〈W1〉+ 〈W3〉
τcycle

. (4)

As the compression and expansion steps consist of both
reversible and irreversible processes, the total work is
〈Wtot〉 = 〈Wad〉 + 〈Wirr〉. The first term corresponds to
the reversible (quasi-stationary) part of the transforma-
tion undergone by the working medium, while the second
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quantifies the inner friction of the process. The latter
is connected to the quantum relative entropy between
the density operator resulting from the non-equilibrium
path and that associated with the hypothetical adiabatic
one [30, 51, 52]. Explicitly, the work dissipated irre-
versibly along the non-adiabatic path reads

〈Wirr〉 = S(ρt||ρadt )/βt, (5)

where S(ρ||σ) = tr {ρ ln ρ− ρ lnσ} is the quantum rel-
ative entropy, ρt is the instantaneous state at time t,
and ρadt is the corresponding adiabatic state. Further de-
tails on inner friction and irreversibility can be found in
Refs. [53–55].

Here we consider when the working medium is a time-
dependent quantum harmonic oscillator. The corre-
sponding Hamiltonian is of the standard form, H0(ωt) =
p2/(2m) +mω2

t x
2/2, where x and p are the position and

momentum operators of an oscillator of mass m.
During the first and third strokes (compression and

expansion), the quantum oscillator is isolated and only
work is performed by changing the frequency in time.
As the dynamic is unitary, the Schrödinger equation for
the parametric harmonic oscillator can be solved exactly
for any given frequency modulation [56, 57]. The corre-
sponding work values are given by [48]

〈W1〉 =
~ω1

2
(Q∗1/x− 1) coth

(
~β1ω1

2

)
,

〈W3〉 =
~ω1

2
(Q∗3 − 1/x) coth

(
~β2ω2

2

)
,

(6)

where we have introduced the frequency ratio x = ω1/ω2

and the dimensionless adiabaticity parameter Q∗i (i =
1, 3) [58]. The latter is defined as the ratio of the instan-
taneous and corresponding adiabatic mean energy, and
takes unit value for any adiabatic process [57]. Its ex-
plicit expression for any frequency modulation ωt may
be found in Refs. [56, 57]. On the other hand, the heat
exchanged with the reservoirs during the thermalization
step (the hot isochoric process) reads

〈Q2〉 =
~ω2

2

[
coth

(
~β2ω2

2

)
−Q∗1 coth

(
~β1ω1

2

)]
. (7)

The exact engine efficiency and power read as follows
[48]

ηO = 1− x
(
xQ∗3 〈H〉C − 〈H〉A
x 〈H〉C −Q∗1〈H〉A

)
, (8)

P = [〈H〉A (1−Q∗1/x) + (1− xQ∗3) 〈H〉C ] /τcycle, (9)

where 〈H〉A = ~ω1 coth(~β1ω1/2)/2 and 〈H〉C =
~ω2 coth(~β2ω2/2)/2. These expressions are exact and
valid at arbitrary temperatures, frequencies and time
length. In the limit of slow driving (i.e. when τcycle
becomes very large and the cycle tends towards adia-
baticity), during the isentropic processes Q∗i = 1, and

the engine efficiency reads ηAD
O = 1− x, while the power

vanishes. However, it has been shown that the optimal
performance corresponds to an adiabatic version of the
first and third stroke of the engine cycle [47, 48].

III. SHORTCUT-TO-ADIABATICITY ENGINE

The dynamics of the quantum Otto engine may be sped
up with the help of STA techniques applied to the com-
pression and expansion steps. STA protocols suppress
the unwanted nonadiabatic transitions, thereby reducing
the associated production of entropy [47, 48, 59, 60]. The
effective Hamiltonian of the oscillator is then of the form

Heff(t) = H0(t) +Hi
STA(t), (10)

where Hi
STA(t) is the STA driving Hamiltonian and

i = (1, 3) indicates the respective compression/expansion
step. The STA protocol satisfies boundary conditions
that ensure 〈Hi

STA(0)〉 = 〈Hi
STA(τ)〉 = 0. These corre-

spond to requesting

ω(0) = ωi, ω̇(0) = ω̈(0) = 0,
ω(τ) = ωf , ω̇(τ) = ω̈(τ) = 0,

(11)

where ωi,f = ω1,2 denote the respective initial and
final frequencies of the compression/expansion steps.
Eqs. (11) are satisfied, for instance, by the following func-
tional forms [13–16, 28, 61]

ω(1)(t) = ωi + 10δs3 − 15δs4 + 6δs5,

ω(2)(t) = ωi + (3s2 − 2s3)δ,

ω(3)(t) = ωi
√

[(a2 + 1)− (a2 − 1) cos(πs)]/2,

(12)

where s = t/τ , a = ωf/ωi and δ = ωf − ωi.
Let us consider when the compression/expansion steps

are driven by a suitable STA approach. Here, we em-
ployed the counterdiabatic driving (transitionless quan-
tum driving) whose goal is to find a Hamiltonian HCD for
which the adiabatic approximation to the original Hamil-
tonian H0 is the exact solution of the time-dependent
Schrödinger equation for HCD. The explicit form of HCD

is [11, 62]

HCD(t) = H0(t) + i~
∑
n

(|∂tn〉〈n| − 〈n|∂tn〉 |n〉〈n|)

= H0(t) +HCD
STA(t), (13)

where |n〉 ≡ |n(t)〉 denotes the nth eigenstate of the orig-
inal Hamiltonian H0(t), |∂tn〉 ≡ |∂tn(t)〉 and HCD

STA(t)
is the STA driving Hamiltonian. For a time-dependent
harmonic oscillator, the latter is given by [8, 62]

HCD
STA(t) = − ω̇t

4ωt
(xp+ px) =

i~ω̇t
4ωt

(a2
t − a

†2
t ), (14)

where we used the notation shortcut ωt ≡ ω(t) and in-
troduced the standard bosonic annihilation and creation
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operators a|n〉 =
√
n|n − 1〉 and a†|n〉 =

√
n+ 1|n + 1〉.

The Hamiltonian in Eq. (13) is quadratic in x and p, so
it may be considered describing a generalized harmonic
oscillator with a non-local operator [16, 62, 63]

HCD(t) =
p2

2m
+
mω2

t x
2

2
− ω̇t

4ωt
(xp+ px). (15)

The instantaneous eigenenergies of the Hamiltonian
HCD(t) are given by [34, 64]

En = 〈HCD(t)〉 = ~ωtQ∗CD (n+ 1/2) , (16)

where Q∗CD = 1/
√

1− (ω̇2
t /4ω

4
t ) is the STA protocol adi-

abaticity parameter and n = 1/(exp(βi~ωi) − 1) is the
occupation quantum number. Here the label i stands for
the initial frequency and inverse temperature. The mean
average of the STA control at any time is [34]〈

HCD
STA(t)

〉
=
ωt
ωi

(Q∗CD − 1) 〈H(0)〉 , (17)

where we used 〈H(0)〉 = ~ωi coth(β~ωi/2)/2. The adi-
abaticity parameter during the compression process for
the three protocols in Eq. (12) are plotted in Fig. 2.

A. Energy cost of shorcut driving

As STAs are designed so that the initial and final state
corresponds to the adiabatic ones, one might naively
think that their implementation is actually cost-free. Un-
fortunately, this is not the case, and the quantification of
the energetic cost associated with STA driving has been
investigated, recently, using various approaches.
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FIG. 2: The adiabaticity parameter for different time-
dependent frequency protocol. The blue dashed line is for
ω(1)(t), the green dotted line is for ω(2)(t) and the red dotted-

dashed line is for ω(3)(t) in Eq. (12). The orange solid curve is
the time-dependent frequency control ωt = ωi + (ωf −ωi)t/τ ,
which does not satisfy the STA boundary conditions. The
parameters used in all the curves shown in this plot are
ωi/ωf = 0.35 and τ = 3 (in units of 1/ωf ) .
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5 with
the parameters ωi/ωf = 0.35, β2/β1 = 0.1 and ~ = 1.

First, based on an optimal control approach [65], the
time average of the difference between the mean work
produced using the STA-modified and original Hamilto-
nian can be used as a quantifier. Quantitatively, we have

〈δW 〉τ =
1

τ

∫ τ

0

δWdt, (18)

where we have introduced the work difference δW ≡〈
HCD
STA(t)

〉
= 〈HCD(t)〉−〈H0(t)〉 . Interestingly, this cost

parameter corresponds to the time-averaged STA con-
trol Hamiltonian use when analysing the efficiency of the
protocol as well as the range of validity of the control
technique [30, 33]. Explicitly, we have

〈δW 〉τ =
〈
HCD
STA(t)

〉
τ
. (19)

The second approach employs the time-average of the
difference between the values of the variance of the work
distribution corresponding to the effective Hamiltonian
and the adiabatic counterpart of the original Hamilto-
nian [42]. It reads

〈δ∆W 〉τ =
1

τ

∫ τ

0

δ(∆W )dt (20)

where δ(∆W )2 =
〈
∆WCD(t)2

〉
−
〈
∆WAD(t)2

〉
and

〈δ∆W 〉 =
√
δ(∆W )2. This cost functional is shown to

relate with quantum speed limit of the evolution and al-
legedly gives a tighter bound [42].

Finally, to understand the inner friction of the driving
we consider the difference between the actual (nonadia-
batic) work and the adiabatic one. That is

Wfric = 〈W 〉NA − 〈W 〉AD = 〈Ht〉 − 〈Ht〉AD , (21)

where 〈W 〉NA is the exact work calculated from the work-
ing medium dynamics at any given time.
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In Fig. 3 we show the time-averaged work difference
and variance for a harmonic oscillator with a time-
dependent frequency undergoing compression. We com-
pare the result with the exact work friction at any given
time, and the adiabatic work. In the example that fol-
lows, we show that the first definition, 〈δW 〉τ , of STA
protocol vanishes at the point where the traditional fric-
tion is zero whereas the second definition is remains finite.
This shows that the time-averaged work difference defi-
nition is the actual energetic cost of STA driven protocol
and should be importance in thermodynamics analysis
than the energy variance approach. Further analysis,
of energy cost of the protocol ωt = ωi + (ωf − ωi)t/τ
which does not satisfy the STA boundary conditions
ω̇t = ω̈t = 0 gives some finite term at t = τ . This eluci-
dates how evaluating the cost in the sense of a two-point
energy measurement at the initial and final stages of the
protocol does not give us meaningful results.

B. Engine performance

Currently, there is no consensus on how to evaluate the
cost of STA-based driving when considering the engine
performance. This is mainly because of the boundary
condition imposed by STA, [cf. Eq. (11)], which leads to
vanishing of the adiabaticity parameter at the beginning
and the final state of the driving protocol. An approach
adopted so far is taking the cost required for the control
pulse as an additional energy input in efficiency [33, 34]
and which should be subtracted from the output power of
the engine [35]. Therefore, the efficiency of a STA engine
reads [33]

ηSTA =
energy output

energy input
= −

∑
j=0,1 〈W2j+1〉STA

〈Q2〉+
∑
j=0,1〈H

2j+1
STA 〉τ

,

(22)
where 〈Wi〉STA = 〈HCD(t)〉 − 〈H(0)〉 is correspond-

ing mean work of the STA protocol and
〈
Hi

STA

〉
τ

=

(1/τ)
∫ τ

0
dt
〈
Hi

STA(t)
〉

is the time-average of the mean
STA driving term. Eq. (22) takes the energetic cost of
the STA driving along the compression/expansion steps
into account. It reduces to the adiabatic efficiency ηAD

in the absence of these two contributions as it assumes
that 〈WSTA〉 = 〈WAD〉.

The power produced by the STA-driven cycle is on the
other hand given by the expression [35]

PSTA = − 1

τcycle

∑
j=0,1

(
〈W2j+1〉STA − 〈H

2j+1
STA 〉τ

)
. (23)

At the initial and final time, the STA protocol ensures
adiabatic work output, 〈Wi〉STA = 〈Wi〉AD (i = 1, 3).
It has been shown that in a shorter cycle duration τcycle,
the superadiabatic power PSTA is always greater than the
nonadiabatic power PNA = −(〈W1〉+ 〈W3〉)/τcycle [33].

The STA technique is reminiscent of a periodic power
signal which is zero at the beginning and the end of one

complete cycle. The actual power of the cycle is thus
customarily defined as the time-averaged one [66]. That
is, despite the instantaneous performance of the STA en-
gine seems the same as that of the adiabatic engine, their
time-averaged performance is different. Thus, we define
the time-averaged efficiency and power as

〈ηSTA〉τ = −
〈
−〈W1〉STA + 〈W3〉STA

〈Q2〉

〉
τ

,

〈PSTA〉τ = −
〈〈W1〉STA + 〈W3〉STA〉τ

τcycle
.

(24)

Such quantities are presented in Fig. 4, where we ob-
serve that the numerical evaluation of the time-averaged
performance (efficiency and power) corresponds to the
definitions taking the cost of STA into account. The
little discrepancy/deviation in the efficiency plot is a re-
sult of taking the condition Q∗ = 1 in the input heat
〈Q2〉. Thus, taking the time-averaged of the exact effi-
ciency and power for the Otto engine when considering
the finite-time protocol gives the true performance at any
given time.

IV. BOUNDS ON PERFORMANCE:
EFFICIENCY AT MAXIMUM POWER

The efficiency at maximum power is a very informative
figure of merit. Standard thermodynamic-cycle analy-
sis is based on the concept of equilibrium, which implies
quasi-static transformations and thus vanishingly small
power outputs. Non-equilibrium thermodynamics, on the
other hand, explicitly accounts for finite-time transfor-
mations that deliver a non-null power output, at the ex-
pense of the efficiency of the cycle. The idea is usu-
ally to incorporate the time dependence of heat trans-
fer in the analysis of heat engine or to follow the engi-
neers approach to calculate the so-called “second-law or
exergy efficiency” [5]. However, for an Otto engine cy-
cle, this approach leads to the assumption of constant
(although finite) cycle time, thereby treating power as
work [36, 46, 48] and leading to the efficiency at maxi-

mum power/work, η∗O = 1−
√
β2/β1 ≡ ηCA in the high-

temperature reservoirs limit. This is nothing else but the
Curzon-Alhborn efficiency [45].

When considering time-dependent transformation, ad-
ditional constraints might have to be considered that
could affect efficiency at optimal values of power. In
our case, the STA-driven counterdiabatic protocol dy-
namics is valid only when ω2

t (1 − ω̇2
t )/(4ω4

t ) > 0, which
has to be enforced in order to avoid the inversion of
the harmonic trap [34, 64]. For simplicity, we assume
that the non-adiabatic excitations vanish at the end of
the STA protocol, which correspond to

〈
Hi

STA

〉
τ

= 0
and Q∗ = 1. We further assume that the time for iso-
choric processes are negligible. Then, the total time
can be written as τ = τ1 + τ3 ' 1/ω1 + 1/ω2, where
we used the condition that the final time and final fre-
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FIG. 4: Power [(a)] and efficiency [(b)] of the engine as a function of driving time τ (in units of 1/ωf ). The black solid
line is the adiabatic power [efficiency] when Q∗i = 1 in Eqs. (8) and (9), while the blue dotted curve shows the nonadiabatic
scenario without the STA Hamiltonian, cf. Eqs. (8) and (9). The red dotted curve shows the performance based on STA-driving
(including the energetic cost of running the STA protocol), cf. Eqs. (22) and (23). Finally, the green dotted curve is the STA-
driven performance based on time-averages [cf. Eqs. (24)]. In our numerical evaluations, we have used the parameters ωi/ωf =
0.35, β2/β1 = 0.1, and ~ = 1. (c) Efficiency at maximum power as a function of temperature ratio. We show the efficiency at

maximum power of STA protocol η∗STA (red dotted) and compare it to the Curzon-Alhborn efficiency ηCA = 1−
√
β2/β1 (blue

dashed). The inset shows their difference ∆η∗ = η∗STA − ηCA.

quency are inversely related, i.e tf = 1/ωf . To com-
pute efficiency at maximum power that is valid in both
classical and semi-classical limits, we employ the power
P = −(〈W1〉AD + 〈W3〉AD)/τ . By maximizing the re-
sulting expression with respect to x and fixing initial fre-
quency ω1 and temperatures, we find the optimal ratio

x =
γβ +

√
2γβ(1 + γβ)

2 + γβ
, (25)

where γβ = 〈H〉A / 〈H〉C . The corresponding efficiency
at maximum power reads

η∗STA = 1−
γβ +

√
4γβ(1 + γβ)

2 + γβ
. (26)

This expression is valid for any cold-reservoir temper-
ature and for both reservoirs in the high-temperature
limit. In Fig. 4 (c), we show η∗STA and compare it to
the Curzon-Ahlborn efficiency that will result for fixed
time [36, 47, 48] as the temperature ratio β2/β1 varies.
Clearly, η∗STA is very close to such bound, showing the
effectiveness of the constrained STA approach to deliver
high-efficiency cycles outputting maximum power. The
small discrepancy between the two quantities is due to
the fact that the Curzon-Alhborn efficiency of the Otto
engine was derived based solely on work output [46–48].
Thus, including the finite-time duration of the work (isen-
tropic) branch in the performance at maximum power
analysis of the engine gives the actual bound. This con-
tributes to the discussion of non-universality of the effi-
ciency at maximum power of irriversible heat engines.

V. CONCLUSIONS

We have performed a detailed study of a STA Otto
heat engine showing that the nonadiabatic transition be-
tween the initial and final state of the engine depends on
the chosen driving protocol. We have calculated inter-
nal friction, time-averaged work, and work fluctuations
of the heat engine with the aim of understanding the
energetic cost of an STA driving. We have shown that
the STA-based heat engine performance are better com-
puted by the time-averaged efficiency and power. Fur-
thermore, we have derived the bound on the efficiency at
maximum power of the STA-based heat engine based on
the minimum allowed time for validity of STA protocol.
Our study provides a suitable and rigorous route to an-
alyze the performance of STA Otto engine for any kind
of driving protocol, which will hopefully stimulate the
development of STA for thermodynamics applications.
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