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Abstract

We characterize the influence of different intersection mixing rules for particle tracking simula-

tions on transport properties through three-dimensional discrete fracture networks. It is too com-

putationally burdensome to explicitly resolve all fluid dynamics within a large three-dimensional

fracture network. In discrete fracture network (DFN) models, mass transport at fracture intersec-

tions is modeled as a sub-grid scale process based on a local Péclet number. The two most common

mass transfer mixing rules are 1) complete mixing, where diffusion dominates mass transfer, and 2)

streamline routing, where mass follows pathlines through an intersection. Although, it is accepted

that mixing rules impact local mass transfer through single intersections, the effect of the mixing

rule on transport at the fracture network scale is still unresolved. Through the use of explicit

particle tracking simulations, we study transport through a quasi-two-dimensional lattice network

and a three dimensional network whose fracture radii follow a truncated power law distribution.

We find that the impact of the mixing rule is a function of the initial particle injection condition,

the heterogeneity of the velocity field, and the geometry of the network. Furthermore, our particle

tracking simulations show that the mixing rule can particularly impact concentrations on secondary

flow pathways. We relate these local differences in concentration to reactive transport and show

that streamline routing increases the average mixing rate in DFN simulations.

∗ Corresponding author: jhyman@lanl.gov
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I. INTRODUCTION15

The behavior of fluid flow and the associated transport of dissolved chemicals through16

low-permeability subsurface rocks is primarily controlled by fracture networks within the17

medium. Length scales within these networks typically range several orders of magni-18

tude [1] and characterizing the interplay across these length scales has applications in a19

range of engineering endeavors including CO2 sequestration technologies [2], geothermal en-20

ergy extraction [3], unconventional hydrocarbon extraction [4], and the long term storage21

of spent nuclear fuel [5]. At the network structure scale, connectivity and density control22

the general behavior of the fluid flow field [6]. Within individual fractures, the location of23

inflow and outflow boundaries and local variations in the fracture aperture determine the24

local flow field [7, 8]. However, how fluid moves through the intersections between fractures25

is also important in terms of local dispersion because intersections are regions of enhanced26

mixing [9] and can impact network scale spreading of solute [10].27

Discrete fracture networks (DFN) are one of the most common modelling tools for sim-28

ulating flow and transport through fractured media. In the DFN methodology fractures29

are represented as lower dimensional structures in the domain, lines in two-dimensions and30

planes in three-dimensions. The choice to explicitly resolve fractures, as opposed to using31

effective properties in continuum models, allows observations of transport to be linked to32

the structural properties of the fracture networks. This choice drastically increases the cost33

of running DFN simulations and certain aspects of the simulation are modelled as sub-grid34

scale processes.35

One such subgrid process is particle behavior within fracture intersections. There have36

been a number of laboratory experiments [9, 11–14] and numerical simulations [15–18] to37

better understand particle behavior within fracture intersections. The fluid velocity field38

along fracture intersections is three-dimensional and particle behavior is determined by the39

combination of the velocity field, the velocity magnitude and diffusion. In a DFN, however,40

the line of intersection is either a point (2D) or a line (3D) and the true structure of the41

velocity field is not resolved. In attempts to represent the particle behavior several subgrid42

processes have been proposed. The two most prominent fracture intersection rules are43

complete mixing and streamline routing. Particle transport is primarily diffusion controlled44

with the complete mixing rule and advection dominated with the streamline routing rule.45
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The choice of which process is most appropriate is determined by the local physics of the46

fracture intersection, characterized by a Péclet number Pe, the ratio of advective to diffusive47

forces. Assuming complete mixing can be traced to the fracture junction experiments of48

Krizek et al. [11], where an inflowing branch intersected with multiple outflowing branches.49

In these experiments, tracer from the inflow branch entered a junction and was distributed50

to the multiple outflowing branches, which was interpreted as complete mixing of the tracer51

within the junction. In a DFN model with a complete mixing subgrid process, particles enter52

an intersection and are conceptually allowed to jump between streamlines and mix within53

the intersection due to diffusion. In contrast, the streamline routing mixing rule prohibits54

solute from crossing streamlines, implying only advection governs transport, representative55

of a high Pe condition. Laboratory experimental observations of solute trajectories through56

a single orthogonal intersection with two inflow and two outflow branches [12–14] suggest57

streamline routing is appropriate when the intersection Pe > O(10).58

The aforementioned laboratory studies considered transport through an idealized intersec-59

tion that is poorly representative of real geologic geometries. Moreover, they do not consider60

the impact of particle behavior along intersections on transport at the fracture and network61

scale. There have been several numerical simulations to address these aspects of DFN mod-62

elling but their conclusions appear to be in disagreement. Park et al. [19] concluded that the63

mixing rule did not significantly impact transport for simulations through two-dimensional64

networks where fracture lengths were power law distributed and solute enters the domain via65

a point source initial condition. Similarly, Cvetkovic et al. [5] simulated transport through66

a three-dimensional DFN where particles were injected across an inlet plane, and concluded67

that the mixing rule had little impact on transport as quantified by travel time distributions.68

However, Kupper et al. [20], Park et al. [21], and Kang et al. [10] found that for a point69

source initial condition complete mixing can enhance transverse spreading of a solute plume70

compared to streamline routing for transport through certain two-dimensional lattice cases.71

These studies suggest the impact of the mixing rule depends on the network structure, het-72

erogeneity of the velocity field, dimensionality of the network, and initial injection mode of73

particles. Thus, it is not clear under what conditions the choice of mixing rule at fracture74

intersections has an impact on different large scale transport features.75

We use dfnWorks [22] to simulate transport through two different DFN structures76

that represent varying degrees of structural and velocity field heterogeneity and study con-77
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ditions under which the mixing rule is important for transport through large scale fracture78

networks. One network is a quasi-two-dimensional lattice where the apertures are sampled79

from a lognormal distribution and the other is a set of networks composed of circular frac-80

tures whose lengths are drawn from a power law distribution. In both sets of simulations,81

we consider point injection and flux-weighted injection of particles across the entire inlet82

plane. The impact of complete mixing and streamline routing is compared in terms of the83

travel time distributions, mean squared displacement, and transverse breakthrough distribu-84

tions of solute plumes at uniformly spaced control planes. Additionally, to explore possible85

implications on mixing driven reactions we also compare mixing rates in simulations with86

different implemented fracture intersection mixing rules.87

We observe that the impact of the mixing rule depends on the initial injection mode,88

the fracture network structure, and heterogeneity of the velocity field. The greatest impact89

on upscaled properties is observed when particles are released from a point source. As90

heterogeneity of the network structure increases particles tend to channelize at the network91

scale and the impact of the mixing rule on upscaled behavior decreases. But even in highly92

heterogenous systems, there are significant differences in transport behavior within fracture93

planes where in-plane channelization is observed. Specifically, we find that streamline routing94

increases channelization of mass to secondary fractures, resulting in an increased overall95

system wide averaged mixing rate and local mixing rates that can differ by up to two96

orders of magnitude. This has strong potential implications for reactive transport, mainly97

in determining how aggressively and where mixing driven reactions will occur [23, 24].98

II. DISCRETE FRACTURE NETWORK SIMULATIONS99

There are a number of methods used to model flow and the associated transport of100

dissolved chemical species through fractured media in the subsurface including stochastic101

continuum [25], dual-porosity / dual-permeability [26], and discrete fracture network models102

(DFN) [27–29]. Here we use the discrete fracture network (DFN) modeling methodology103

where individual fractures are represented as planar N − 1 dimensional objects embedded104

within an N dimensional space. Each fracture is assigned a shape, location, and orientation105

within the domain by sampling distributions whose parameters reflect a site characteriza-106

tion. The fractures form a network embedded within an impermeable rock matrix; we do not107
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consider interaction between flow within the fractures and the solid matrix. Each fracture is108

meshed for computation and the governing equations for flow and transport are numerically109

integrated on the network. The choice to use a DFN model rather than a continuum model110

arises due to the focus of this study, which is characterizing the influence of smaller scale111

processes, namely particle behavior at fracture intersections, on upscaled transport behav-112

ior. Continuum models do not explicitly represent fractures and their intersections and are113

therefore unsuitable for the task at hand.114

The generation of each discrete fracture network along with flow and transport simu-115

lations is preformed using the dfnWorks suite [22]. dfnWorks is a high-fidelity DFN116

modelling suite that has been used in analysis of flow properties in fractured media with117

scales ranging from millimeters to kilometers and with applications in nuclear waster dis-118

posal [30, 31] and hydraulic fracturing [4, 32]. dfnWorks combines the feature rejection119

algorithm(fram) [33], the LaGriT meshing toolbox [34], the parallelized subsurface flow120

and reactive transport code pflotran [26], and an extension of the walkabout particle121

tracking method [35, 36]. fram is used to generate three-dimensional fracture networks.122

LaGriT is used to create a computational mesh representation of the DFN in parallel. pflo-123

tran is used to numerically integrate the governing flow equations. walkabout is used to124

determine pathlines through the DFN and simulate solute transport. Details of the suite,125

implementation, its abilities, applications, and references are provided in Hyman et al. [22].126

A. Flow Simulations127

Under the assumption of aperture uniformity within a single fracture, flow therein is128

equivalent to flow between two parallel plates and can be modeled with the Stokes equations,129

the governing equations for low Reynolds number isothermal single phase Newtonian flow.130

The Stokes equations can be integrated to determine the volumetric flow rate Q per unit131

fracture width normal to the direction of flow132

Q =
−b3

12µ
∇P, (1)

i.e., the Boussinesq equation. Here b is the aperture height and P is pressure. We consider133

an incompressible fluid such that134

∇ ·Q = 0 . (2)
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Equation 1 and 2, along with boundary and initial conditions, are used to derive an elliptic135

partial differential equation for the steady-state distribution of pressure within a network136

∇ · (b3∇P ) = 0 . (3)

Once the distribution of pressure and volumetric flow rates are determined by numerically137

integrating (3), the Eulerian velocity field u(x) within the DFN is reconstructed from the138

volumetric fluxes and pressures following Makedonska et al. [35] and Painter et al. [36]. A139

pressure gradient is imposed, which is aligned with the x axis, making this also the primary140

direction of flow.141

B. Transport Simulations: Particle Tracking142

We represent the transport of a nonreactive conservative solute in the DFN using passive143

tracer particles, i.e., a Lagrangian approach. Particle motion is purely advective within a144

fracture and molecular diffusion is only considered in fracture intersections via a subgrid145

process. We denote the plume of particles as Ω and consider two different inlet conditions.146

The first inlet condition is a point source where all particles are released into a single fracture147

close to the center of the inlet plane. In the second inlet condition, particles are spread across148

the entire inlet plane and the number of particles at a given location is proportional to the149

flux entering the system at the location, i.e., a flux-weighted injection [30, 37, 38].150

Each particle has a unique initial position that we denote a = (0, y, z)>, where the151

superscript > indicates the transpose. The trajectory x(t; a) of a particle starting at a at152

time t = 0 is given by the advection equation153

dx(t; a)

dt
= vt(t; a), x(0; a) = a, (4)

where the Langrangian velocity vt(t; a) is given in terms of the Eulerian velocity u(x) as154

vt(t; a) = u[x(t; a)]. (5)

The length `(t; a) of the trajectory at a time t is155

d`(t; a)

dt
= vt(t, a). (6)

where the Lagrangian velocity is the velocity magnitude vt(t, a) = |vt(t, a)|. The length of156

the pathline, `, is used to parameterize the spatial and temporal coordinates of the particle.157

7



Within the domain, we consider uniformly spaced control planes that are perpendicular158

to the primary direction of flow. The first arrival time τ(xi; a) of a particle at a control159

plane located at xi from the inlet is given by160

τ(xi; a) = t[λ(xi); a], λ(xi) = inf{`|xi(`; a) ≥ xi}. (7)

C. Measurements161

At every control plane xi, the first arrival times of the particles (Eq. 7) are combined to162

obtain the cummulative distribution of travel times for the plume of particles163

ψ(t, xi) =
1

M

∫
dΩH(t− τ(xi, a)) (8)

Here, M is the total mass of all the particles M =
∫
dΩ and H(t) is the heavy side function.164

We refer to ψ(t, x) as the breakthrough curve. We also compute the transverse spreading165

using the distribution of particle positions at each control plane. Denoting the position of166

each particle at the control plane xi as zx the transverse breakthrough position distribution167

(TBPD) in z is168

fxi(zk) =
1

M

∫
dΩδ(zk − zxi) , (9)

where δ is the Dirac delta function. An analogous equation is used to calculate TBPD in y.169

The characteristic spreading of the particle plume in the transverse direction at longitu-170

dinal position x is quantified by the mean squared displacement,171

MSDx =
1

M

∫
dΩ(zx − zx)

2 + (yx − yx)
2, (10)

where zx, yx are vectors of the transverse position for each particle at x and the overline172

denotes the average over all particles.173

III. PARTICLE BEHAVIOR AT FRACTURE INTERSECTIONS174

When a particle arrives at a fracture intersection, both advective and diffusive processes175

should govern motion through the intersection. In a purely advective system, particle motion176

follows the streamlines of the velocity field. However, diffusion enables particles to jump177

between streamlines and mix. The amount of mixing that occurs in a fracture intersection178

8



is a balance of the strength of advection relative to diffusion which can be characterized by179

Péclet number180

Pe =
vL

2Dm

. (11)

We adopt the Pe definition provided in [15] where v is the average velocity within the181

intersection, L is a characteristic diagonal distance across the intersection, and Dm is the182

molecular diffusion coefficient.183

The upscaled nature of DFN models prevents the detailed physics that control mass184

transfer at fracture intersections from being resolved. Instead, subgrid processes are used to185

model mass transfer through intersections. There are two mixing rules that are commonly186

applied: 1) complete mixing and 2) streamline routing. These rules are representative of187

end members associated with diffusion and advective controlled transport, respectively. The188

choice of which rule to apply should reflect the physics of the intersection, as determined by189

the Pe.190

At a fracture intersection, conservation of mass requires that the sum of incoming and191

outgoing Darcy fluxes is zero,
∑

i qi = 0. Both mixing rules require knowledge of the Darcy192

outflowing fluxes. The streamline routing rule needs additional information, the position193

of the inflow branches relative to each outflow branch and so implementation of complete194

mixing at fraction intersections is simpler than streamline routing.195

1. Complete Mixing196

Under complete mixing, particle motion within the intersection is controlled by diffusion.197

In this scenario, particles enter an intersection inlet and are conceptually allowed to jump198

between streamlines by being re-positioned to any point within the intersection with equal199

probability. Figure 1 (a) shows mass transfer under the complete mixing rule in a single200

orthogonal intersection where all branches have an equivalent discharge magnitude. Light201

blue mass from the top inlet and red mass from the bottom inlet mix at the intersection202

and are distributed equally between the two outflowing branches. Each outlet contains mass203

from both inlets, represented by the outflowing purple color in the figure.204

With complete mixing the probability a particle exits a given outlet is proportional to205

the outlet flux, mathematically represented as,206
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(a) (b)

FIG. 1. A fracture intersection with two inflow branches and two outflow branches. All branches

have equivalent discharge magnitudes. In complete mixing (a) mass from both inlets (red and

blue) mix at the intersection and mass is distributed equally to each outlet (purple). In streamline

routing (b) incoming red mass from the bottom inlet and blue mass from the top inlet are forced

to their respective adjacent fractures and do not mix.

pj =
|qj|∑
k |qk|

, (12)

where pj is the probability a particle exits outlet j, and k denotes an outflowing fracture207

branch.208

2. Streamline Routing209

In the streamline routing rule particle motion through fracture intersections is advection210

controlled. Particles adhere to their respective streamlines through the intersection, as211

if no mixing occurs within the intersection. Therefore, particle motion depends on the212

particle’s inlet position. The streamline routing rule differs from the complete mixing rule213

only when a fracture intersection has multiple incoming and multiple outflowing branches.214

In a two fracture intersection there are only two intersection types that have this geometry215

a) continuous junctions and b) discontinuous junctions [13].216
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A continuous junction has two inflowing branches, two outflowing branches, and the217

inflowing branches are adjacent, i.e. lie on different fractures. Figure 1 (b) depicts streamline218

routing mass transfer through a continuous junction where all branches have equivalent219

discharge magnitudes. Flow from an inlet is directed to the outflowing adjacent branch. In220

this case, all mass from each inlet is distributed to the adjacent outflowing branch because221

there is no mixing within the fracture intersection. In general, the streamline routing rule222

goes as follows. If discharge from the inlet is less than the adjacent outlet discharge, all223

mass is directed to the adjacent outlet. If the inlet discharge exceeds the adjacent outlet224

discharge, conservation of mass requires that the adjacent outlet is filled and excess mass is225

directed to the other outlet.226

Consider a particle entering a continuous junction from an inlet with flux qin, which is227

adjacent to an outflow branch with flux qadj. The second (opposite) outflow branch lies228

on the same fracture as the initial inlet fracture and has flux qopp. The streamline routing229

rule dictates that the probabilities of transitioning from the inlet to the adjacent padj and230

opposite popp outflow branches are:231

padj =

1, qadj ≥ qin

qadj
qin
, qadj < qin

, popp = 1− padj (13)

More details on continuous junctions are found in Hull et al. [13].232

Discontinuous junctions arise from multiple sources and sinks present in the fracture233

network, such as a geothermal field with production and injection wells [13]. In a discon-234

tinuous junction inflowing branches are opposite and lay on the same fracture. Hull et al.235

[13] proposed two distributions of streamline routing through a four branch discontinuous236

intersection, one equivalent to complete mixing and one where the high discharge inlet is237

preferentially directed to the high discharge outlet. Philip [39] extended Hull’s analysis by238

finding solutions for Laplace and Stokes flow through the orthogonal intersections. Philip239

showed that under certain conditions, mainly when there is significant differences in branch240

discharge magnitudes, using complete mixing for streamline routing can result in significant241

error. However, Hull’s other proposed streamline routing rule, where the high discharge242

inlet is preferentially directed to the high discharge outlet, is also prone to error as adja-243

cent streamlines can have opposite directions for a considerable distance. Hence, the theory244

for streamline routing through discontinuous intersections is still not fully developed. For245
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completeness, we present Hull’s second proposed streamline routing rule for discontinuous246

intersections. In this case, mass from the higher discharge incoming branch qmaxin is parti-247

tioned to the higher discharge outflowing branch qmaxout and any excess mass exits the smaller248

discharge outflowing branch qminout . A particle arriving from the inlet with qmaxin has outlet249

transition probabilities given by250

pmaxout =

1, qmaxout ≥ qmaxin

qmax
out

qmax
in

, qmaxout < qmaxin

, pminout = 1− pmaxout (14)

A particle arriving from the weaker inflow branch has transition probabilities:251

pmaxout =


qmax
out −qmax

in

qmin
in

, qmaxout ≥ qmaxin

0, qmaxout < qmaxin

, pminout = 1− pmaxout (15)

We performed simulations using both of Hull’s discontinuous streamline routing rules. Re-252

sults were not effected by different rules due in part to the observation that discontinuous253

intersections are rare in the systems under consideration. Our presented results are only254

shown for the case described above.255

The occurrence and frequency of triple intersections, where three fractures come together256

at point, depends on the particular fractured media under consideration. However, these257

triple intersections do occur regularly in unconstrained stochastically generated DFN, their258

frequency depends on the fracture length distribution, network density, and fracture family259

orientation. Thus, from a practical and computational point of view, a rule for particle260

behavior at these points needs to be adopted in DFN modeling. We apply complete mixing261

at all triple intersections primarily due to the lack of experimental data concerning flow262

properties at triple intersections by which to verify appropriate streamline routing rules.263

IV. RESULTS264

A. Sample Fracture Networks265

We consider flow and transport within two distinct fracture network structures. The first266

is a quasi-two-dimensional lattice network and the second is a set of stochastically generated267

networks, where fracture radii are sampled from a truncated power law distribution. These268
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two network structures are considered because they display different features that drive269

flow channelization. The lattice networks have an idealized, regular geometry and flow270

channelization arises from variations in the permeability field. In the truncated power law271

networks, fracture intersections are less frequent and the geometry of the network drives272

flow channelization. In the analysis of results we non-dimensionalize distance with l∗, the273

maximum fracture radius in the system, and time with τ ∗, the time required to traverse l∗274

traveling at the mean particle velocity.275

1. Lattice Network276

The lattice network is comprised of two sets of 50 parallel 3-dimensional planar fractures,277

where fractures in each set are spaced one meter apart and intersect fractures of the other278

sets at a 45◦ angle. The computational domain has size [32, 1, 16]m in the x, y, z directions.279

A pressure gradient of 1 MPa is used to drive flow in the x-direction. The imposed pressure280

field results in a quasi-two-dimensional velocity field because velocity in y is negligible.281

Fracture apertures are sampled from a lognormal distribution in accordance with obser-282

vations [40–42]. Each lattice network has a mean aperture b = 10−4m and three aperture283

variance cases are considered, σ2
ln(b) = 0.1, 0.5, 1. Twenty-five realizations are generated284

for each mixing rule and aperture variance combination. For each combination, transport285

is simulated for both point source and flux weighted initial injections. These simulations286

are similar to the 2D lattice simulations of Kang et. al [10]. However, in our experiments287

velocity field heterogeneity is controlled by changing the distribution of aperture sizes and288

we consider an additional flux weighted initial injection case. The objective of studying289

this network set is to fix the network structure and focus on the effects of variability at the290

fracture scale.291

2. Truncated Power-law Network292

The second set of networks are composed of disk-shaped fractures whose radii are sampled293

from a truncated power-law distribution, which is a commonly observed length distribution294

in field data [1, 43–45]. Bour and Davy [43] showed a power-law distribution accurately295

captures the wide range of fracture lengths often observed in geological datasets [44, 45]. In296
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our power law networks, fracture radii are sampled from a truncated power-law distribution297

with exponent α and upper and lower cut-offs of (Ru;R0)298

R = R0

[
1− η + η

(
R0

Ru

)α]−1/α
, (16)

where η is a random number sampled from a uniform distribution on [0,1]. We choose an299

exponent α = 2.1 and cut-offs R0 = 2 Ru = 30m based on field data [1, 46]. The networks are300

not meant to be realizations of the networks reported in [1] and [46], but rather semi-generic301

fracture networks. Fracture orientations are uniformly random and centers are uniformly302

distributed throughout the domain. Fracture apertures are positively correlated to their303

radius, b = 5 · 10−5 ·
√
R, which controls the hydraulic properties within the fracture. This304

correlation between fracture size and aperture is common in DFN models [29, 31, 47–50]. The305

computational domain is a cube with sides of length 100m. We refer to these as truncated306

power law (TPL) networks.307

Ten independent identically distributed network realizations are generated. We stop the308

generation of the networks once 1000 fractures are accepted into the network. This results in309

a network that is about 7 times more denser a network at the percolation threshold defined310

by [7, 51]. This procedure ensures that there is a subnetwork that connects inflow to outflow311

boundaries. To reduce computational cost, we remove all isolated clusters of fractures, those312

that that do not connect inflow to outflow boundaries, because they do not contribute to313

flow. There are roughly 200 fractures the final networks and the average fracture intensity314

(P32: Surface area over total volume) is approximately 0.1. Flow is forced along the x-axis by315

imposing constant pressure conditions at the inlet and outlet control planes perpendicular316

to x. The pressure difference in x across the inflow and outflow boundary is 1MPa.317

B. Lattice Network Simulations318

1. Breakthrough Curves: Lattice319

Figure 3 shows the cumulative distribution of first passage arrival times (Eq. 8) for the320

point injection (a) and flux weighted (b) initial conditions. Thick lines (streamline routing)321

and stars (complete mixing) are median breakthrough curves for twenty-five realizations and322

transparent lines correspond to single realizations. For each realization, solid lines indicate323
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1x10-10 2x10-10 5x10-10 1x10-9 2x10-9 5x10-9 1x10-8

FIG. 2. One realization of a DFN with fracture lengths drawn from a power law distribution.

Fractures are colored by their permeability, which is positively correlated with fracture radius.

streamline routing and dashed lines indicate complete mixing. Colors correspond to different324

aperture variances; σ2
ln(b) = 0.1, 0.5, 1 are depicted with blue, red, and green, respectively.325

As velocity field heterogeneity decreases, breakthrough curve realizations homogenize and326

the range of arrival times decreases. In both injection conditions and for all values of σ2
ln(b)327

there is little impact of the mixing rule on the median observed travel time distributions.328

In turn, these results indicate that the mixing rule has no major impact on mean particle329

velocities, demonstrated by no significant change in breakthrough curve behavior (Figure330

3). Additionally, breakthrough curve realizations are more clustered near the median break-331

through curve for the flux weighted initial condition, e.g. the range of P50 values, the time332

at which 50% of mass has crossed the outlet control plane, decreases with the flux weighted333

case.334
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FIG. 3. Cumulative distribution of first passage arrival times (breakthrough curves) for point

injection (a) and flux weighted (b) initial condition. Thick lines are median breakthrough curves

for 25 realizations and transparent lines correspond to single realizations. For each realization, a

solid lines indicate streamline routing and dashed lines indicate complete mixing. Colors correspond

to different aperture variances; σ2ln(b) = 0.1, 0.5, 1 are depicted with blue (steepest slope), red, and

green (least steep slope), respectively.

2. Solute Spreading: Lattice335

Figure 4 shows the spatial evolution of the transverse breakthrough position distribution336

fxi(z) for simulated flow and transport through single realizations of lattice networks of337

varying velocity field heterogeneities with a point source injection initial condition. The338

top row shows fxi(z) for complete mixing, the middle is for streamline routing and the339

bottom shows the ratio of streamline routing to complete mixing transverse breakthrough340

position concentrations. In each column, the streamline routing and complete mixing lattice341

networks are identical realizations. Colors are the logarithm of the concentration with yellow342

corresponding to relatively high concentration values and blue corresponding to lower values.343

In both mixing rule cases, there is more pronounced flow channeling as σ2
ln(b) increases due to344

the formation of paths of lower resistance. We calculate the percent of particles concentrated345

on each fracture at each control plane. As heterogeneity increases from σ2
ln(b) = 0.1 to346

σ2
ln(b) = 1, the largest value of percent particles on a single fracture increases by nearly a347

factor of 2 at distances greater than x/l∗ > 1, demonstrating increased flow channelization348

(results not shown).349
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FIG. 4. The transverse distribution at sequential control planes through a lattice network with a

point injection initial condition for one realization. All lattices have the same mean aperture size.

Variance of aperture size is selected from a lognormal distribution and increases from the left to

right column. Simulations are completed for complete mixing (row 1) and streamline routing (row

2) intersection rules for the same network realization. Row 3 gives the ratio of streamline routing to

complete mixing transverse breakthrough position concentrations. Colorbars show log probabilities

(rows 1,2) and absolute ratio values (row 3). Complete mixing enhances particle spreading. As

velocity field heterogenity increases, the impact of the mixing rule on particle spreading decreases.

The transverse direction z is normalized by half the length the of domain z∗.

When complete mixing is used, the particles disperse transversely faster than in this case350

of streamline routing and the plume reaches the lateral boundary of the domain closer to the351

inlet. By contrast, streamline routing increases channelization, which is most notable at low352

values of σ2
ln(b). Hence, both streamline routing and increasing velocity field heterogenity353

increase channelization of particles. The ratio of the streamline to complete mixing TBPD354

highlights how the evolution of fxi(z) changes because of the intersection mixing rule. Areas355

of dark blue have value 0, indicating positions where breakthrough occurred under complete356

mixing but not streamline routing. The yellow areas through the center of the lattice show357
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fractures where streamline routing increases particle concentration.358
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FIG. 5. The transverse breakthrough position distribution at each control plane for one realization

of the lattice with a flux weighted injection. Simulations are completed for complete mixing (a)

and streamline routing (b) intersection rules. Subfigure c gives the ratio of streamline routing to

complete mixing transverse breakthrough position concentrations. Colorbars show log probabilities

(row a,b) and the absolute ratio (c). σ2ln(b) = 0.5 is the only aperture variance shown because results

do not significantly change for different velocity field heterogenties. The mixing rule has less impact

on particle spreading with a flux weighted initial condition. The transverse direction z is normalized

by half the length the of domain z∗.

Figure 5 shows the same plots as in Fig. 4 for a flux weighted injection. Only the σ2
b = 0.5359

is provided as all σ2
b values displayed nearly identical behavior. The ratio of streamline360

routing to complete mixing for fxi(z) is close to 1 throughout much of the domain, indicating361

nearly identical distribution of the solute plume for the two mixing rules. One exception is362

the area of yellow in the bottom right corner of the ratio figure (c), where streamline routing363

has a higher particle concentration. This is an area of low particle concentrations and is364

therefore more sensitive. The results presented here indicate that the mixing rule’s impact365

on the evolution of fxi(z) is less significant when particles are injected using a flux weighted366

initial condition.367

To demonstrate these differences, Figure 6 shows particles within one realization of the368

lattice network with σ2
ln(b) = 1.0 where fractures are colored by pressure. The left sub-figure369

(a) is a snapshot of particles injected from a point injection where the complete mixing rule370

is applied and in the middle sub-figure (b) streamline routing is applied. As discussed above,371

the application of the complete mixing rule leads to higher transverse dispersion when com-372
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FIG. 6. Particles within the quasi-two-dimensional lattice network. In the left (a) and middle (b)

sub-figures particles injected from the same point source on the left boundary and driven right

by a pressure gradient. In sub-figure (a), particles adhere to a complete mixing rule (red) and

in sub-figure (b) they follow streamline routing (blue). The choice of a complete mixing rule in

combination with a point injection leads to higher transverse dispersion than if streamline routing is

used under the same initial conditions. Sub-figure (c) shows particles injected using flux-weighting

adhering to both mixing rules (red-complete mixing / blue-streamline routing). Here, no significant

difference between the distribution of particle locations between the two rules is observed.

pared to streamline routing. The right sub-figure (c) shows both particles (red-complete373

mixing / blue-streamline routing) injected using flux-weighting. Here, no significant differ-374

ence between the distribution of particle locations between the two rules is observed.375

Figure 7 shows the mean value of the mean squared displacement (MSD) for point (a)376

and flux-weighted (b) initial conditions. These are calculated at each control plane by377

averaging over all particles and all 25 realizations. Solid lines indicate streamline routing and378

stars indicate complete mixing. Colors correspond to different aperture variances; σ2
ln(b) =379

0.1, 0.5, 1 are depicted with blue, red, and green, respectively.380

For the point injection, there is a significant difference between the observed MSD values381

for complete mixing and streamline routing. For all values of σ2
ln(b) complete mixing results382

in an increased MSD. The impact of the mixing rule on MSD decreases with increasing383

velocity field heterogeneity, shown by a decreasing difference in MSD between mixing rules.384

For the flux weighted injection the mixing rule’s impact on MSD is less than in the point385

injection case, as the complete mixing and streamline routing curves more closely match.386

Note that the MSD is driven by displacements in the z direction due to the quasi-2D nature387

of the lattice.388

In the point injection, the number of times particles change fractures averaged over all389
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FIG. 7. The mean MSD in the lattice network is calculated at each control plane by averaging

over all particles and all 25 realizations. Solid lines indicate streamline routing and stars indicate

complete mixing. Plotted is MSD for both the point (a) and flux weighted (b) initial conditions.

Colors correspond to different aperture variances; σ2ln(b) = 0.1, 0.5, 1 are depicted with blue (upper

curve in b), red, and green (lower curve in b), respectively. As velocity field heterogenity increases

the mixing rule’s impact on MSD decreases. A flux weighted injection results in less spatial

variability of MSD.

particles and over 25 realizations increases for streamline routing by 52, 36 and 33% for390

σ2
ln(b) = 0.1, 0.5, 1, respectively. As the velocity field heterogeneity increases, particles change391

fractures less frequently due to increased channelization to high discharge pathways. In the392

case of flux-weighted injection, streamline routing increases the mean number of times a393

particle changes fractures by 52, 39, and 36% for σ2
ln(b) = 0.1, 0.5, 1 compared with complete394

mixing. Again as the velocity field heterogenity increases particles change fractures less395

often and more particles are channelized to high discharge fractures.396

C. Power Law Networks Simulations397

1. Breakthrough Curves: TPL Network398

The median breakthrough curves through the ten truncated power law (TPL) realizations399

for complete mixing (green stars) and streamline routing (thick orange lines) are shown in400

Figure 8. Solid lines correspond to point injections and dashed lines correspond to a flux401
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FIG. 8. Median breakthrough curves of 10 TPL realizations for complete mixing (green stars) and

streamline routing (thick orange lines). Solid lines correspond to point injections and dashed lines

correspond to a flux weighted initial condition. Each breakthrough curve realization is plotted with

a transparent line. The mixing rule has a negligible impact of the distribution of arrival times. A

flux weighted initial conditions homogenizes the spread of breakthrough curves.

weighted initial condition. Each breakthrough curve realization is plotted with a transparent402

line. No significant difference in the breakthrough curves is observed between the two mixing403

rules indicating that the choice of mixing rule has a negligible impact of the distribution of404

arrival times. The breakthrough curve is changed in two ways when using the flux weighted405

injection. First, breakthrough curves are shifted left, meaning particles on average traverse406

the entire network in less time compared with a point injection. This indicates that on407

average, the selected flow paths resulting from the sampled point injection in this study are408

slower than the fluxed weighted velocity average. However, given a larger sample of networks,409

we expect median breakthrough curves to converge. Second, the variability in breakthrough410

arrival times decreases with the flux weighted injection; the flux weighted breakthrough411

curves are more clustered near the median, whereas the point injection breakthrough curves412

display greater variation in arrival time for an associated cumulative concentration value.413

2. Solute Spreading: TPL Network414

Figure 9 shows the transverse breakthrough position distributions in z for one realization415

of a truncated power law distributed radii network for the point (a) and flux weighted (b)416
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FIG. 9. The transverse breakthrough z-position distribution for one realization of a TPL network

for a point (left column) and flux weighted (right column) initial injection mode. Simulations are

completed for complete mixing (row 1: a,d) and streamline routing (row 2: b,e) intersection rules.

Row 3 gives the ratio of streamline routing to complete mixing transverse breakthrough position

concentrations. Colorbars show log probabilities (row 1,2: a,b,d,e) and the absolute ratio value

(row 3: c,f). Streamline routing increases channelization of particles to secondary fractures, shown

as areas of yellow in the ratio figures. The transverse direction z is normalized by half the length

the of domain z∗.
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injection modes. The percent of particles on primary fractures remains similar across mixing417

rules and over 50% of particles at a given control plane are concentrated on less than 10% of418

the total fractures in the system. In the case of point injection, there are primary fractures419

as indicated by the brightly colored areas lying between 0 and 0.5 in z/z∗. Between 0 and 2420

x/l∗ there is a relatively low number of fracture intersections and particles trajectories are421

similar. In this region the ratio of streamline routing to complete mixing TBPD is O(1). At a422

distance greater than 2 in x, the fracture intersection density increases and complete mixing423

more evenly distributes particles across secondary fractures, observed as a more uniform424

color in TBPD distributions. In streamline routing, increased channelization to secondary425

fractures is observed as an increased number of streaks in the TBPD, particularly prevalent426

in the top and bottom right corners of the TBPD figures. These streaks also appear as427

yellow areas in the bottom figure that shows the ratio of the concentration for the two rules.428

With a flux weighted initial condition, the mixing rule again causes significant differ-429

ences in TPBD on secondary fractures, observed as an increased number of streaks in the430

streamline routing simulations. However, the general evolution of particle spreading remains431

similar. Areas of high particle concentration (green and yellow colors) are similar for each432

mixing rule. There is a primary fracture (brightly colored) that extends from 1 to 2 in x433

and 0 to 0.5 in z that has a streamline routing TBPD to complete mixing TBPD of O(1),434

indicating particle concentration on this fracture is approximately equal.435

Figure 10 shows the MSD, averaged over all particles in the 10 realizations of TPL436

networks, for complete mixing (green) and streamline routing (orange) with a point (solid437

lines) and flux weighted (dashed lines) injection. There is less spatial variability in MSD for438

the flux weighted injection condition. As opposed to the lattice, the complicated network439

structure constrains the spreading of particles thereby limiting the impact of the mixing440

rule on MSD. The observed channelization due to streamline routing has a small impact441

on average particle behavior. The mean (averaged over all particles and all realizations)442

number of times a particle changes fractures from inlet to outlet increases approximately443

5% from 7.7 in complete mixing to 8.0 in streamline routing. This change percentage is less444

than in the lattice because the fracture intersection density is lower in the TPL networks.445

Consistent with the point injection on the lattice, MSD increases with increasing distance446

from the initial point of injection.447

In the case of the flux-weighted injection, the mean number of times particles change448

23



10−1 100

x/l *

102

103

M
SD

 (m
2 )

Streamline Routing
Complete Mixing

FIG. 10. The MSD is averaged over all particles in 10 realizations of stochastically generated TPL

networks for complete mixing (green) and streamline routing (orange) with a point (solid lines) and

flux weighted (dashed lines) injection. The MSD for the flux weighted injections has less spatial

variability. The network structure drives particle spreading and so the impact of the mixing rule

on MSD is negligible.

fractures increases 5% from 6.2 for complete mixing to 6.5 for streamline routing. The flux449

weighted initial condition increases the initial spread of particles compared to the point in-450

jection, which allows transverse breakthrough to occur across a larger portion of the domain.451

Hence, the flux weighted injection increases MSD at all measured control planes. As was452

the case for the point injection, the MSD values are nearly the same for both mixing rules.453

Similar to the lattice flux weighted injection simulations, MSD remains relatively constant as454

distance from the inlet increases, with spatial changes resulting from the network structure455

and not the mixing rule.456

V. DISCUSSION457

The results of the simulations presented in the previous section indicate that there are458

scenarios where the choice of mixing rule at fracture intersections can have a large impact459

on transport behavior and other scenarios where the impact is negligible. As noted in the460

introduction, this is consistent with the literature where seemingly opposite statements are461
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made with regard to how important is the mixing rule. The magnitude of the mixing rule’s462

influence is determined by how particles enter the network, the complexity of the fracture463

network, and the heterogenity of the velocity field.464

A. Injection Mode465

There are two major differences between the flux weighted and point injection modes466

that cause differences in solute spreading. First, a point injection releases particles onto one467

fracture and all particles are influenced by the same local effects near the injection point.468

Therefore, the initial behavior is highly dependent on where the particles are released. The469

flux weighted initial condition spreads particles across the entire inlet, thereby reducing the470

impact of such local effects and reflecting a more broad statistical sampling of the hetero-471

geneous system. Second, a flux weighted injection channelizes particles to high discharge472

fractures from the start of the simulation. The flux weighted injection weights high dis-473

charge fractures more than low discharge fractures by distributing particles proportionally474

to fracture discharge, meaning particles channelize on primary fractures immediately. As475

a fracture’s discharge increases the probability of a particle leaving that fracture decreases.476

Thus the mixing rule’s impact decreases as more particles are distributed to high discharge477

fractures because particles preferentially remain on these high discharge pathways. This478

decreased impact is demonstrated by similar TPBD evolution for each mixing rule when479

particles are flux weighted injected.480

In a large enough network, the initial distribution of Lagrangian velocities evolves to an481

asymptotic stationary distribution, where Langrangian velocities becomes proportional to482

the local velocity field, i.e. the transverse concentration distribution for the point injection483

will converge to the flux weighted injection concentration distribution. The time needed to484

for this to occur can be characterized with a Taylor-like timescale, TT = a2

DT
, where a is a485

characteristic length and DT is effective dispersion. In both network structures we observe486

that the point injected MSD approaches the flux weighted MSD as distance (and time) from487

particle release increase. Note that a and DT are strongly affected by the network geometry488

and so TT changes with varying network structures. Additionally, the mixing rule influences489

DT ; mainly complete mixing increases DT , and thus TT decreases.490

In a regularized geometry, such as the lattice, we observed complete mixing enhances491
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initial particle spreading for a point injection (Figure 4). At the length scales considered,492

the point injection breaks Lagrangian ergodicity, that is the Lagrangian velocity statistics493

sampled along a particle trajectory is not equivalent to an ensemble average across all494

particle velocities. Dentz et al. [52] showed that in steady heterogenous flows, a Langrangian495

distribution found by spatially sampling along particle trajectories is stationary if the initial496

particle velocity distribution is equivalent to the Eulerian flux weighted velocity distribution.497

Once sufficient time has passed and the initial condition is erased, ergodicity is established498

and the mixing rule becomes negligible for transverse particle spreading (Figure 5). Since499

ergodicity is not established at pre-asymptotic times for a point injection, the mixing rule500

does impact spreading on the lattice. However, in networks with highly heterogeneous501

structures, network geometry becomes increasingly important and the impact of the injection502

mode decreases. For example, in the TPL networks there is a relatively small number of503

fracture intersections and so particle transport is constrained by the network geometry and504

the injection mode and mixing rule has negligible impact even at pre-asymptotic times505

(Figure 9).506

B. Network Structure507

A fracture network’s geometry, specifically the fracture intersection density and fracture508

orientation, constrains plume spreading. As the fracture intersection density increases, par-509

ticles have an increased probability of changing fractures. The lattice network has a higher510

density of fracture intersections than the TPL networks and all intersections are continuous511

junctions, i.e. incoming inlets are adjacent. Therefore the mixing rule more significantly512

impacts particle spreading behavior. In continuous junctions, streamline routing increases513

the probability of changing fractures (to the adjacent) by a factor of
qadj+qopp

qadj
or

qadj+qopp
qin

514

when qin < qadj and qin > qadj, respectively. In the lattice network, particles regularly visit515

fracture intersections and streamline routing probabilisticly directs more particles to adja-516

cent fractures, causing particle pathlines to more frequently alternate between positive and517

negative directions. This alternating pattern of positives and negatives cancel, focusing the518

particle concentration near the initial inlet transverse position (Figure 4). Hence, particle519

pathlines are significantly altered by the intersection mixing rule, especially when outlet520

discharges are similar in magnitude.521
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The 3D geometry and reduced connectivity of the TPL networks results in transport that522

is constrained by geometrical and topological network properties. In turn, these features,523

which are far more complex than the quasi-2D lattice, decreases the impact of the mixing524

rule relative to the lattice. One such geometrical effect, local flow cells, develop from vari-525

ations in fracture radii length and orientation, which manifests as elongated tails in solute526

breakthrough [53]. Additionally, particles remain on fractures for longer distances because527

they encounter fewer intersections, i.e., solute spreading is structurally constrained. More-528

over, fracture aperture is positively correlated to the fracture radius in the TPL networks.529

By nature of the truncated power law distributions a small percentage of fractures will530

therefore have substantially larger permeability and dominate transport due to geometric,531

topological, and hydrological preference. In combination, these attributes dominant local532

flow behavior and decreases the impact of the mixing rule.533

Furthermore, streamline routing increases the probability of transferring particles to the534

adjacent fracture in a continuous intersection by a factor of
qadj+qopp

qin
for qin > qadj, which is535

typical in the case of a particle traveling on a preferential flow path. For a particle traveling536

on such a pathway (which is the majority) in the TPL network, qin ≈ qout as they lie on the537

same fracture; qin >> qadj is expected due to the fracture length distribution. This suggests538

that the probability of a particle changing fractures remains nearly identical (
qadj+qopp

qin
≈ 1)539

between streamline routing and complete mixing, and the choice of mixing rule is negligible540

in networks with strong preferential flow pathways, such as the TPL networks considered in541

this study.542

C. Velocity Field Heterogeneity543

Closely coupled with the network structure is the velocity field heterogeneity. In fact,544

Margolin et al. [54] found that increasing the network sparseness has the same effect as545

increasing the velocity field heterogeneity. As the difference between incoming discharge546

magnitudes increases, the probability of being routed to the higher magnitude outlet also547

increases and the impact of the mixing rule decreases. On the lattice, velocity field hetero-548

geneity increases as the variance of the fracture aperture distribution increases. Increasing549

velocity heterogeneity leads to the development of preferential flow paths in large aperture550

regions [55], which cause greater channelization of particles and form a subnetwork of frac-551
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tures that dominate transport. The mean number of times a particle changes fractures552

decreases with increasing velocity heterogeneity because the probability of transferring from553

primary fractures decreases. Additionally, the difference in the number of fracture changes554

between mixing rules also decreases as the velocity field heterogeneity increases. Hence, par-555

ticle pathlines become more similar and the mixing rule’s impact decreases as the velocity556

heterogeneity increases,which is consistent with the conclusions of Kang et al. [10].557

In the TPL networks, discharge through a fracture is directly related to the fracture radii,558

hence the distribution of fracture sizes naturally forms a highly heterogeneous velocity field.559

The evolution of transverse spreading for both mixing rules looks very similar through TPL560

networks because the large radii fractures channelize particles and the network geometry561

drives overall spreading trends. In addition to the velocity field heterogeneity, other factors562

control transport and reduce the impact of the mixing rule, e.g. network connectivity and563

geometry [56]. In the context of conservative transport, the higher heterogeneity of the564

TPL network makes the impact of the mixing rule negligible on spreading metrics, a finding565

consistent with Park et. al. [19] who studied conservative transport through 2D DFNs with566

power law radii distributions.567

D. Implications for Reactive Transport568

The results of this study suggest that the mixing rule has an small impact on common569

conservative transport metrics, i.e. breakthrough curves; mean square displacement; and the570

general distribution of TBPD, in complicated geologic media where the network structure571

and velocity field are often highly heterogeneous. While these metrics quantify transport572

behavior at the network scale there are smaller-scale physical and chemical variations in573

geologic media that are important in the context of reactive transport [57]. In this study we574

observe that the mixing rule significantly impacts channelization of particles at the fracture575

scale. Such channelization is important because it drives solute together, enhancing the576

mixing rate and increasing the probability that two species react [24]. Zho et al. [18] showed577

that the fracture surface roughness increases particle channelization through an intersection,578

thereby increasing solute mixing at the fracture intersection scale. Similarly, we investigate579

how channelization due to the intersection mixing rule influence solute mixing, and thus580

reactions, at the fracture scale.581
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Consider a system with two reactive species A and B, who undergo the irreversible582

chemical reaction A+B → C, such as precipitation of a mineral and two ions [58–61]. The583

nature of such reaction requires the difference in concentrations of species to be conserved.584

Denote u as the conserved quantity, where u = cA− cB and ci is the concentration of species585

i [58]. Consequently, the amount of C that can be precipitated is dependent on the less586

abundant species between A and B. In geochemical systems described by instantaneous587

equilibrium reactions, De Simoni et al. [58] showed the reaction rate between A and B588

is a product of a flow driven mixing term ∇Tu∇u and a stochiometric term. Hence, the589

mixing rate is directly related to the rate of reaction. The mixing rate is independent of590

the chemical effects. Since u and particles in dfnWorks are both conserved quantities591

and have the same governing equations, we can measure u and therefore the mixing rate.592

Similar to the TBPD measured in Figure 9, we also measure the joint y − z breakthrough593

position distribution at each control plane, i.e. we discretize each control plane into a 2D594

grid and measure breakthrough concentration in each cell. This enables construction of595

the 3D position breakthrough field. The position breakthrough field provides the entire596

u−concentration field that arises after large time in a steady flow, in which u particles are597

continuously injected. The mixing rate is calculated from this u−concentration field.598

The ratio of computed mixing rates using streamline routing and complete mixing is599

plotted throughout the three dimensional domain (Figure 11) for one network realization600

with a point injection (a) and flux weighted injection (b). The injection plane is on the front601

right face and the primary flow direction is directed to the back left face in both sub figures.602

The ratio of mixing rates at areas near the inlet where particles have yet to encounter a603

fraction intersection is 1. After particles pass through fracture intersections, the mixing604

rule distributes particles differently causing significant local effects in the mixing rates, e.g.605

notice the yellow colored streak intersecting the outlet plane where the local mixing rate606

differs by two orders of magnitudes.607

Figure 12 shows the mean normalized mixing rate at each control plane averaged over all608

realizations for a point injection (a) and flux weighted injection (b) in the TPL networks.609

For each realization, the mixing rate is normalized by the maximum mixing rate observed in610

the streamline routing case. On average, streamline routing elevates the mean mixing rate611

for both modes of injection. The mixing rate is similar across mixing rules when x∗/l < 1,612

which corresponds to a distance equal to the radii of the largest fracture in the network.613
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FIG. 11. The ratio streamline routing to complete mixing local mixing ratios is shown for one

TPL network realization for a point (a) and flux weighted (b) intial injection. The front right face

is the plane of injection and the back left face is the domain outlet. Color bars plot the absolute

ratio value. Near the inlet plane, the ratio between mixing rules is 1 because transport has yet

to encounter fracture intersections. Near the outlet plane, we observe streaks where local mixing

rates differ by a factor of 100. Differences in mixing rate occur from differences in channelization

of particles due to the mixing rule.

After traveling this distance, the mixing rate is noticeably greater when streamline routing614

is used in the domain.615

The transverse breakthrough position distributions in the TPL networks display increased616

channelization of particles on secondary fractures for a streamline routing mixing rule, cf.617

Fig. 9. These regions of increased channelization are therefore also areas of increased mixing.618

Hence, it is expected that streamline routing increases the average mixing rate at each619

control plane. Figure 12 shows that streamline routing increases the mean mixing rate at620

a distance of approximately equal to the length of the largest fracture radii in the system621

l∗. Near the particle source, the mixing rule has a smaller impact on channelization because622

particles have encountered less fracture intersections. At distances exceeding l∗ a particle623

must have encountered at least one fracture intersection and so the mixing rule becomes more624

important, as fracture intersections enable particles to be channelized to other fractures.625

At the fracture scale the local mixing rate can differ by a factor of 100 or greater between626
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FIG. 12. The mean mixing rate averaged over 10 TPL realizations at each control plane is compared

for complete mixing (green) and streamline routing (orange) with a point injection (a) and flux

weighted (b) initial injection. In each realization, the mixing rate is normalized by maximum

mixing rate observed for streamline routing. Streamline routing increases the mean mixing rate.

At distances greater than l∗ from the particle source the difference between mixing rules is greater

because particles have encountered at least one fracture intersection.

the different mixing rules. Such large variation occurs on smaller fractures, which are more627

sensitive to the mixing rule. Large fractures are less sensitive to the mixing rule because628

they carry more particles and the probability of switching from them is lower, meaning the629

concentration gradient is more stable. In systems where solute and the rock boundary react630

to dissolve and precipitate minerals, a large difference in mixing rate may lead to significant631

differences in the temporal evolution of transport. Hence implementing the most physically632

appropriate mixing rule is necessary for developing reliable predictive DFN modeling of633

reactive transport.634

Cvetkovic et al. [5] simulated sorbing tracers through a 3D DFN. Reactive transport635

was quantified with a hydrodynamic retention variable β, which is a normalized surface636

area for diffusion transfer into the rock boundary [62]. They found that streamline routing637

has a small impact on β compared with complete mixing, but streamline routing does638

slightly shift β towards higher values. The increased β suggests streamline routing is more639

reactive. These results are consistent with our observations of increased channelization640

to secondary fractures under streamline routing, as β increases as aperture size decreases641

and secondary fractures typically have smaller apertures than primary fractures. β is an642
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averaged parameter over particle trajectories and so the significant local effects observed643

in this studied are not apparent by a slightly increased value. The results of our study644

suggest that the slight increase in β observed by Cvetkovic et. al [62]. could be the result645

of increased channelization of particles to secondary fractures with streamline routing.646

VI. REMARKS647

We presented a study characterizing the impact of particle behavior at fracture intersec-648

tions in three-dimensional DFNs on upscaled transport behavior. Mass transfer at fracture649

intersections in DFN models is represented with two subgrid processes, complete mixing650

and streamline routing, which are the end member cases of the Péclet number, i.e. particle651

motion through a fracture intersection is governed only by diffusion or advection, respec-652

tively. The simulations presented in the previous section indicate that there are scenarios653

where the choice of mixing rule at fracture intersections have a large impact on transport654

behavior and other scenarios where the impact is negligible. The magnitude of impact of655

the mixing rule is determined by the particle initial injection mode, the fracture network656

structure, and the heterogenity of the velocity field. The mixing rule’s impact increases657

with a point injection because local effects associated with the fracture of injection control658

initial particle transport. As the network geometry and velocity field heterogeneity increase,659

particle channelization to high discharge fractures increase and the impact of the mixing rule660

on conservative transport at the network scale decreases. In all cases, however, streamline661

routing increases channelization of mass to secondary fractures, resulting in an increased662

average mixing rate and local mixing rates that can differ by two orders of magnitude.663

Therefore, the choice of mixing rule at fracture intersections will influence reactive trans-664

port simulations within DFN models. We consider the two end members for intersection665

mixing rules and our simulations enforce that every intersection prescribes to the same rule.666

In real geologic media, both advection and diffusion affect mass transfer and a distribution667

of local fracture intersection Pe exists. Quantifying the impact of these processes warrants668

future investigation.669
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