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It is well-known that the resonance phenomena can destroy the adiabatic invariance and cause
chaos and mixing. In the present paper, we show that the nonlinear wave-particle resonant in-
teraction may do the opposite – generate large-scale coherent structures in the phase space. The
combined action of the drift due to nonlinear scattering on resonance and trapping (capture) in-
to resonance creates a convection cell-like structure, where the areas of particle acceleration and
deceleration are macroscopically separated. At the same time, nonlinear scattering also creates a
diffusion that cause mixing on energy levels and between the energy levels.
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Convection cells and large-scale coherent structures are common in the physical space of fluid systems. However,
similar structures in the phase space of Hamiltonian systems are much more rare [1–3]. In the present letter we
introduce a simple system of charged particles moving in a non-uniform magnetic field in the presence of an electrostatic
wave. In many plasma systems, charged particle resonant interaction with electromagnetic waves represent the only
way of an efficient energy exchange between particle populations. For coherent resonant interaction particles can
spend a long time within the resonance and their dynamics become much more complicated than just a diffusion in
the phase space. The first study of mixing and chaos due to resonances was done by Feingold and co-workers, [4–6]
who recognized that mixing is caused by the breakdown of adiabatic invariance near surfaces where the frequency of
the perturbation is in resonance with the frequency of the unperturbed flow. Many example of chaotic advection and
mixing in fluids in the presence of resonances can be found in [7]. Recently, the nonlinear wave-particle interaction
became one of the main approaches to the quantitative description of plasma processes in magnetosphere, [8–12]. Our
analysis is based on modelling charged particle motion in an effective potential generated by a combination of Lorentz
forces from the background magnetic field and wave electromagnetic field. We show that particles interacting with
such potentials may form large-scale convection cells in the phase space. The internal structure of these cells and
their evolution due to particles exchange between trapped and nontrapped (transient) populations determine the wave
dumping/growth, particle acceleration/deceleration, and many other important wave characteristics. In a classical
problem of the nonlinear Landau damping, the trapped phase space region is assumed to be uniformly filled, and
thus the events of particle trapping/escape can influence the wave dynamics [e.g., 13, 14]. In many systems, effects
related to formation and evolution of large-scale structures control the primary wave dynamics and secondary wave
formation [e.g., 15–18].

In the present paper we present a simple setting where the nonlinear resonance phenomena create a phase-space
convection cell. We start with main equations of the wave-particle system and introduce the separation of time scales.
Then we define the resonance and describe scattering at resonance and trapping (capture) into resonance at a single
crossing. After that we describe the structure of the convection cell, estimate the time-scale of mixing and the period
of the convection cell. Finally, we propose a kinetic Fokker-Plank-type equation that describes the leaking of particles
from the cell.

Dimensionless Hamiltonian of a charged particle moving in a double-well potential in the presence of a fast wave is

H =
1

2
p2y + U(y) + β sinχϕ, U(y) =

(
α2y2 − 1

)2
/8α2, ϕ = y − ut (1)

Here χ, u, and β are the wavenumber, the phase speed, and the amplitude of the wave, respectively. We assume that
the wave is short, χ = 30� 1, and weak, β = 0.1� 1. The other parameters are α = 0.1 and u = 1. The minimum
possible value of energy, Hmin = 0, is at the bottom of the either of the two potential wells; HC = 1/(8α2) = 12.5 is
the value of energy at the potential barrier at y = 0. The unperturbed system is illustrated in Fig. 1. The separatrix
S separates the motion inside one of the two wells from the motion in the top domain.
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FIG. 1. The unperturbed system: (a) Profile of the potential energy; (b) Phase portrait.

The smallness of 1/χ � 1 introduces a separation of time scales: ϕ is fast, while (y, py) and H are slow. In the
first approximation, we can average Hamiltonian (1) over the fast phase, which is effectively equivalent to omitting

the term β sin(χϕ) in (1): Hav = p2y/2 +
(
α2y2 − 1

)2
/8α2. As Hav does not depend on time explicitly, it is an

integral of the averaged system. In exact system (1), the value of H is approximately conserved (with the accuracy of
order β) everywhere, where the separation of time scales is valid and the method of averaging works. The averaging
fails when the rate of change of ϕ vanishes on the line called a Resonance: dϕ/dt = py − u = 0 (dashed line R in
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Fig. 1(b)). Dynamics of particles that intersect the resonance is drastically different from that of the particles that
do not intersect it. Most particles cross the resonance twice on each period of the fast motion. There are two kinds
of exceptions. Particles near the bottom of the two wells (H < Hmin = 0.5) do not cross the resonance at all (two
smallest circles in Fig. 1(b)); those just above the separatrix S cross the resonance four times. Every time a particle
crosses a resonance, the value of energy H changes. There are two main resonance phenomena: capture (trapping)
into resonance and scattering on resonance, see [e.g., 12] and references therein.

During most of the resonance crossings, the energy of a particle changes only slightly. This process is called
scattering on resonance. It follows from [e.g., 12, 19] and references therein, that the change of the energy is

∆H(ξ,H) = −u
√
β
√

2a

∫ ϕ̃∗

−∞

cos ϕ̃ dϕ̃√
2πξ + ϕ̃− a sin ϕ̃

(2)

where ϕ̃ = χϕ, a = βχ/A and A = A(H) = ∂U/∂y = yR
(
α2y2R − 1

)
/2. The value of A is computed at the resonance

crossing: H = u2/2+
(
α2y2R − 1

)2
/8α2. In (2), ϕ̃∗ is the value of ϕ̃ at the resonance crossing, and 2πξ = ϕ̃∗−a sin ϕ̃∗.

The value of ξ is a very sensitive function of the initial conditions: even small, order β, changes in the initial conditions
result in significant changes in ξ, see [e.g., 12] and references therein. For multiple consecutive scatterings, ξ can be
treated as a random variable uniformly distributed on (0, 1), see a numerical verification of this assumption in [20].
Correspondingly, ∆H becomes a random variable as well.

Statistical properties of ∆H depend on the value of a. The average value and the second moment of ∆H are

〈∆H〉 (H) =

∫ 1

0

∆H(ξ,H) dξ;
〈

(∆H)
2
〉

(H) =

∫ 2π

0

(∆H(ξ,H)− 〈∆H〉)2 dξ (3)

It was shown in [21], that when a > 1, 〈∆H〉 is finite, and when a < 1, 〈∆H〉 = 0;
〈

(∆H)
2
〉

is always finite.

Besides scattering, particles may be trapped (captured) into resonance. Trapping is possible if a > 1 and da/dt > 0
along the trajectory. In the current system, particles can be captured on the left walls in both wells. It was shown in
[e.g., 12, 22, 23] that trapping can be considered as a random process. While for every given particle approaching the
resonance it can be predicted will it be trapped or not (provided trapping is possible), this trapped-or-not-trapped
transition is very sensitive to initial conditions. Thus, for multiple particles and multiple passages through resonance,
it is reasonable to consider trapping as a probabilistic process. The method of computing the probability of trapping,
Π(H), is presented in several papers, see [e.g., 12, 24] and references therein.
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FIG. 2. Trapping (capture) into resonance: input-output function. Horizontal axis: Hsign(y) at the trapping, vertical axis:
Hsign(y) at the release. Note that the energy H is multiplied by sign(y). Thus the left and the right wells corresponds to
Hsign(y) < 0, and Hsign(y) > 0, respectively.

Once a particle is trapped into resonance, its dynamics is integrable and predictable. The trapped particles move
for a while with the wave: they are transported along the resonance and then are released from resonance on the
right walls. The value of the energy at the release from resonance can be computed explicitly, [e.g., 25]. The energy
input-output function is presented in Fig. 2, where we used Hsign(y) instead of H to distinguish between the left and
right wells. In the left well, for −H < −Hlr ≈ −2, particles are transported to the right wall of the right well (L-R
capture). From the symmetry of the potential well with respect to the axis x = 0, in this case the energy does not
change. This trapping corresponds to the red, top left, line in Fig. 2. For 0 < Htr < Hlr, particles are transported
to the right wall of the left well (L-L capture). In this case, the energy grows (the blue, bottom left, line in Fig. 2).
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FIG. 3. Trapping (capture) into resonance. (a): Phase portrait; (b): Energy evolution.
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FIG. 4. Medium-time evolution: (a): trajectory of a single particle: from the right well, up to the top well, down the left well,
and transfer by capture into resonance to the right well, and starting up again. (b): The average change of energy.

In the right well, all the particles captured at the left wall are transported to the right wall. The energy decays (the
black, top right, line in Fig. 2).

An interval of the phase trajectory containing all three types of trapping is presented in Fig. 3. First the particle
is trapped (at t ≈ 170 in Fig. 3(b), the outer spiral in the left well in the left panel in Fig. 3(a)) in the left well and
released in the left well (Point A in Fig. 2). The second time the trapping occurs at a higher value of the energy (at
t ≈ 245 in Fig. 3(b), the long spiral in Fig. 3(a)), and the particle is transported to the right well (Point B in Fig. 2).
The third trapping (at t ≈ 320 in Fig. 3(b), the outer spiral in the right well in Fig. 3(a)) move the particles from the
left wall of the right well to the right wall (Point C in Fig. 2).

The medium-time behaviour of any given particle consists of the successive motion in three distinct domains: the
right well, the left well, and the top domain (above the barrier). A characteristic dynamics is illustrated in Fig. 4(a).
In the right well, the value of energy grows on average, resulting in the upward advection in the phase space. Then
the particle enters the top domain (t ≈ 120) where there is no drift, just a diffusion. In terms of energy, particles can
go up – there is no upper bound – or down. Most of the particles spend some time in the top domain (t ≈ 120− 400).
If they go down to the right well (e.g., t ≈ 200), advection kicks them back to the top domain immediately. However,
if a particle goes down the left well (t ≈ 400), advection takes it down (t ≈ 400 − 900). Near the bottom, trapping
into resonance becomes possible. While the energy is not too small, above Hlr, trapping takes the particle from the
left well to the right well: the L-R trapping. Once below Hlr, trapping keeps the particle inside the left well: the L-L
trapping. However, the energy at the release from the L-L trapping is larger than Hlr. Therefore, the L-R trapping
becomes possible again. The particle oscillates near the bottom of the left well undergoing the downward drift and
the upward L-L trappings (t ≈ 900 − 1900) until finally the L-R trapping occurs (t ≈ 1900). After that the particle
is transported to the right well and the whole process repeats again.

The structure of the resulting convection cell is illustrated in Fig. 4(b). Different colors correspond to the average
value of the change of energy on a given energy level due to scattering. The average change is positive in the right
well, and negative in the left well. In the upper domain the average energy change is zero. There are also regular
domains at the very center of the two bottom cells, where particles do not intersect the resonance at all.
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FIG. 5. Evolution of a particle ensemble. (a): Histograms of the PDF for different values of time. From the initial distribution
in the right well (black curve), over the top, to the left well. Note, that the axis is the energy H multiplied by sign(y). At
t ≈ 100, the particles are in the right well; at t ≈ 250 particles fill the right well and start coming into the left well; at t ≈ 500
particles fill the left well; at t ≈ 1000 particles essentially uniformly fill both bottom wells. (b): The percentage of particles
in the upper domain above H = 15. The red curve is obtained by solving PDE (5) for the PDF, and the blue curve is the
aggregation of explicit simulation of 20, 000 particle governed by (1).

To describe mixing between the wells and the evolution of the ensemble of particles, we introduced a Probability
Distribution Function (PDF). We performed a set of numerical simulations of 20, 000 particles that were originally
localized at H = 1 in the right well, Fig. 5(a). Particles start as a relatively narrow distribution in the right well
(black curve). Scattering on resonances cause the maximum of the curve to move to the right, while the distributions
become wider. When particles arrive to the top of the hill between the wells (red curve), they immediately start
dropping into the left well. After a characteristic time of one full slow period, the distribution becomes essentially
uniform in the two bottom wells. There are two characteristic times of the system: the period of the cell, TC , and
the characteristic time of mixing, TM . Period TC is defined by the rate of drift 〈∆H〉 and the probability of trapping,
Π(H) computed at H = Hlr. Rate of mixing TM is defined by the second moment of 〈∆H〉:

TC ≈ 2

∫ HC

Hmin

T (H)
dH

〈∆H〉
+

1

Π(H = Hlr)

∫ Hlr

Hmin

T (H)
dH

〈∆H〉
, TM ≈ 2 T (H)

(HC −Hmin)
2〈

(∆H)
2
〉 (4)

where T (H) is the period of motion on the (y, p) phase plane. The first term in TC (approximately equal to 850) is a
time over which the drift takes a particle from the bottom of the right well to the bottom of the left well. The second
term (approximately equal to 1000) is defined as the time a particle spends near the bottom of the left well before it
gets into the L-R trapping.

The drift and diffusive spreading described above create an essentially uniform mixing in the two bottom wells.
Beyond that, over a significantly longer time scale, more and more particles diffuse higher into the upper domain,
further away from the separatrix. As a result, they stay there longer, creating a significant population. To estimate
the rate of transfer into the upper well, we can use the diffusion-type evolution equation for Ψ(H, t). Numerical
simulations indicate that the characteristic time scales of the diffusion into the upper domain is much longer than the
time-scale of the uniformization in the bottom wells. Thus we can assume that particles are uniformly distributed
over the two bottom wells. Trapping into resonance does not occur in the upper domain, and dynamics is determined
entirely by scattering on resonance. Scattering on resonance cause a random walk in terms of H. In the upper
domain, 〈∆H〉 = 0. For any random walk, the diffusion coefficient is equal to one half of the second moment of the
corresponding distribution of the magnitude of a single step. On each period, there are two resonance crossings with

the same statistical properties. We obtain D(H) =
〈

(∆H)
2
〉

, and the evolution of Ψ(H, t) can be described by a

diffusion-type equation PDE:

∂Ψ

∂t
T (H) =

∂

∂H

(
D(H)

∂Ψ

∂H

)
. (5)

The values of D = D(H) are much larger for HC < H < HC + u2/2 = 13, where trajectories intersect the resonance
four times on a period (including two crossings near y = 0), than for H > HC + u2/2 (two resonance crossings, away
from y = 0), see Fig 1(b). Essentially, we can set D(H < HC + u2/2) = ∞ (uniform mixing) and explicitly study
the domain H > HC + u2/2 only. We compared the predictions of (5) with results of explicit simulation of 20, 000
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particle governed by (1). Figure 5(b) presents the amount of particles in the upper domain above H = 15. One can
see that the PDF-based description describes the leaking of particle into the upper domain.

In conclusion, we considered a motion of charged plasma particles in a nonuniform background magnetic field in the
presence of an electrostatic wave. We proposed a setting where the nonlinear resonance create a large scale convection
cell in the phase space. We showed that a combination of the energy drift due to scattering at resonance and trapping
(capture) at resonance creates a regular energy drift, while scattering at resonance create the energy diffusion and
mixing. We estimated a characteristic period of the cell and characteristic time of mixing.
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