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We report on a non-equilibrium phase of matter, the minimally disordered crystal phase, which we
find exists between the maximally amorphous glasses and the ideal crystal. Even though these near
crystals appear highly ordered, they display glassy and jamming features akin to those observed in
amorphous solids. Structurally, they exhibit a power-law scaling in their probability distribution of
weak forces and small interparticle gaps as well as a flat density of vibrational states. Dynamically,
they display anomalous aging above a characteristic pressure. Quantitatively this disordered crys-
tal phase has much in common with the Gardner-like phase seen in maximally disordered solids.
Near crystals should be amenable to experimental realizations in commercially-available particulate
systems and are to be indispensable in verifying the theory of amorphous materials.

Introduction.– Supercooling a liquid to form a glass
and crunching grains until they jam both lead to solids
that are amorphous. Because the two protocols are far
out of equilibrium, however, their end products need not
have much in common. Twenty years ago, Liu and Nagel
nonetheless postulated the existence of a deep connection
between them [1], and a formal relationship has recently
been uncovered for certain models [2]. At the crux of
the latter lies the Gardner transition [3, 4], which for
a mean-field model of hard spheres is intermediate be-
tween glass formation and jamming [2, 5–7]. At this
transition, the phase space of a mechanically stable glass
basin splits into an intricate and hierarchical arrange-
ment of marginally stable sub-basins; jamming occurs
deep within this marginal phase. Remarkably, mean-
field theory (MFT) further predicts materials features
that are robustly universal down to dimension d = 2 [2].
For instance, amorphous packings of hard spheres ex-
hibit distinctive power-law distributed small interparti-
cle gaps and weak contact forces with exponents that
are numerically consistent with MFT [2, 8–12]. A simi-
larly stunning agreement is observed for the distribution
of vibrational excitations at and around these jammed
configurations [13–16].

While the description of crystalline solids has long been
well established and that of amorphous solids is under in-
creasingly strong theoretical control, a large conceptual
gap persists in between these two materials poles. Var-
ious proposals to reconcile them have recently emerged.
Goodrich et al. found that athermal crystals with dis-
crete disorder, such as vacancies and interstitials, display
structural and rheological properties similar to those of
amorphous solids [17]. Such crystals also undergo a rela-
tively sharp amorphization transition as the particle size
dispersity (polydispersity) increases [18, 19]. For jammed
packings specifically, Tong et al. proposed that a disor-
dered crystal phase underlies distinct scaling exponents
for certain rheological quantities, such as the ratio of the
shear to bulk modulus [19]. The microscopic origin of
these anomalies in slightly disordered crystals, however,

remains far from understood.
In this Letter, we investigate the out-of-equilibrium

physics of crystals of weakly polydisperse hard particles[?
]. Disorder is introduced continuously in otherwise per-
fect crystals of hard spheres by scaling particle radii by
a factor drawn from a log-normal distribution of unit
mean and standard deviation s [20]. The chosen crystal
symmetry, HS1 [21] ([22, Sect. II]), contains no parti-
cle with coplanar neighbors – unlike face-centered cubic
(FCC) and many other crystal symmetries – hence the
role of low-energy buckling excitations is minimal [12].
We study both the relaxation dynamics of finite-pressure
crystals and the structure of infinite-pressure jammed
packings. Remarkably, even though these solids appear
crystalline (Fig. 1), we find that their structure and dy-
namics exhibit most of the glassy properties of amor-
phous solids, in line with the MFT predictions for high-
density amorphous solids.
Glassy Dynamics.– We probe the dynamics of 300−400

copies of systems with N = 2000 particles initialized near
the melting density of the HS1 lattice and annealed fol-
lowing a standard protocol [6]. First, we run isothermal-
isobaric, constant NPT , Monte Carlo (MC) simulations
using a relatively high pressure quench, until a target
packing fraction, ϕ, is reached. Isothermal-isochoric,
constant NV T , Monte Carlo simulations are then run
using only local particle displacements ([22, Sect. IIIA]).
The roughness of the caging landscape is ascertained by
the long-time behavior of the mean-squared displacement
of the particle positions, ~r,

∆(t, tw) =
1

N

N∑
i=1

〈
|~ri(t+ tw)− ~ri(tw)|2

〉
, (1)

where tw is the time (measured in sweeps of N MC
steps) after reaching a target ϕ. For a simple, mechani-
cally stable thermal solid, ∆(t, tw) is expected to plateau
quickly because all particles can efficiently sample their
local cage. For a marginally stable solid, by contrast,
∆(t, tw) is expected to exhibit significant aging, a reflec-
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FIG. 1. (a) Jammed HS1 packings with s = 0.0, 0.01 and 0.03,
from left to right. Color encodes the particle diameter, σi.
Even the most disordered system appears crystalline. Note
that the unit cell of a perfect HS1 crystal comprises four larger
particles and twelve smaller particles, which for a diameter
ratio of 1 : 0.5147 achieves close packing, ϕcp = 0.7573. (b)
Schematic of a Gardner-like scenario for polydisperse crystals.
While a monodisperse packing has but one well-separated
densest packing, the number of nearby optima in a polydis-
perse system can be large. Beyond a threshold pressure, PG,
constraints on that optimum start to lock in. A particle (out-
lined in black) is free to collide with all its nearest neighbors
at low pressures, but is forced to have one or another set of
contacts (green stars) as pressure increases beyond PG.

tion of the difficulty of sampling the complex caging land-
scape associated with this regime [6]. In the latter case,
the long-time limit of ∆(t, tw) is computationally out of
reach, even for the relatively small systems studied here.
We thus also compute the distance between two system
copies, A and B,

∆AB =
1

N

N∑
i=1

〈
|~rAi (t)− ~rBi (t)|2

〉
,∀t (2)

with the same ϕ and quenched disorder, but evolved from
different stochastic trajectories, such that ∆AB = ∆(t→
∞, tw).

Figure 2a shows that aging, which is undetectable at
low pressures, first appears and then becomes increas-
ingly notable as pressure increases. The early plateau of
∆(t, tw) correspondingly splits from ∆AB (Fig. 2b [22,

Sect. IIIA]). As in Ref. 6, the skewness, ΓAB of the dis-
tribution of ∆AB for different initial configurations also
peaks in that regime, which provides a clear definition
of ϕG (Fig. 2c). Both effects are akin to the anoma-
lous phenomenology observed in glassy hard spheres at
high pressure [6]. Remarkably, as s decreases, the on-
set of aging and ϕG, are both pushed to increasingly
larger pressures (Fig. 2d), while the equation of state
is barely affected ([22, Sect. IIIA]). Microscopically, the
Gardner-like regime appears when the typical interparti-
cle spacing, which scales as 1/P , becomes comparable to
the polydispersity, i.e., PG ∼ 1/s (Fig. 2d). The anoma-
lous regime thus only disappears for a perfect crystal,
i.e., for s → 0. This effect is reminiscent of the Gardner
regime of amorphous hard spheres, which also steadily
shrinks as the ideal glass limit is approached [2]. Al-
though computer simulations, as considered here, do not
cover the thermodynamic limit to determine whether a
true phase transition takes place, our observations are
consistent with the Gardner-like regime observed in nu-
merical studies of hard-sphere glasses [6].

Isostatic Mechanical Equilibrium.– Having established
that polydisperse hard sphere crystals display anoma-
lous features at high but still finite pressure, we compare
their micro-structures at infinite pressure (jamming) with
those of amorphous jammed configurations. Jammed
packings of N = 432 polydisperse soft spheres in HS1
symmetry are obtained by minimizing the energy of
466 − 736 realizations for each s studied [11, 25] ([22,
Sect. IIIB]). (For s <∼ 0.01, the unambiguous detection
of small forces and gaps near the numerical accuracy of
the simulation is prohibitively cumbersome.) The final
configurations therefore coincide with the inherent struc-
tures of the polydisperse hard sphere crystals. Just like
amorphous jammed packings, these near-crystalline con-
figurations contain but a small fraction of rattling parti-
cles and are otherwise perfectly isostatic. The interpar-
ticle forces, f , can thus be determined directly from the
contact vectors [12].

Like their amorphous counterparts, our packings have
power-law distributed small forces with different scaling
exponent for contacts that give rise to localized excita-
tions when opened and those associated with extended
excitations [9, 10, 12] [22, Sect. IIIB], i.e.,

PDFe(f) ∼ fθe and PDF`(f) ∼ fθ` , (3)

respectively. Figures 3a and 3b reveal that the force scal-
ing exponents are in good agreement with the MFT pre-
dictions, θMFT

e = 0.42311 and θMFT
` = 0.17462. The dis-

tribution of interparticle gaps, h =
rij

(σi+σj)/2
−1, which is

complementary to that of the forces [9–11], also displays
a power-law tail

PDFh(h) ∼ h−γ , (4)

(Fig. 3c). The observed exponent, however, is visibly
smaller than the MFT prediction, γMFT = 0.41269, for
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FIG. 2. (a) ∆(t, 0) (squares) and ∆AB(t) ≡ ∆(∞, 0) (lines) for HS1 crystals with s = 0.02. As ϕ increases (from top to bottom),
∆(t, 0) crosses over from having a well-defined long-time plateau to displaying logarithmic aging at ϕG ≈ 0.72. (b) Evolution
of ∆AB and (early) plateau height of ∆(t, tw) with pressure for s = 0.01 (blue), 0.02 (red) and 0.03 (green). (c) The skewness,
ΓAB , of the distributions of ∆AB for each polydispersity peaks at ϕG denoted with vertical lines in (c) which in turn defines
PG denoted with vertical lines in (b). (d) The pressure, PG, corresponding to ϕG increases with decreasing polydispersity.
The solid line is a fit to an inverse relationship, which suggests that the anomalous regime only vanishes for s → 0, where
PG →∞. For the sake of comparison, in previous works (with uniformly distributed polydispersity), equilibrium polydisperse
FCC crystals become unstable to fractionation around s ∼ 0.08 [23, 24], and the athermal amorphization transition occurs
around s ∼ 0.11 [19].

all s considered. For the range of very small polydis-
persities considered we nonetheless clearly observe that
near-crystals have a complex particle microstructure con-
cordant with that of amorphous solids.

The theory of marginally stable packings provides in-
equalities for these exponents [9, 10, 26], γ ≥ 1/(2 + θe)
and γ ≥ (1− θ`)/2, which were found to be saturated in
amorphous solids [2, 12]. Here, because the force scal-
ing exponents are consistent with the MFT predictions
while γ is markedly smaller, both inequalities are vio-
lated. Even though the treatment in Refs. [9, 10, 26] is
seemingly independent of the degree of disorder, it im-
plicitly assumes that the marginal solids have no struc-
tural correlations. While this may be a reasonably valid
assumption for amorphous packings, it is clearly not the
case here. How to include such correlations in the theory
of marginality and what precise values should the criti-
cal exponents take in that context, however, remain open
problems.

Harmonic excitations.– As a further test of the sim-
ilarity between polydisperse crystals and amorphous
solids, we consider the low-energy excitations around the
jammed minima [14, 16]. The eigenvalues λk and eigen-
vectors {~ui}k of the Hessian computed from the contact
vectors provide the harmonic frequencies, ωk =

√
λk, and

normal modes, respectively. As in amorphous solids, we
find the spectra of vibrational states to be flat at low fre-
quencies (Fig. 3d), and the spatial extent of the normal
modes to be nontrivial (Fig. 3d, inset). The eigenmodes,
{~ui(ωk)}k, at a given ωk indeed have an inverse partici-
pation ratio (IPR)

Y (ω) =

∑N
i |~ui(ω)|4

[
∑N
i |~ui(ω)|2]2

, (5)

consistent with them being mostly delocalized at in-

termediate frequencies with some degree of quasi-
localization at low frequencies [18, 27–29] ([22,
Sect. IIIB]). Remarkably, the high-frequency localized
peaks of the crystal structure are also preserved. Be-
cause a similar normal mode distribution was observed
in slightly disordered FCC packings [30], the density of
vibrational states is likely universal in marginally stable
packings.

Conclusion.– Our work evinces that minuscule
amounts of disorder are sufficient to blend the physics
of crystals with that of amorphous solids. Perfect crys-
talline ground states are therefore a singular limit. Be-
cause relating microscopic features with macroscopic rhe-
ology is still unsolved, it is unclear whether our findings
relate with those of the universality class proposed in
Ref. 19, but this hypothesis deserves further considera-
tion. The specific exponent values and their violation of
the stability bounds for marginal solids observed in these
systems should also motivate additional study.

The many structural and dynamical similitudes be-
tween crystals of polydisperse spheres and amorphous
solids suggest that the former could be used to better
understand the latter. The simplicity and stability of
polydisperse crystals make them ideal for exploring the
MFT Gardner transition scenario. Resolving whether a
thermodynamic transition exists in finite-dimension [31–
35] and for what interaction types [36], in particular, are
of acute interest. Recent advances on the theory of glass
formers with continuous interactions [? ] suggest that a
Gardner-like regime should also be observable in crystals
formed of particles with continuous interactions, but only
in very specific regimes. In practice this can and should
be experimentally probed: both commercially manufac-
tured colloids (with tunable interactions) and ball bear-
ings (with very stiff Hertzian interactions) have nomi-
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FIG. 3. Cumulative distribution function, CDF(x) =
∫ x

0
PDF(x′)dx′, of contact forces between pairs of particles associated

with (a) extended floppy modes and (b) localized floppy modes for s = 0.01 (blue squares), 0.02 (red triangles) and 0.03
(green circles). (c) CDF for small interparticle gaps in the same systems. MFT predictions for the power-law exponents,
1 + θMFT

e = 1.42311, 1 + θMFT
` = 1.17462 and 1− γMFT = 1− 0.41269, are given as black solid lines. While close agreement in

observed in (a) and (b), a significant discrepancy is seen in (c). (d) The probability distribution of the frequency of harmonic
vibrations has a spectrum identical to that of a disordered jammed packing for all polydispersities, while a standard Debye
scaling would have ∼ ωd−1. (inset) Evolution of the average IPR with frequency. Low-frequency modes tend to be quasi-
localized, as are those of fully amorphous solids. By contrast, at high frequency both the spectra and the IPR display crystal
peaks.

nal polydispersities on the order of or larger than that
studied here. In colloidal systems the osmotic pressures
needed to reach and exceed PG are readily accessible, as
are techniques for extremely high resolution single par-
ticle tracking [37]. Such easily accessible experimental
systems could thus also be investigated to expand our
understanding of rigidity in the entire spectrum from per-
fect order to maximal disorder [38].
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