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An efficient numerical method for determining the spectral characteristics and spatial distribution of 
the field of a spheroidal whispering-gallery-mode (WGM) resonator interacting with a dielectric 
nanoparticle is presented. The developed approach is based on a combination of T-matrix formalism 
applied to a single resonator with a dipole approximation for the field of the nanoparticle. The method 
is illustrated by computation of the scattered field of the resonator-particle system illuminated by an 
incident field in the form of a single WGM mode of TE or TM polarization mimicking the excitation 
of the resonances by a tapered fiber. Our calculations show that even a very small (less than 0.1%) 
deviation of the resonator’s shape from an ideal sphere renders spherical approximation invalid. They 
also confirm that analytical resonant approximation for spheroidal resonators developed previously 
gives a reasonable qualitative description of the spectral characteristics of the resonator-particle 
system. It was found, however, that corrections to the resonant approximation are significant enough 
for realistic nominally spherical resonators to be taken into account for accurate analysis of the 
experimental data. 

PACS number(s): 42.25.Bs, 42.25.Fx, 42.60.Da 

I. INTRODUCTION 
The problem of interaction between Whispering-Gallery-Modes (WGM) of dielectric optical 
resonators [1,2] and a small subwavelength object placed in the vicinity of the resonator’s 
surface has recently attracted a great deal of attention in a number of areas of fundamental and 
applied research. More specifically, shifts and broadening of the frequencies of WGMs due to 
such an interaction have been used to develop novel optical sensors of chemical and biological 
nanoobjects [3–20] as well as to track the movement of individual atoms in cavity QED 
experiments [21]. The nanoparticle-induced modification of the spatial profile of the field of 
WGMs [22,23] has attracted an interest for such applications as WGM based light 
sources [22,24,25], optical antennas [26], optical manipulation [27–29] and sensing [23].  

These works need to be distinguished from another growing area, in which the main attention is 
being paid to optical resonances of high refractive index dielectric particles of nanometer 
size [30–35]. While these particles do exhibit distinct resonances in their electro-dipole and 
magneto-dipole responses, which present a great deal of interest, these resonances are distinct 
from the Whispering Gallery Modes studied in this paper. The latter can only be realized in 
relatively large (tens or hundreds of micrometers in size) dielectric objects and correspond to 
Mie resonances of relatively high order (typical values of the orbital momentum of these 
resonances can be anywhere between 20 and 400). In principle, it can be of interest in studying 
the optical interaction between high order Whispering Gallery Mode resonances and magneto-



dipole resonances of nanoparticles with high refractive index, but this study is outside of the 
scope of this paper1.     

Depending upon relation between the strength of the particle-WGM interaction and the spectral 
width of the corresponding resonance, the particle-related modification of the resonance 
frequencies of the system can be described either as splitting of the resonances [16,36–38], when 
a particle splits a single WGM resonance into two spectrally well-separated resonances, or as a 
frequency shift, when  the experiment reveals that the particle merely shifts a WGM from its 
original position [12,14,15,39–41]. Theoretically, these effects have been successfully described 
by two different heuristic models. The splitting is explained by an interaction between two 
degenerate counter-propagating modes of the resonator with a polarizable dipole [38,42–45], 
while the shift is modeled by a simple first-order perturbation theory-like expression called 
Reactive Sensing Principle [39], which was derived under the assumption that in the case of 
strongly overlapping resonances their degenerate nature is not important.  

Despite the success of these models, one would still want to compliment them with more 
rigorous theories based on Maxwell equations. Such treatments have been developed for two-
dimensional disk [22,46,47] and three-dimensional spherical resonator [48–50]. They revealed 
the polarization dependence of the particle-induced spectral effects, provided relations between 
phenomenological parameters of the heuristic models and material characteristics of the 
resonators, as well as allowed to predict the spatial distribution of the electromagnetic field of the 
resonator-particle system.  

The problem is, however, that even nominally spherical resonators with deviations from 
spherical shape less that 3% are not spherical enough from the point of view of interaction 
between WGMs and the nanoparticle. Two characteristic energy scales determining a 
“sphericity” of the resonator are the spectral distance between resonances split due to the shape 
deformation on one hand, and the particle-induced modifications of the frequencies, on the other. 
In a typical experiment with “spherical” resonators interacting with a nanoparticle, the former 
scale significantly exceeds the latter making the assumption of the spherical shape for the 
resonators inapplicable.  It should not come as a surprise, therefore, that the theoretical 
predictions for the frequencies of the particle-induced resonances obtained in Refs. [48,49] 
deviate from the experimental data by orders of magnitude2.  

To obtain a description of the WGM-nanoparticle interaction in realistic nominally “spherical” 
resonators one has to take into account their actual shape. The simplest example of a such 
“almost” spherical resonator would be a dielectric spheroid. In addition to providing a 
microscopic theoretical foundation for the phenomenological models of Refs. [38] and [40], and 
uncovering possible new experimentally relevant effects, a solution to this problem also presents 
                                                 

1 The study of this problem is currently under way and its results will be reported in a separate publication.  
2 The “reconciliation” of this approximation with experiments attempted in Ref. [50] is based on unrealistic 

assumptions about exciting field and is, therefore, superficial.  



a significant interest for theoretical and computational electrodynamics. Indeed, a rigorous ab 
initio theoretical description and simulation of the spectral effects due to the WGM-nanoparticle 
interaction in spheroidal resonators is rather challenging. First of all, one should note that the 
WGMs with high enough Q-factors are characterized by significantly small, compared to the 
characteristic size of the resonator, wavelength. Accordingly, discretization procedures, which 
are central to standard simulation tools such as Finite Element (FEM) [51] and Finite Difference 
Time Domain (FDTD) [52] methods, have to introduce a very fine grid covering relatively large 
regions of space. This circumstance, by itself, results in significantly increased demands on the 
amount of memory required for computation and on computational time, making solution of full 
three-dimensional problems unrealistic [53]. While the axial symmetry of an individual spheroid 
resonator allows reducing dimensionality of the problem, which makes the situation manageable, 
in the presence of a nanoparticle the axial symmetry of the problem is destroyed. As a result, one 
is left with a fully three-dimensional vectorial electrodynamics problem for objects larger than 
the characteristic wavelengths, which is not susceptible to traditional numerical methods.  It is 
not surprising, therefore, that there have been, to the best of our knowledge, only a single attempt 
to model numerically the effects of a nanoparticle on WGMs. The authors of Ref. [54] used FEM 
to simulate the interaction of a nanoparticle with a toroidal resonator, but, in order to make the 
problem tractable, they had to introduce a simplifying assumption that the particle affects the 
field of the resonator only in its immediate vicinity. While this computation provided some 
information on the perturbation of the field of the WGM by the nanoparticle, this approach is not 
sufficient to study modifications of the spectral properties of the resonator. 

The objective of this paper is to present a computationally efficient and accurate ab initio 
approach to computing resonance frequencies and corresponding electric and magnetic fields for 
spheroidal resonators interacting with a nanoparticle, described as a polarizable dipole. We 
overcome the inherent difficulties in simulating such systems by combining rigorous Extended 
Boundary Condition method (EBCM), used to study scattering of light from a single 
resonator [53,55–61] with a dipole approximation (the only approximation used in this approach) 
for the field scattered by the particle. The solution of the single resonator scattering problem is 
presented in the form of the so-called T-matrix [62], which connects expansion coefficients of 
the scattered field expanded in terms of the vector spherical harmonics (VSH) with 
corresponding coefficients of the incident field.  While the method of the T-matrix had been 
widely used for scattering studies [58–61,63,64], its application to the WGMs has been so far 
rather limited. At the same time, the WGMs obviously emerge in various characteristics of the 
scattered field as resonances (sometimes, especially in the case of spherical scatterers, called Mie 
resonances), whose position and width contain all the necessary information about the WGMs. 
Moreover, in many experimental situations, it is the scattering resonances that are being 
observed and studied. The main concern with applications of the T-matrix formalism to studying 
WGMs is a poor convergence of this approach in the case of objects much larger than the 
respective wavelength and/or deviating strongly from the spherical shape [60]. Nevertheless, in 
the case of scatterers whose shapes do not differ too much from spherical (such as spheroids with 



an aspect ratio close to unity), WGM resonances of relatively high order can be found and 
studied using the T-matrix approach.  

We show that using elements of T-matrix as pre-computed parameters and limiting the multipole 
expansion for the field scattered by the particle to only dipole terms we are able to effectively 
compute the field scattered by the entire resonator-particle system. The spectral characteristics of 
this system are studied by identifying resonances of the scattered power in contrast with other 
approaches describing the problem in terms of the eigenfrequencies and normal modes of the 
resonator [38,65,66]. 

This work is an extension of our earlier efforts, where we used a similar idea to obtain a semi-
analytical description of the resonator-particle system in the so-called resonance approximation, 
which takes into account the interaction of the particle with only two remaining degenerate 
modes of a spheroidal resonator [67,68].  Now we are going outside of the resonant 
approximation and include into the consideration all modes of the system until convergence of 
the corresponding sums is achieved. This extension allows us to consider resonators with both 
very small and relatively large deviations from the spherical shape. One of the most interesting 
results presented in this paper is the prediction of a drastic (orders of magnitude) and sharp 
decrease of the particle-induced spectral effects when the deviation from sphericity exceeds 
some critical value. Our calculations also revealed possible deviations from the resonant 
approximation due to spectral proximity of the non-resonant modes. Finally, approach developed 
in this work provides researchers with a robust and efficient computational tool for studying 
spectral and spatial properties of the resonator-dipole systems. The approach developed here can 
be extended to include magneto-dipole contribution to the particle field, which might become 
important for nanoparticles with high enough refractive index [30,69–71].  

The structure of this paper is as follows. For convenience of the readers, we begin by describing 
the T-matrix formalism for a single resonator and present the main properties of the T-matrix in 
Section II.A. In Section II.B we introduce the dipole approximation for the nanoparticle and 
derive the main system of equations for the expansion coefficients of the scattered field. Section 
III is devoted to the description of the numerical procedure used to solve the system of equations 
derived in Section II.B and to the results of the numerical calculations.     

II. INTERACTION BETWEEN WGMS OF A SPHEROIDAL RESONATOR 
AND A SUBWAVELENGTH PARTICLE: GENERAL THEORY 

A. T-matrix formalism for a single spheroidal resonator 

We consider a spheroidal resonator interacting with a subwavelength particle positioned in its 
vicinity. The deviation of the resonator’s shape from spherical is characterized by the ellipticity 
parameter sm1 / re R R= −  (see Figure 1). The field scattered by the resonator is found using the 
T-matrix formalism, which has been successfully applied in the past to the problem of the 



scattering of light from non-spherical particles [58–61,63,64]. This formalism is based on 
presenting the field scattered by the resonator as a linear combination of Vector Spherical 
Harmonics (VSH) with asymptotic behavior of outgoing spherical waves [62] 

     ( ) (3) (3)
1 1

1

( , , ) ( , , )r
sc m,l m,l r r r m,l m,l r r r

l m l

c k r g k rθ ϕ θ ϕ
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⎡ ⎤= +⎣ ⎦∑∑E M N ,    (1) 

where (3)
1( , , )m,l r r rk r θ ϕM  and (3)

1( , , )m,l r r rk r θ ϕN  are vector spherical harmonics of TE and TM 
polarizations, respectively, with radial dependence characterized by outgoing spherical Hankel 
functions (1)

1( )l rh k r  of the first kind. Electric field described by a TE polarized VSH and 
magnetic field described by TM polarized VSH have zero radial components. Modal indexes m  
and l determine the angular behavior of VSH defined in a spherical coordinate system with a 
particular choice of its polar (Z) axis. We will refer to index l as to orbital number, and, 
following Ref. [12], will call m , which takes on values in the interval l m l− ≤ ≤ , the polar 
index. Arguments , ,r r rr θ ϕ  are the radial, polar and azimuthal coordinates of the position vector 
r  in a particular coordinate system, where subscript r  indicates that the origin of the coordinate 
system is at the center of the resonator. Parameter 1k  is the wavenumber of light outside of the 

resonator and is defined as 1 1k n k= , where /k cω=  is the wave number of electromagnetic 

field with frequency ω  in vacuum, 1n  is the refractive index of the medium surrounding the 
resonator, and c , as usual, represents the speed of light in vacuum.  

FIG. 1. The resonator-particle system with all its geometric and material parameters: refractive indexes of the resonator, rn
, particle, pn , and the surrounding medium, 1n ; resonator’s equatorial radius rR , its smallest half-axis smR , and particle’s 

radius pR . Also shown are four coordinate systems used in the paper: resonator-centered and particle-centered resonator’s 
and particle’s systems. Resonator’s systems are characterized by the polar (Z) axis directed parallel to the axis of rotation of 
the resonator, while particle’s systems have their polar axes directed along a line connecting centers of the particle and the 
resonator. 



Strictly speaking, representation of the scattered field in the form of Eq. (1) is valid only outside 
of the sphere completely circumscribing the resonator but keeping the particle outside. 
Assumption that the same expansion is also valid in the immediate vicinity of the scattering 
object is known as Rayleigh hypothesis [72,73]. While this hypothesis has been studied for a 
number of scatterers and surfaces [59,74–79], its general validity has not yet been established. 
However, in the case of a weakly spheroidal resonator, which is a convex body, there are no 
physical reasons to expect that the scattered field would contain an admixture of VSH with radial 
dependence of incoming spherical waves. Therefore, we will extend the representation of the 
scattered field in the form of Eq. (1) throughout the entire exterior of the resonator.   

Expansion coefficients ,m lc  and ,m lg  in Eq. (1)  can be related to the expansion coefficients of 

the incident field presented as 
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where superscript (1)  signifies that the radial dependence of the respective VSHs is given by 
spherical Bessel functions that are regular at the origin. Obviously, the relation between 
coefficients , ,,m l m lc g  and , ,,m l m la b  is linear and can be presented in the form 
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where coefficients ( , )
, ; ,m lT σ σ

μ ν
′  form what is called the T-matrix. Superscripts ,σ σ ′  refer to 

contribution of VSH of different (TM and TE) polarizations with 1σ =  corresponding to TE, and 
2σ =  - to TM polarization. Subscripts correspond to two different sets of orbital ( ,l ν ) and polar 

( ,m μ ) indexes characterizing individual VSHs.  

For a spherical resonator, the T-matrix becomes diagonal in all its indexes and loses its 
dependence on the polar numbers ,m μ : 
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Here ( ) ( )l xσα  are the standard Lorenz-Mie coefficients expressed as functions of the 

dimensionless size parameter rx kR= , which has the meaning of the number of the vacuum 

wavelengths per circumference of the sphere with radius rR . The Lorentz-Mie coefficients can 
be written down as  
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where functions ( ) ( )l xσβ  and ( ) ( )l xσς  are defined in the Appendix A. The frequencies of WGM 

resonances in spherical resonators are found from equations ( ) ( ) 0l xσβ =  for both TE and TM 

polarizations. Solutions of these equations, ( )
,l sx σ , are characterized by two (in addition to the 

polarization) indexes: polar index l, and radial index s  distinguishing between resonances with 
different radial dependences of their respective modes. Resonances are also characterized by 
their widths, ( )

,l s
σγ , determined by the behavior of functions ( ) ( ),l l

σ σβ ς  in the vicinity of the 

respective resonance frequency ( )
,l sx σ . Frequency ( )

,l sx σ  and width ( )
,l s
σγ  define the position of the 

complex pole ( ) ( )
, ,l s l sx iσ σγ−  in the lower half-plane of the complex plane of x , which can be found 

by direct solution of equation ( ) ( )( ) ( ) 0l lx i xσ σς β+ = . It should be noted that due to complete 
spherical symmetry Mie coefficients defined by Eq. (5) do not depend on the modal number m  
and, as a result, all resonances of spherical resonators are 2 1l +  degenerate. At the resonance 

( )
,l sx x σ= , the Lorenz-Mie coefficients take value ( ) ( )

, 1l l sxσ σα ⎡ ⎤ = −⎣ ⎦ , which means that WGM 

resonances are of pure Breit-Wigner type and that in a vicinity of the resonance frequency the 
Lorenz-Mie coefficients can be approximated as  
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When the shape of a resonator is distorted from spherical to spheroidal, the complete spherical 
symmetry is replaced with axial symmetry with respect to rotations around the axis of rotation of 
the spheroid. As a result, the T-matrix acquires non-diagonal elements with respect to all its 
indices. However, if the VSHs in Eq. (1) and (2) are written in terms of spherical coordinates 
defined in a coordinate system with polar axes along the axes of rotation (we shall call it the 
resonator’s coordinate system), the T-matrix remains diagonal with respect to the modal number 
m : 

 ( , ) ( , )
, ; , , ; , ,m l m l m mT Tσ σ σ σ

μ ν ν μδ′ ′=% % .  (7) 



(In what follows, we will use T%  to designate T-matrix written in the resonator’s coordinate 
system.) Thus, the deviation from the spherical shape results in two main changes: (i) appearance 
of the non-diagonal elements, which are responsible for coupling between VSHs of different 
polarizations (TE and TM) and different numbers l, and (ii) dependence of the diagonal elements 
of the T-matrix, ( , )

, ; ,m l m lT σ σ% , on the modal number m . When deviations from the spherical shape are 

not too large, the latter has the largest impact on the spectral properties of the resonators. Indeed, 
numerical calculations of the T-matrix show that all non-diagonal elements of T-matrix remain 
small for ellipticity parameters of the spheroid up to 0.05, which is a typical value for practically 
available nominally spherical resonators (see Figure 2 where we used color/grayscale coding to 
indicate values of different elements of the T-matrix. The horizontal and vertical axes in this plot 
represent orbital numbers l  and v  in the T-matrix given in Eq. (7), so that the squares along the 
main diagonal in this figure correspond to l v=  elements of the T-matrix, while the squares off 

FIG. 3. Real part of various diagonal and non-diagonal elements of the T-matrix (1,1)
10, ;10,lT ν
% (a) and 

(1,1)
39, ;39,lT ν
% (b) computed for the same frequency corresponding to a second radial order resonance of 

(1,1)
39, ;39,lT ν
% and 0.048e = . 

FIG. 2. Real part of a diagonal element of the T-matrix (1,1)
,39; ,39m mT% as a function of the size parameter x . Black 

solid line corresponds to the spherical resonator with 2 1l +  degenerate polar modes ( 0e = ). Colored dashed 
and dotted lines depict several resonances of a spheroidal resonator ( 0.048e = ) with same orbital number 

39l =  and different polar numbers m . Note that at the resonance the real part of the diagonal element of the 
T-matrix is very close to 1−  in both spherical and spheroidal cases. 



the main diagonal represent the non-diagonal elements. One can see from this figure that the off-
diagonal elements of the T-matrix remain rather small as compared to the diagonal elements). At 
the same time, the diagonal elements of the T-matrix still demonstrate resonance behavior 
characterized by Eq. (6), but with frequency and the width of the resonances now dependent on 
m  (see Figure 3, where we plot the frequency dependence of the real parts of the elements of T-
matrix with the same values of l v= , but different values of m μ= . One can clearly see the 
same Lorentz-like resonance shapes of the resonances in the spheroids, but with resonant 
frequencies dependent on the value of the polar number m ). 

T-matrix has a number of general properties reflecting various symmetries of the scattering 
object. They all are well known and can be found, for instance, in Ref. [62]. For the convenience 
of the readers, they are also summarized in Appendix A to this paper. One of the most important 
for this work is the transformation property of the T-matrix upon the rotation of a coordinate 
system.  While the T-matrix of the spheroid has its simplest form in the resonator’s system, in 
this work we will also have to use a system of coordinates with the polar axis passing through the 
centers of the resonator and nanoparticle (we will call it the particle’s coordinate system). All 
coordinate systems used in this work are presented in Figure 1. If the rotation from resonator’s to 
particle’s coordinates is described by three Euler’s angles ,α β  and γ  (designation of the 

Euler’s angles is the same as in Ref. [62]), the T-matrix in the particle’s system, ( ),
, ; ,m lT σ σ

μ ν
′ , is related 

to the T-matrix in the resonator’s system by  
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where we took into account that T-matrix in the resonator’s system, ( )
1 1

,
, ; ,m l mT σ σ

ν
′% , is diagonal in the 

modal indexes m . ( )
1 , , ,m mDν α β γ  in Eq. (8) is a Wigner D-matrix, realizing a 2 1l +  -dimensional 

representation of the rotation operator in the space formed by spherical harmonics with orbital 
number l. Transition between resonator and particle coordinate systems shown in Figure 1 is 
described by Euler angles  

 / 2; ; 0pα π β θ γ= = − = ,  (9) 

where pθ  is the polar coordinate of the particle in the resonator’s coordinate system. In this case, 

the transformation rule given by Eq. (8) can be expressed as  
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where ( )
1

( )
,
l

m m pd θ  is a d-(small) Wigner matrix. An explicit expression for this quantity is 

provided in Eq. (B5) of Appendix B, and in derivation of Eq. (10) we used Eq. (B4). 

B. The general theory of interaction between the spheroidal resonator and a 
subwavelength polarizable particle 

This is the main section of the paper, in which we derive equations for the expansion coefficients 
of the field scattered by the resonator, ,m lc  and ,m lg . Having found these coefficients, we will be 

able to determine modified resonance frequencies as well as spatial profile of the field scattered 
by the resonator-particle system. The main assumption of our theory is that the field scattered by 
the nanoparticle can be described in the dipole approximation. This approximation is introduced 
by presenting the field scattered by the nanoparticle as a linear combination of VSHs of TM 
polarization with orbital number 1l =  and neglecting contribution from TE polarized VSHs:   

 ( )( ) (3)
,1 1

1

, ,p
sc m m p p p

m

p k r θ ϕ
≤

= ∑E N . (11) 

It should be noted that VSHs in Eq. (11) are written in the coordinate system centered at the 
nanoparticle, which is indicated in Eq. (11) by subscript p  in , ,p p pr θ ϕ . We will call these 

coordinates particle-centered and would like to warn readers against confusing it with the 
particle coordinate system introduced in the previous section. While the former refers to the 
position of the origin of coordinates, the latter denotes the direction of the polar axis (along the 
line connecting centers of the resonator and the particle). Similarly, one has to distinguish 
between the resonator-centered coordinates with origin at the resonator’s center, and the 
resonator coordinates whose polar axis is parallel to the axis of rotation of the resonator. Both 
resonator-centered and particle-centered coordinate systems can be either resonator or particle 
coordinates depending on the orientation of their polar axes (Figure 1).  

The field scattered by the particle, ( )p
scE , is determined by the total field ( )( )p

in pE r  incident on it. 

Taking into account that WGMs are usually excited by a tapered fiber positioned in the 
immediate vicinity of the resonator, it is reasonable to assume that ( ) ( )( ) ( )p r

in p sc r≡E r E r , where 
( )r
scE  is the field scattered by the resonator and presented by Eq. (1). This field, however, must be 

rewritten in the particle-centered rather than in the resonator-centered coordinate system. If these 
coordinate systems can be transformed to each other by a simple translation, one can convert 
resonator-centered VSHs into the particle-centered ones and vice versa using vector translational 
addition theorem [80]. According to this theorem, the resonator-centered VSHs of Eq. (1) can be 
presented as  
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where prd  is the position vector of the center of the particle in a resonator-centered coordinate 

system, ( )
, ; ,m lAμ ν
+  and ( )

, ; ,m lBμ ν
+  are so-called translation coefficients and superscript (+) indicates 

that the radial dependence of these coefficients is given by the outgoing spherical Hankel 
functions.  One can see from Eq. (12) that translation coefficients ( )

, ; ,m lAμ ν
+  connect VSHs of the 

same polarization, while coefficients ( )
, ; ,m lBμ ν
+  are responsible for the polarization conversion due 

to translation. In this paper we use the same normalization of the VSH and of the translation 
coefficients as in Ref. [62] (all relevant expressions are given in Appendix C, Eqs. (C1) through 
(C4) for VSHs and Eqs. (C5) through (C8) for the translation coefficients). The translation 
coefficients have useful symmetry properties with respect to inversion of the translation vector 

prd  and interchange of the modal indexes [81]: 

 

*( ) ( )
, ; , 1 , ; , 1

*( ) ( )
, ; , 1 , ; , 1

( , ) ( , )

( , ) ( , )

m 1 pr m 1 pr

m 1 pr m 1 pr

A k A k

B k B k

μ ν μ ν

μ ν μ ν

+ −

+ −

⎡ ⎤− = ⎣ ⎦

⎡ ⎤− = ⎣ ⎦

d d

d d
 , (13) 

where superscript (-) in translation coefficients on the right-hand side of Eq. (13) indicates that 
their dependence upon the radial coordinate of the translation vector prd  is given by incoming 

spherical Hankel functions (2)
1( )l prh k d .  

Choosing the polar axes of the particle-centered and the resonator-centered coordinates to be 
parallel to the translation vector prd  (i.e. assuming that both of them are the particle systems), 

we make the translation coefficients diagonal with respect to indexes m  and μ . This choice of 
the coordinate axes significantly simplifies calculations and will be used in the rest of this work. 
Taking into account the explicit form of the translation coefficients, Eq. (C9) in Appendix C, one 
can show that in the particular case of translation coefficients with m μ=  and one of the polar 
indexes equal to unity, symmetry relations given by Eq. (13) take the form    

 
( ) ( )

, ; ,1 1 ,1; , 1

( ) ( )
, ; ,1 1 ,1; , 1

( , ) ( , )

( , ) ( , )
m 1 m pr m m 1 pr

m 1 m pr m m 1 pr

A k A k

B k B k

+ +

+ +

− =

− = −

d d

d d
.  (14) 



With help of Eq. (12) we can present Eq. (1) in the form suitable for finding coefficients mp  of 
Eq. (11). Using the Lorentz-Mie solution for the spherical particles [62] we find:    

 ( ) ( )( ) ( )
, ,1; , 1 , ,1; , 1

1
, ,m p m l m m l pr m l m m l pr

l
p g A k c B kα

∞
+ +

=

⎡ ⎤= − + −⎣ ⎦∑ d d ,  (15) 

where  

 ( )(2)
1p xα α ς≡   (16) 

is an abbreviated notation for the 1l =  Lorenz-Mie coefficient for TM polarized field of a 
spherical particle of radius pR . This coefficient is given by the same expressions as Eq. (5) with 

resonator’s refractive index replaced by particle’s index pn , and resonator’s radius by particle’s 

radius pR . In order to keep the same definition of the size parameter x  as in Eq. (5), we 

introduced into Eq. (16) a parameter / 1p rR Rς =   characterizing the size of the particle 

relative to that of the resonator. 

Before continuing with the derivation of equations for the field expansion coefficients we must 
comment on the applicability of the Eq. (11) for the field of the nanoparticle. The approximation 
expressed by this equation is not equivalent to the uniform field assumption, which is often 
identified with the dipole approximation. While the latter is valid only if 1xς   and allows 
replacing the Mie-Lorentz coefficient pα with the first non-vanishing terms in its expansion with 

respect to xς :   

 ( ) ( )
2 2 2 2

3 31 1
1 12 2 2 2

1 1

2 21
3 2 3 2

p p
p

p p

n n n n
i n x i n x

n n n n
α ς ς

⎡ ⎤− −
≈ − +⎢ ⎥+ +⎢ ⎥⎣ ⎦

,  (17) 

the validity of Eq. (11) requires only that Mie-Lorentz coefficient pα  remains much larger than 

all other coefficients ( )
l
σα  in the spectral region of interest.  In the case of WGMs characterized 

by large values of orbital number, 1l  , the inequality 1xς   and, hence, validity of Eq. (17),  
is not at all assured even for very small nanoparticles while Eq. (11) might remain valid even 
when  Eq. (17) is not. To illustrate this point we compare pα  with quadrupole and other higher 

order coefficients using as an example parameters of the system studied in Ref. [12] ( 0.0058ς = , 

1 1.326n = , 1.449rn = , 1.5718pn = ). Taking into account that orbital number of the WGM 

excited in those experiments was 340l = , which corresponds to 242.15x =  at the frequency of 
the WGM resonance, we estimate 1.39xς ≈ . Clearly, the uniform field approximation given by 

Eq. (17) is not valid in this case. At the same time, estimates of the ratio (2) ( ) /l pxα ς α  for 1l >  



produce values (2)
2 ( ) 0.245 0.05/ px iα ς α ≈ − , (2)

3 0.023( ) 5 0.006/ p ixα ς α −≈  and even smaller 

values for larger orbital mode numbers. However, one also needs to be aware of the 1l =  
contribution to the particle’s field from the TE polarized VSH, which, for such large values of 
the parameter xς , can become comparable with the dipole TM contribution. For the parameters 

cited above, we find that (1)
1 ( ) 0.521 0.068/ p ixα ς α ≈ −  and it might have to be taken into 

account. This contribution can become even more significant in the case of nanoparticles with 
very high refractive index, which can show a very strong magnetic response [30,69–71]. This is a 
very interesting possibility, and, in principle, the theory presented in this paper can be 
generalized to include also the TE contribution to the particle field. However, this is a topic for a 
separate publication, and here we will stay within the dipole approximation expressed by Eq. 
(11), whose range of validity is defined by inequality 1xς ≤  and is much less restrictive than 
condition 1xς   required for applicability of the uniform field approximation. 

The expansion coefficients of the resonator’s scattering field, ,m lg  and ,m lc , in the presence of 

the particle are determined by the same Eq. (3) as in the absence of the particle, where, however, 
the incident field coefficients ,m la  and ,m lb  should be modified to account for the contribution of 

the field scattered by the particle into the field incident on the resonator. This is achieved by 
applying the translational addition theorem to Eq. (11), which allows rewriting this field in the 
form       

( ) ( ) ( ) ( )( ) ( ) (1) ( ) (1)
, ; ,1 1 , 1 , ; ,1 1 , 1

1 1

, , , , , ,p
sc m m pr r r r m pr r r r

m

p A k k r B k k r
ν

μ ν μ ν μ ν μ ν
ν μ ν

θ ϕ θ ϕ
∞

+ +

≤ = =−

⎡ ⎤= +⎣ ⎦∑∑ ∑E d N d M . (18) 

Combining Eq. (18) with Eq. (2) for the external incident field, we find that in the particle’s 
coordinate system the incident field coefficients m,la  and m,lb  in Eq. (3) must be replaced 
according to: 

 
( )
( )

( )
; 1 1

( )
; ,1 1
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,

m,l m,l m m,l m, pr

m,l m,l m m,l m pr

a a p B k

b b p A k

+

+

⇒ +

⇒ +

d

d
.  (19) 

At this point, we shall specify the excitation conditions that will be assumed in this work. The 
most effective excitation of WGMs is achieved by using a tapered fiber positioned in the close 
proximity of the resonator [82–85]. Strictly speaking, the resonator and the exciting fiber must be 
considered as a coupled system, in which the field in the fiber not only excites WGMs but also 
affects their properties, most notably the Q-factor [85–89]. To deal with this situation rigorously 
one would need to treat coefficients of the incident field as dynamic variables and compliment 
equations for the field in the resonator with equations describing the field in the fiber. This 
consideration, however, is outside of the scope of this work, and here we shall treat the 
expansion coefficients of the incident field as external parameters. We will choose them in a way 



that would mimic the excitation in a spherical resonator and in the absence of the nanoparticle of 
a single mode of a given (TE or TM) polarization with a specified orbital number l L=  and 
radial number s S= . In the resonator’s coordinate system such a mode is characterized by a 
single VSH with modal numbers ;  m M l L= = . Thus, the TE illumination conditions are 
described by the parameters of the incident field chosen as  

 , 0 , , ,; 0m l m M l L m la a bδ δ= =%% , (20) 

while to describe the TM illumination we postulate 

 , 0 , , ,; 0m l m M l L m lb b aδ δ= =% % .  (21) 

Here we again use the tilde to indicate that the respective quantity is written in the resonator’s 
coordinate system. Parameters 0a  and 0b  are normalization coefficients that can be determined 
from experimental values of power entering the resonator. It should be emphasized that pure TE 
or pure TM modes cannot be excited in the spheroidal resonators, therefore Eqs. (20) and (21) 
should not be construed to assume that field actually excited under conditions of Eq. (20) have 
TE polarization or that the field excited under conditions of Eq. (21) are of TM polarization. 

Expansion coefficients of the field transform under rotation from the resonator’s to the particle’s 
coordinates characterized by Euler angles , ,α β γ  as  

 ( ) 1

1

1 1

,, ( )
,

, ,

, ,
L m Lm L L

m m
m Lm L m L

aa
D

b b
γ β α

=−

⎛ ⎞⎛ ⎞
= − − − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑

%

%
.  (22) 

Taking into account values of the Euler’s angles, given by Eq. (9) and Eqs. (20), (21), we can 
present the expansion coefficients of the incident field in the particle’s coordinate system as 

 ( ), 0( )
,

, 0

( )Mm L L
m M p

m L

a a
i d

b b
θ

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
.  (23) 

Substituting Eq. (19) into Eq. (3) we arrive to the following system of equations for the 
expansion coefficients of the field scattered by the resonator in the presence of the nanoparticle: 
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where we added superscripts in ( )
,m lc σ  and ( )

,m lg σ  to distinguish between the two types of the 

excitation – TE for 1σ =  and TM for 2σ = . Coefficients ( ,0)
,l mc σ  and ( ,0)

,l mg σ  are expansion 

coefficients of the scattered field under TE or TM illuminations in the absence of the 
nanoparticle:  
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where we used transformation properties of the T-matrix, Eq. (10), and of expansion coefficients, 
Eq. (23).  

Using Eq. (24) one can eliminate the resonator’s coefficients ( )
,m lc σ  and ( )

,m lg σ

 in Eq. (15) and derive 

a closed system of equations for particle’s coefficients ( )p σ
μ , where we again added superscript to 

distinguish between the cases of TE ( 1σ = ) and TM ( 2σ = ) illumination conditions: 

 ( ) ( ) ( )
1

( ) ( ,0) ( ) ( ,0) ( )
, , , , ,1; , 1 , ,1; , 1

1
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U V p c B k g A kσ σ σ
μ μ μ μ

μ
δ α α + +

=−

⎡ ⎤⎡ ⎤− + = − + −⎣ ⎦ ⎣ ⎦∑ ∑ d d . (26) 

Matrices ,mU μ  and ,mV μ  in Eq. (26) are defined as 
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Since translation coefficients vanish whenever one of the polar numbers m  or μ  exceeds its 
respective orbital number l  or ν , the only non-zero elements of these matrices correspond to 
values 1,  1m μ≤ ≤ . This is, of course, fully consistent with the dipole approximation used to 

describe the field scattered by the particle.  In the case of spherical resonators, when the T-matrix 
becomes diagonal in all its indexes and loses its dependence on the polar number m , matrices   

,mU μ  and ,mV μ are reduced to the respective expressions of Ref. [48,49]:  

 
2 2(2) ( ) (1) ( )

, , , ; ,1 1 , , , ; ,1 1( , ) ; ( , )m m l m l m pr m m l m l m pr
l l

U A k V B kμ μ μ μδ α δ α+ +⎡ ⎤ ⎡ ⎤= = −⎣ ⎦ ⎣ ⎦∑ ∑d d ,  (28) 

where we used Eq. (4) to represent elements of the T-matrix in terms of the Lorentz-Mie 
coefficients and took into account properties of the translation coefficients given by Eq. (14). 



Derivation of Eq. (26) essentially completes formulation of the general theory of the WGM 
resonances in spheroidal resonators interacting with a polarizable dipole. Full numerical analysis 
of the system under consideration involves solution of the system of Eq. (26) and (24), which is 
quite straightforward, provided that we can compute matrices ,mU μ  and ,mV μ . They contain 

products of the off-diagonal components of the T-matrix and the translation coefficients. The T-
matrix in the resonator’s coordinate system can be computed using one of many publicly 
available codes, e.g. one presented on the website maintained by M. Mishchenko, Ref. [90], and 
transformed into the particle’s system using transformation rule Eq. (10). The computation of the 
translation coefficients appearing in Eq. (28) is also quite straightforward with Eq. (C9) and 
requires only ability to compute Hankel functions. The problem arises for very high values of 

50L ≥  since in this case the non-diagonal elements of the T-matrix become very small while the 
translation coefficients become very large. Under these circumstances, it is very easy to lose 
significant contributions to ,mU μ  and ,mV μ  if the magnitude of the T-matrix elements drops 

below the precision limit set for their computation. This difficulty becomes more significant for 
small particles located very close to the surface of the resonator because in this case in order to 
reach convergence criteria one has to include terms with higher values of l  into respective sums 
in Eqs. (24) and (26). This problem, however, is not of principle nature and can be overcome by 
improving computational precision of available T-matrix codes. Using modern computational 
platforms these calculations can be carried out with arbitrary precision, which will, of course, 
make the computations longer. In this work, whose main goal is to illustrate the developed 
approach, we shall limit our consideration to relatively low values of L . At the same time, we 
showed in Ref. [67] that the WGM with lower orbital orders excited in smaller resonators can 
result in significantly enhanced particle-related effects. Therefore, consideration of WGMs with 
smaller orbital numbers present significant interest and the results of this work can be useful 
beyond mere illustration of the method.  

III. INTERACTION BETWEEN WGMS OF A SPHEROIDAL RESONATOR AND 
A SUBWAVELENGTH PARTICLE: RESULTS 

A. Particle-induced modification of the WGM resonance frequencies 

In this section we discuss the modification of resonance frequencies of the spheroidal resonator 
due to interaction with the nanoparticle. This issue has attracted the largest attention in the recent 
literature (see Introduction for references) due to its importance for WGM-based single particle 
sensors. In this subsection we will present the results of the numerical computation of these 
frequencies, which will be compared with the results of approximate analytical calculations 
based on the resonant approximation [67]. For numerical simulations we choose the resonator-
particle system with the following parameters 1 1n = , 1.59r pn n= = , 4rR mμ= , 0.032pR mμ= , 

4.2prd mμ= . The calculations were carried out for excitation conditions of both TE and TM 

polarizations with exciting field characterized by 39L =  and different values of the polar 



number M . To compute the frequencies of the modified WGM resonances it is sufficient to 
consider the expansion coefficients of the particle’s scattered field ( )p σ

μ  defined by Eq. (26). The 

frequencies are found by identifying the resonances of these coefficients. 

We begin by computing the dependence of the particle-induced resonance frequencies upon the 
ellipticity of the resonator e . For this particular computation we assume that the particle is 
positioned in the equatorial plane of the resonator ( / 2pθ π= ) and study coefficients ( )

1p σ
±  and 

( )
0p σ  as functions of frequency. For TE excitation, we find that coefficients ( )1

1p±  demonstrate 

resonance behavior with the same resonance frequency for both ( )1
1p  and ( )1

1p−  coefficients, while 

the coefficient (1)
0p  remains very small for all frequencies. This means that in the case of the TE 

excitation there exist components of the resonator’s field, which do not interact with the particle, 
and, therefore resonate at the frequency of the initial WGM resonance of the resonator. This 
conclusion is confirmed by direct calculations of the coefficients ( )

,m lc σ  and ( )
,m lg σ  of ( )( )r

scE r , 

which will be presented in the next section of the paper. Thus, as expected, the particle induces 
splitting of a single TE WGM peak in two spectrally close resonances, one of which coincides 
with the original WGM resonance of a single resonator. This behavior of TE WGMs is related to 
the properties of the translation coefficient ( )

, ; ,1 1( , )m l m prB k+ d , which vanishes at 0m =  (see Eq. 

(C9) in Appendix C), and can also be traced to the reflection symmetry of the resonator-particle 
system with respect of the equatorial plane of the resonator [67]. 

The results of these calculations for two 
different values of the resonator-particle 
distance prd  and TE excitation are 

shown in Figure 4. One can see that 
small deviation of the resonator’s shape 
from sphere results in sharp reduction of 
the splitting δω  expressed in terms of 
the dimensionless size parameter x . 
However, after initial decrease, δω  
dependence on e  saturates so that when 
the ellipticity exceeds some crossover 
value cre , the splitting remains virtually 
independent of e . The crossover value 

cre  depends on prd ( 0.001cre =  for 

4.036prd mμ=  and 52 10cre −= ×  for 

4.2prd mμ= ), but always remains 

FIG. 4. Dependence of the frequency splitting versus ellipticity of 
the resonator in case of TE excitation for two resonator-particle 

distances obtained from coefficients ( )1
1p± . Gray lines (solid and 

broken) represent results of numerical computation, and black 
solid and broken lines show results obtained from analytical 
expressions derived using resonance approximation of Ref. [67]. 



relatively small that all realistic nominally spherical solid resonators are characterized by 
ellipticity parameters cre e> . The regime cre e<  can be in principle achieved in liquid droplets 
actuated as resonators, which recently started attracting significant attention [91–95]. 
Experiments with liquid droplets controlled by optical tweezers might provide the experimental 
verification of the effects presented in Figure 4.  Physically, the  cre  separates two regimes: for 

cre e<  the particle-induced splitting δω  exceeds the spectral distance , ; 1,M L M Lω ±Δ  between 

WGMs with the same value of orbital number L  and adjacent polar numbers M  and 1M ± , 
while for cre e>  we find that , ; 1,M L M Lδω ω ±Δ . These findings agree with the approximate 

analytical results presented in Ref. [67] and are also shown in Figure 4. We can also conclude 
that inequality 1 cre e>  can be considered as a condition of applicability of the resonance 
approximation introduced in Ref. [67].  

The resonant response of the resonator-
particle system to the TM excitation is 
different. Now in addition to resonances of 

( )2
1p± , which occur at coinciding 

frequencies, we also observe resonance of 
( )2
0p  at a new frequency. The difference 

between TM and TE excitations can again 
be explained by the different behavior of 
TE and TM polarized electric fields with 
respect to reflection in the equatorial plane. 
However, the behavior of both these 
frequencies as functions of ellipticity is 
similar to that of TE polarization, 
although the value of cre  is different for 
each of the two frequencies: it is larger 
for the resonance of ( )2

0p  because this 
resonance is shifted stronger from the original WGM frequency than the one associated with 
coefficients ( )2

1p±  (see Figure 5). 

One of the challenges in using observations of the particle-induced shifts WGM resonances for 
sensing is the lack of control over the position of the analyte particle on the surface of the 
resonator. It was suggested and demonstrated experimentally in Ref. [12] that one can determine 
the angular coordinate of the particle by comparing frequency shifts of WGMs with the same 
orbital, but different polar numbers. It is interesting, therefore, to consider the resonance 
frequencies as functions of particle’s angular coordinate pθ  for various polar modes of the 

FIG. 5. Dependence of the frequency splitting versus ellipticity of 
the resonator in case of TM excitation for a single resonator-
particle distance obtained from coefficients ( )2pμ . Gray lines 
(solid and broken) represent results of numerical computation, and 
black solid and broken lines show results obtained from analytical 
expressions derived using resonance approximation of Ref. [67]. 



resonator-particle system comparing the rigorous numerical results with those of the resonant 
approximation.  



The first thing to note in this regard is that for the off-equatorial position of the particle 
coefficients (1) (1)

1 1,p p−  for the TE excitation or coefficients (2) (2)
1 0,p p±  for the TM excitation do not 

describe excitation of the normal modes of the resonator-particle system in the sense that they do 
not resonate at a single frequency. Analytical calculations of Ref. [67] indicate that in this case 
combinations ( ) ( ) ( )1,2 1,2 1,2

1 1p p p± −= ±  represent normal modes for both TE and TM excitation types. 

FIG. 6. Angular dependence of the shift of the particle-induced resonance frequencies excited by a TM type ( (2) (2)
,0,p p+ − - 

left vertical axis) and TE type ( (1)p− - left vertical axis and (1)p+ - right vertical axis) excitation with 39L =  and M L=  

(a) and 1M L= −  (b) obtained by observing maximums of (1,2)
,0p±  coefficients for 0.0005e = . The coefficients (1)p+  

and (2)p−  vanish at the equatorial position of the particle on the (a) graph, as well as coefficients (1)p− , (2)
0p and (2)p+  on the 

(b) graph. 

FIG. 7. Angular dependence of the shift of the particle-induced resonance frequencies excited by a TM type ( (2) (2)
,0,p p+ − - 

left vertical axis) and TE type ( (1)p− - left vertical axis and (1)p+ - right vertical axis) excitation with 39L =  and M L=  (a) 

and 1M L= −  (b) obtained by observing maximums of (1,2)
,0p±  coefficients for 0.048e = . At the equatorial position of the 

particle the coefficients (1)p+  and (2)p−  vanish on the (a) graph, as well as coefficients (1)p− , (2)
0p and (2)p+  on the (b) graph. 



In the latter case, the resonant approximation predicts that (2)p−  and (2)
0p  coefficients resonate at 

the same frequency, the fact confirmed by numerical computations as well. Thus, we computed 
coefficients ( )1,2p±  and used their frequency dependence to establish positions of the particle-

induced resonances for a number of different values of pθ . In Figure 6 we present the results of 

these calculations for two values of the exciting polar number M L=  and 1M L= −  for the 
resonator with a very small ellipticity 0.0005e = , which is, however, still larger than the critical 
value cre  for the equatorial position of the particle (see Figure 3). One can see an excellent 
agreement between numerical and analytical results based on the resonant approximation of 
Ref. [67] for both fundamental and 1M L= −  mode. This means that, even for such a small 
ellipticity, the particle “sees” only two instead of 2 1L +  degenerate modes in agreement with 
assumptions of Ref. [67] and results shown in Figure 3, while all off-diagonal and non-resonant 
elements of the T-matrix indeed remain very small.  

However, it is more interesting to compare 
numerical and analytical results for more 
realistic values of ellipticity. In Figure 7 
we present the results of calculations for 

0.048e = , which corresponds to typical 
values for nominally spherical resonators 
used in sensing experiments. While the 
magnitude of the shift, compared to the 
case of smaller ellipticity, does not change 
much, the difference between numerical 
and analytical results grows as expected. 
This difference is growing with deviation 
of the particle’s location from equatorial, 
but for 1M L= −  mode and pθ  below 

~84 degrees, a new qualitative effect 
emerges in the frequency dependence of 
coefficient (2)p− .  As one can see from Figure 8, coefficient (2)p−  acquires an additional maximum 

at angle 79pθ °= , which grows more prominent for 77pθ °=  and eventually washes out traces of 

both original maxima resulting in a broad spectral feature not directly related to the resonant 
frequencies of the system. The origin of this additional maximum can be traced to one of the 
non-resonant matrix elements of the T-matrix showing the limitations of the resonant 
approximation and even more so of the heuristic phenomenological models. At the same time 
this phenomenon does not manifest itself in the behavior of coefficient (2)

0p , which remains 

unaffected and can be used instead of (2)p−  to locate positions of the resonances (Figure 7(b)).  

FIG. 8. Dependence of the (2)p− coefficient on the offset from the 
resonator’s frequency ( 0δω = ) for a set of the polar angles pθ
, 1M L= −  and 0.048e =  



B. Resonances of the scattered power 

Experimental detection of frequencies of WGM resonances is usually based upon observation of 
the minima of the intensity of light transmitted through the fiber used to excite the 
resonances [1,82,83,85]. These minima correspond to frequencies at which the transfer of energy 
from the fiber to the resonator is at maximum. Under the steady-state conditions these 
frequencies also correspond to the maxima of the power scattered by the resonator (or by the 
resonator-particle system). These arguments, of course, do not take into account the coupling 
coefficient between the fiber and the resonator, which affects the excitation of the WGMs, as 
well as coupling of the scattered light back to the fiber. This coupling has been studied 
intensively for a single resonator [85–89], but how the presence of the particle affects the 
coupling, and conversely, how proximity of the taper affects the particle-induced effects, is not 
clear. There are some indications, however, that the effects due to interaction with particles can 
be stronger than the effects due to the taper [87], and while this question deserves more careful 
consideration one can assume that calculations of the scattered power in the absence of the fiber 
well represent the results of actual observations. This quantity provides more information about 
the resonator-particle interaction: in addition to the positions of the particle-induced resonances 
we can also see their widths and relative heights. Besides, this quantity allows us to predict 
whether the particle-induced resonances can be resolved.   

The (dimensionless) power scattered by the resonator with a single WGM with a given polar 
number is given by the following expression 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )max 2 2 2 2 2 2

0, 0, , , , ,
1 1

1
2

l l

sc l l m l m l m l m l
l m

W c g c c g gσ σ σ σ σ σ σ
+ − + −

= =

⎧ ⎫= + + + + +⎨ ⎬
⎩ ⎭

∑ ∑ ,  (29) 

where the sum cut-off number maxl is chosen to achieve the convergence of the sum, and  

coefficients ( )
,m lc σ

±  and ( )
,m lg σ

± are defined similarly to coefficients ( )
1p σ

± :  

 
( ) ( ) ( )

( ) ( ) ( )
, , ,

, , ,

m l m l m l

m l m l m l

c c c

g g g

σ σ σ

σ σ σ
± −

± −

≡ ±

≡ ±
 . (30) 



Preliminary determination of the resonance positions based on computation of coefficients ( )
1p σ

±

makes finding resonances of the scattered power much more efficient as it significantly limits the 
range of frequencies that need to be covered. In Figure 9 we show how analytical results of the 
resonant approximation compare with numerical calculations for the resonator with small 
ellipticity 0.0005e = . 

FIG. 9. Dependence of the scattered power on the frequency close to the resonator’s frequency ( 0δω = ) for 0.0005e =
Graph (a) shows results for fundamental resonator’s mode 39M L= = and particle located at the equator, while graph (b) 
represents results for 1 38M L= − =  and particle located at polar angle 81pθ = ° . Solid lines correspond to analytical 
results and dashed lines correspond to numerical results obtained from Eq. (29). 



Analytical results are found to be in a good agreement with numerical simulations. For TE (TM) 

FIG. 10. Dependence of the resonator scattered power on the frequency close to the resonator’s frequency ( 0δω = )  for 
0.048e = . Graph (a) shows results for fundamental resonator’s mode 39M L= = and particle located at the equator, 

while graph (b) represents results for 1 38M L= − =  and particle located at polar angles 81pθ = °  and 77° . Solid lines 
correspond to analytical results and dashed lines correspond to numerical results obtained from Eq. (29) . 



mode in the selected frequency ranges the main contribution to the sum in Eq. (29) comes from 
( )

,m lc σ
±  ( ( )

,m lg σ
± ) coefficients, while the rest coefficients are, at least, 4 orders of magnitude smaller, 

thus confirming the validity of the resonant approximation. Figure 10 shows the same quantities, 
but for ellipticity 0.048e = . One can see that with deviation of the particle from the equatorial 

position the maxima of the scattered power move toward each other signifying decreasing 
separation between the resonance frequencies, and starting with some critical angle, different for 
TE and TM polarizations, the maxima start overlapping and merge into a single peak.  

As expected, in the case of larger ellipticity the discrepancy between analytical and numerical 
results becomes more prominent. In order to achieve a better quantitative understanding of the 
significance of this difference we compared numerical and analytical results for the positions of 
the resonance maxima. The differences between these quantities as functions of the particle’s 
position are shown in Figure 11, where they are normalized by the deviation of the frequency of 
the left peak from resonator’s frequency at the equatorial position of the particle.  One can see 
that the non-resonant terms in the T-matrix, which are taking into account in our numerical 
computations, result in corrections to the amount of the frequency splitting as large as 4 6%÷  of 
the splitting, which is experimentally significant. One can also notice that the discrepancy 
between analytical and numerical results is greater when the deviations of the particle-induced 
resonances from the initial resonator’s frequency are larger and decreases as the splitting of the 
resonances becomes smaller.  

FIG. 11. Dependence of difference of peak positions of scattered power between the results of analytical approximation and 
numerical simulation on the angular position of the particle. Frequency difference is normalized on the modulus of the shift 
of the left peak from resonator’s frequency at 90pθ = ° (see Figure 9(a) and Figure 10(a)) for fundamental mode 

39M L= = . Graph (a) corresponds to 0.0005e =  and graph (b) is for 0.048e = . Curves for TM mode are calculated 
down to the angle of ~85° where both peaks merge together, while TE peaks are still separated even at 82°. 



One of the interesting particle-induced effects found in spherical resonators [49] is a 
directionality of the scattered field determined by the position of the particle. Computing the 
dependence of the scattered intensity upon azimuthal angle in the equatorial plane of the 
spheroidal resonator, we found that even slight deviations from sphericity completely washes out 

this directionality (see Figure 12).  

IV. CONCLUSIONS 
In this paper we presented the computationally efficient numerical method of determining 

spectral characteristics of a spheroidal whispering-gallery-mode resonator interacting with a 

dielectric nanoparticle. The approach is based on combination of T-matrix formalism for a single 

resonator with a dipole approximation for a field of the nanoparticle and allows computing 

scattered field of the resonator-particle system illuminated by an incident field in the form of a 

single WGM mode of TE or TM polarization. This form of the incident field mimics excitation 

of the resonances by a tapered fiber. Our calculations showed that even smallest deviation of the 

resonator’s shape from an ideal sphere renders spherical approximation for the shape of the 

resonator invalid and that the analytical resonant approximation for spheroidal resonances 

developed in Ref. [67,68] gives an accurate description of the spectral characteristics of the 

resonator-particle system. However, our calculations also showed that for the values of the 

ellipticity parameter of the order of 3-5%, which is typical for many nominally spherical 

resonators used in experiments, the corrections due to non-resonant elements of the T-matrix can 

become quite significant and result in up to 4-6% deviations of the resonant frequencies from the 

FIG. 12. Azimuthal intensity pattern in the equatorial plane for the sphere (a) and spheroid with 0.0005e = (b) at radius 
5r mμ=  from the center. Angle is defined with respect to pZ  axis with particle located on equator. 



values predicted by the resonant approximation. With particle-induced spectral modifications of 

the WGM resonances becoming a centerpiece of new sensing applications these corrections are 

important enough to take into account when using experimental results to size the nanoparticle 

analytes [14–16]. A direct comparison with presently available experimental data would require 

expanding the codes for calculation of the elements of T-matrix beyond available precision, 

which is possible, but lies beyond the scope of this work.    
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APPENDIX A: LORENTZ-MIE COEFFICIENTS FOR A SINGLE SPHERE 

The Lorentz-Mie coefficients for ideal spheres are given by Eq. (5) of the main text, where 
respective functions ( ) ( )l xσβ  and ( )

l
σς  are defined as 

TE polarization: 

 
( ) [ ] [ ]

( ) [ ] [ ]

1
1 1 1

1
1 1 1

( ) ( ) ( ) ( ) ( )
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TM polarization:   
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.  (A2) 

In Eqs. (A1) and (A2), functions ( ), ( )l lj z y z  are spherical Bessel functions of the first and 

second kind respectively;  [ ]( )zf z ′  means differentiation with respect to the entire argument. 

APPENDIX B: PROPERTIES OF T-MATRIX 

Properties of T-matrix here are cited from Ref. [62].  
The following relation is valid for a scatterer of an arbitrary shape and for any choice of the 
coordinate system. (Scatterer here is any object interacting with an incident electromagnetic 
wave. In the context of this paper, the role of the scatterer is assigned to the resonator.) 

 ( ) ( ) ( ), ,
, ; , , ; ,1 m

m l m lT Tμσ σ σ σ
μ ν μ ν

+′ ′
− −= −   (B1) 

For axially symmetrical scatterers additional relations between elements of T-matrix appear. In 
the resonator’s coordinate system they can be expressed as 
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Finally, the presence of the plane of symmetry perpendicular to the axis of rotation is responsible 
for the following relations between elements of the T-matrix in the resonator’s coordinate system 
(for σ σ′≠ ): 
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Most important for us is the transformation property of the T-matrix expressed by Eq. (8) of the 
main text.  Wigner D-matrix ( )( )

, , ,mD ν
μ α β γ  appearing in that formula can be written down as  

 ( ) ( )( ) ( )
, ,, , im i

m mD e d eν α ν μγ
μ μα β γ β−= , (B4) 

where ( )( )
,md ν
μ β  is called Wigner (small) d-matrix. One of its multiple representations is as 

follows  
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where summation is carried over such k , which results in non-negative factorials in the 
denominator of Eq. (B5).  Matrix ( )( )

, 1

l
m md β  as a function of β  has its maximum at / 2β π= ± , 

and decreases to zero when β  approaches values of zero or π± . It has following important 
properties 
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1 1
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 and  
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valid for an arbitrary angle.  In the particular case of / 2β π= , Eq. (B5) gives  
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In this case one can derive an additional relation  

 ( ) ( ) ( )1

1 1

( ) ( )
, ,/ 2 1 / 2l ml l

m m m md dπ π−
− = − ,  (B9) 

which allows for significant simplifications of the calculations of the T-matrix in the particle’s 
coordinate system when the particle is at the equatorial position.   

APPENDIX C: VECTOR SPHERICAL HARMONICS AND TRANSLATION 
COEFFICIENTS 

Different normalizations for VSHs result in different definitions of the translation coefficients. 
To avoid possible confusion we present here relevant expressions used in this work, which are 
taken from Ref. [62]. It should be noted that the authors of Ref. [50] utilize different convention 
with regard to normalization of VSH, and, hence, use different formulas for the translation 
coefficients. 

VSHs are functions of spherical coordinates , ,r θ ϕ  (radial, polar and azimuthal coordinates, 
respectively) defined with respect to a particular coordinate system. For TE polarization they are 
defined as  
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where 
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The angular portion of the VSH is defined as   
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where ,θ ϕe e  are unit vectors of the spherical coordinate system for the polar and azimuthal 

directions, respectively, and ( )m
lP x  are standard associated Legendre functions. VSH of TM 

polarization are defined as   
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Translation coefficients ( )( )
, ; , 1,m l prA kμ ν
+ d  and ( )( )

, ; , 1,m l prB kμ ν
+ d , which are consistent with definition 

of VSHs given by Eqs. (C1) - (C4), are expressed as functions of the radial prd , polar prθ  and 

azimuthal prϕ  coordinates of the particle’s position vector prd  with respect to the center of the 

resonator.  
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where  
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and the coefficients   
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ν
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are Wigner 3j symbols. In the particle coordinate system 0prθ =  and, as a result, only m μ=  

components of the translation coefficients are different from zero. In the particular case, when 
one of the angular momentum indexes is taken to be unity, expressions for the translation 
coefficients simplify and become 
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