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Abstract

We characterize the influence of different intersection mixing rules for particle tracking simula-
tions on transport properties through three-dimensional discrete fracture networks. It is too com-
putationally burdensome to explicitly resolve all fluid dynamics within a large three-dimensional
fracture network. In discrete fracture network (DFN) models, mass transport at fracture intersec-
tions is modeled as a sub-grid scale process based on a local Péclet number. The two most common
mass transfer mixing rules are 1) complete mixing, where diffusion dominates mass transfer, and 2)
streamline routing, where mass follows pathlines through an intersection. Although, it is accepted
that mixing rules impact local mass transfer through single intersections, the effect of the mixing
rule on transport at the fracture network scale is still unresolved. Through the use of explicit
particle tracking simulations, we study transport through a quasi-two-dimensional lattice network
and a three dimensional network whose fracture radii follow a truncated power law distribution.
We find that the impact of the mixing rule is a function of the initial particle injection condition,
the heterogeneity of the velocity field, and the geometry of the network. Furthermore, our particle
tracking simulations show that the mixing rule can particularly impact concentrations on secondary
flow pathways. We relate these local differences in concentration to reactive transport and show

that streamline routing increases the average mixing rate in DFN simulations.

* Corresponding author: jhyman@lanl.gov



s I. INTRODUCTION

16 The behavior of fluid flow and the associated transport of dissolved chemicals through
17 low-permeability subsurface rocks is primarily controlled by fracture networks within the
18 medium. Length scales within these networks typically range several orders of magni-
1 tude [1] and characterizing the interplay across these length scales has applications in a
20 range of engineering endeavors including CO, sequestration technologies [2], geothermal en-
2 ergy extraction [3], unconventional hydrocarbon extraction [4], and the long term storage
» of spent nuclear fuel [5]. At the network structure scale, connectivity and density control
23 the general behavior of the fluid flow field [6]. Within individual fractures, the location of
2 inflow and outflow boundaries and local variations in the fracture aperture determine the

s local flow field [7, 8]. However, how fluid moves through the intersections between fractures

N

s is also important in terms of local dispersion because intersections are regions of enhanced

N

N

» mixing [9] and can impact network scale spreading of solute [10].

s Discrete fracture networks (DFN) are one of the most common modelling tools for sim-

N

o ulating flow and transport through fractured media. In the DFN methodology fractures
30 are represented as lower dimensional structures in the domain, lines in two-dimensions and
a1 planes in three-dimensions. The choice to explicitly resolve fractures, as opposed to using
s effective properties in continuum models, allows observations of transport to be linked to
33 the structural properties of the fracture networks. This choice drastically increases the cost
s of running DFN simulations and certain aspects of the simulation are modelled as sub-grid

35 scale processes.

s Omne such subgrid process is particle behavior within fracture intersections. There have
w been a number of laboratory experiments [9, 11-14] and numerical simulations [15-18] to
ss better understand particle behavior within fracture intersections. The fluid velocity field
3 along fracture intersections is three-dimensional and particle behavior is determined by the
s combination of the velocity field, the velocity magnitude and diffusion. In a DFN, however,
a the line of intersection is either a point (2D) or a line (3D) and the true structure of the
2 velocity field is not resolved. In attempts to represent the particle behavior several subgrid
a3 processes have been proposed. The two most prominent fracture intersection rules are
s complete mixing and streamline routing. Particle transport is primarily diffusion controlled

»s with the complete mixing rule and advection dominated with the streamline routing rule.



s The choice of which process is most appropriate is determined by the local physics of the
a7 fracture intersection, characterized by a Péclet number Pe, the ratio of advective to diffusive
s forces. Assuming complete mixing can be traced to the fracture junction experiments of
w Krizek et al. [11], where an inflowing branch intersected with multiple outflowing branches.
so In these experiments, tracer from the inflow branch entered a junction and was distributed
s1 to the multiple outflowing branches, which was interpreted as complete mixing of the tracer
s2 within the junction. In a DFN model with a complete mixing subgrid process, particles enter
s3 an intersection and are conceptually allowed to jump between streamlines and mix within
s« the intersection due to diffusion. In contrast, the streamline routing mixing rule prohibits
ss solute from crossing streamlines, implying only advection governs transport, representative
ss of a high Pe condition. Laboratory experimental observations of solute trajectories through
s a single orthogonal intersection with two inflow and two outflow branches [12-14] suggest

ss streamline routing is appropriate when the intersection Pe > O(10).

so  The aforementioned laboratory studies considered transport through an idealized intersec-
s0 tion that is poorly representative of real geologic geometries. Moreover, they do not consider
s1 the impact of particle behavior along intersections on transport at the fracture and network
62 scale. There have been several numerical simulations to address these aspects of DFN mod-
63 elling but their conclusions appear to be in disagreement. Park et al. [19] concluded that the
e« mixing rule did not significantly impact transport for simulations through two-dimensional
s networks where fracture lengths were power law distributed and solute enters the domain via
e & point source initial condition. Similarly, Cvetkovic et al. [5] simulated transport through
7 & three-dimensional DFN where particles were injected across an inlet plane, and concluded
s that the mixing rule had little impact on transport as quantified by travel time distributions.
o0 However, Kupper et al. [20], Park et al. [21], and Kang et al. [10] found that for a point
70 source initial condition complete mixing can enhance transverse spreading of a solute plume
7 compared to streamline routing for transport through certain two-dimensional lattice cases.
72 These studies suggest the impact of the mixing rule depends on the network structure, het-
73 erogeneity of the velocity field, dimensionality of the network, and initial injection mode of
72 particles. Thus, it is not clear under what conditions the choice of mixing rule at fracture

75 intersections has an impact on different large scale transport features.

s We use DFNWORKS [22] to simulate transport through two different DFN structures

77 that represent varying degrees of structural and velocity field heterogeneity and study con-
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7 ditions under which the mixing rule is important for transport through large scale fracture
7 networks. One network is a quasi-two-dimensional lattice where the apertures are sampled
s from a lognormal distribution and the other is a set of networks composed of circular frac-
a1 tures whose lengths are drawn from a power law distribution. In both sets of simulations,
&2 we consider point injection and flux-weighted injection of particles across the entire inlet
g3 plane. The impact of complete mixing and streamline routing is compared in terms of the
ss travel time distributions, mean squared displacement, and transverse breakthrough distribu-
e tions of solute plumes at uniformly spaced control planes. Additionally, to explore possible
ss implications on mixing driven reactions we also compare mixing rates in simulations with
g7 different implemented fracture intersection mixing rules.

ss  We observe that the impact of the mixing rule depends on the initial injection mode,
g0 the fracture network structure, and heterogeneity of the velocity field. The greatest impact
o on upscaled properties is observed when particles are released from a point source. As
a1 heterogeneity of the network structure increases particles tend to channelize at the network
o scale and the impact of the mixing rule on upscaled behavior decreases. But even in highly
3 heterogenous systems, there are significant differences in transport behavior within fracture
o planes where in-plane channelization is observed. Specifically, we find that streamline routing
os increases channelization of mass to secondary fractures, resulting in an increased overall
o system wide averaged mixing rate and local mixing rates that can differ by up to two
o7 orders of magnitude. This has strong potential implications for reactive transport, mainly

o in determining how aggressively and where mixing driven reactions will occur [23, 24].

o II. DISCRETE FRACTURE NETWORK SIMULATIONS

wo  There are a number of methods used to model flow and the associated transport of
1 dissolved chemical species through fractured media in the subsurface including stochastic
102 continuum [25], dual-porosity / dual-permeability [26], and discrete fracture network models
103 (DFN) [27-29]. Here we use the discrete fracture network (DFN) modeling methodology
14 Where individual fractures are represented as planar N — 1 dimensional objects embedded
10s within an N dimensional space. Each fracture is assigned a shape, location, and orientation
106 within the domain by sampling distributions whose parameters reflect a site characteriza-

w7 tion. The fractures form a network embedded within an impermeable rock matrix; we do not



108 consider interaction between flow within the fractures and the solid matrix. Each fracture is
109 meshed for computation and the governing equations for flow and transport are numerically
no integrated on the network. The choice to use a DFN model rather than a continuum model
m arises due to the focus of this study, which is characterizing the influence of smaller scale
u2 processes, namely particle behavior at fracture intersections, on upscaled transport behav-
u3 ior. Continuum models do not explicitly represent fractures and their intersections and are
us therefore unsuitable for the task at hand.

us  The generation of each discrete fracture network along with flow and transport simu-
16 lations is preformed using the DFNWORKS suite [22]. DFNWORKS is a high-fidelity DFN
7 modelling suite that has been used in analysis of flow properties in fractured media with
us scales ranging from millimeters to kilometers and with applications in nuclear waster dis-
uo posal [30, 31] and hydraulic fracturing [4, 32]. DFNWORKS combines the feature rejection
120 algorithm(FRAM) [33], the LaGriT meshing toolbox [34], the parallelized subsurface flow
121 and reactive transport code PFLOTRAN [26], and an extension of the WALKABOUT particle
122 tracking method [35, 36]. FRAM is used to generate three-dimensional fracture networks.
123 LaGriT is used to create a computational mesh representation of the DFN in parallel. PFLO-
124 TRAN is used to numerically integrate the governing flow equations. WALKABOUT is used to
125 determine pathlines through the DFN and simulate solute transport. Details of the suite,

126 implementation, its abilities, applications, and references are provided in Hyman et al. [22].

127 A. Flow Simulations

s Under the assumption of aperture uniformity within a single fracture, flow therein is
120 equivalent to flow between two parallel plates and can be modeled with the Stokes equations,
130 the governing equations for low Reynolds number isothermal single phase Newtonian flow.
1 The Stokes equations can be integrated to determine the volumetric flow rate () per unit

132 fracture width normal to the direction of flow

b3
= —VP, 1
Q 2 (1)
133 1.e., the Boussinesq equation. Here b is the aperture height and P is pressure. We consider
134 an incompressible fluid such that

V-Q=0. 2)



135 Equation 1 and 2, along with boundary and initial conditions, are used to derive an elliptic

136 partial differential equation for the steady-state distribution of pressure within a network
V- (B*VP)=0. (3)

137 Once the distribution of pressure and volumetric flow rates are determined by numerically
138 integrating (3), the Eulerian velocity field u(x) within the DFN is reconstructed from the
130 volumetric fluxes and pressures following Makedonska et al. [35] and Painter et al. [36]. A
1o pressure gradient is imposed, which is aligned with the x axis, making this also the primary

121 direction of flow.

122 B. Transport Simulations: Particle Tracking

13 We represent the transport of a nonreactive conservative solute in the DFN using passive
14 tracer particles, i.e., a Lagrangian approach. Particle motion is purely advective within a
us fracture and molecular diffusion is only considered in fracture intersections via a subgrid
us process. We denote the plume of particles as {2 and consider two different inlet conditions.
17 The first inlet condition is a point source where all particles are released into a single fracture
us close to the center of the inlet plane. In the second inlet condition, particles are spread across
19 the entire inlet plane and the number of particles at a given location is proportional to the
150 flux entering the system at the location, i.e., a flux-weighted injection [30, 37, 38].

51 Bach particle has a unique initial position that we denote a = (0,9,2)", where the
152 superscript T indicates the transpose. The trajectory x(¢;a) of a particle starting at a at
153 time ¢ = 0 is given by the advection equation

dx(t;a) . L
—g = v(t; a), x(0;a) = a, (4)

152 where the Langrangian velocity v(¢;a) is given in terms of the Eulerian velocity u(x) as
vi(t;a) = ulx(t; a)]. (5)

155 The length ¢(¢; a) of the trajectory at a time ¢ is

dl(t; a)

= =t a). (6)

15 where the Lagrangian velocity is the velocity magnitude v,(t,a) = |v,(¢,a)|. The length of

157 the pathline, /, is used to parameterize the spatial and temporal coordinates of the particle.



1553 Within the domain, we consider uniformly spaced control planes that are perpendicular
150 to the primary direction of flow. The first arrival time 7(x;;a) of a particle at a control

10 plane located at x; from the inlet is given by

T(x;;a) = t[A(z;); al, Mz;) = inf{l|z;(¢;a) > x;}. (7)

161 C. Measurements

12 At every control plane z;, the first arrival times of the particles (Eq. 7) are combined to

13 obtain the cummulative distribution of travel times for the plume of particles

Ot 1) = % / dOH(t — (21, 2)) (8)

16e Here, M is the total mass of all the particles M = [ dQ and H(t) is the heavy side function.
165 We refer to (¢, x) as the breakthrough curve. We also compute the transverse spreading
166 Using the distribution of particle positions at each control plane. Denoting the position of
17 each particle at the control plane x; as z, the transverse breakthrough position distribution
s (TBPD) in z is

o) = 57 [ 482~ 2. 9)

10 where ¢ is the Dirac delta function. An analogous equation is used to calculate TBPD in y.
o The characteristic spreading of the particle plume in the transverse direction at longitu-

1 dinal position z is quantified by the mean squared displacement,
1 = 2 | (= 2
MSD, = i ANz, —2.)" + (¥, — y)°, (10)

12 where zy, yx are vectors of the transverse position for each particle at x and the overline

1713 denotes the average over all particles.

s III.  PARTICLE BEHAVIOR AT FRACTURE INTERSECTIONS

s When a particle arrives at a fracture intersection, both advective and diffusive processes
176 should govern motion through the intersection. In a purely advective system, particle motion
177 follows the streamlines of the velocity field. However, diffusion enables particles to jump

178 between streamlines and mix. The amount of mixing that occurs in a fracture intersection



179 is a balance of the strength of advection relative to diffusion which can be characterized by

180 Péclet number
B vl
2D,

Pe (11)

11 We adopt the Pe definition provided in [15] where v is the average velocity within the
182 intersection, L is a characteristic diagonal distance across the intersection, and D,, is the
183 molecular diffusion coefficient.

18 The upscaled nature of DFN models prevents the detailed physics that control mass
18s transfer at fracture intersections from being resolved. Instead, subgrid processes are used to
15 model mass transfer through intersections. There are two mixing rules that are commonly
157 applied: 1) complete mixing and 2) streamline routing. These rules are representative of
188 end members associated with diffusion and advective controlled transport, respectively. The
189 choice of which rule to apply should reflect the physics of the intersection, as determined by
100 the Pe.

w1 At a fracture intersection, conservation of mass requires that the sum of incoming and
102 outgoing Darcy fluxes is zero, ), ¢; = 0. Both mixing rules require knowledge of the Darcy
103 outflowing fluxes. The streamline routing rule needs additional information, the position
14 of the inflow branches relative to each outflow branch and so implementation of complete

15 Mixing at fraction intersections is simpler than streamline routing.

106 1. Complete Mizing

1w Under complete mixing, particle motion within the intersection is controlled by diffusion.
108 In this scenario, particles enter an intersection inlet and are conceptually allowed to jump
199 between streamlines by being re-positioned to any point within the intersection with equal
200 probability. Figure 1 (a) shows mass transfer under the complete mixing rule in a single
201 orthogonal intersection where all branches have an equivalent discharge magnitude. Light
202 blue mass from the top inlet and red mass from the bottom inlet mix at the intersection
203 and are distributed equally between the two outflowing branches. Each outlet contains mass
204 from both inlets, represented by the outflowing purple color in the figure.

205 With complete mixing the probability a particle exits a given outlet is proportional to

206 the outlet flux, mathematically represented as,



FIG. 1. A fracture intersection with two inflow branches and two outflow branches. All branches
have equivalent discharge magnitudes. In complete mixing (a) mass from both inlets (red and
blue) mix at the intersection and mass is distributed equally to each outlet (purple). In streamline
routing (b) incoming red mass from the bottom inlet and blue mass from the top inlet are forced

to their respective adjacent fractures and do not mix.

441
p-: ; 12
AT (12)

207 where p; is the probability a particle exits outlet j, and & denotes an outflowing fracture

208 branch.

200 2. Streamline Routing

20 In the streamline routing rule particle motion through fracture intersections is advection
an controlled.  Particles adhere to their respective streamlines through the intersection, as
a2 if no mixing occurs within the intersection. Therefore, particle motion depends on the
213 particle’s inlet position. The streamline routing rule differs from the complete mixing rule
21 only when a fracture intersection has multiple incoming and multiple outflowing branches.
215 In a two fracture intersection there are only two intersection types that have this geometry

216 a) continuous junctions and b) discontinuous junctions [13].

10



27 A continuous junction has two inflowing branches, two outflowing branches, and the
218 inflowing branches are adjacent, i.e. lie on different fractures. Figure 1 (b) depicts streamline
210 Touting mass transfer through a continuous junction where all branches have equivalent
220 discharge magnitudes. Flow from an inlet is directed to the outflowing adjacent branch. In
221 this case, all mass from each inlet is distributed to the adjacent outflowing branch because
22 there is no mixing within the fracture intersection. In general, the streamline routing rule
223 goes as follows. If discharge from the inlet is less than the adjacent outlet discharge, all
24 mass is directed to the adjacent outlet. If the inlet discharge exceeds the adjacent outlet
25 discharge, conservation of mass requires that the adjacent outlet is filled and excess mass is

¢ directed to the other outlet.

2!

N

27 Consider a particle entering a continuous junction from an inlet with flux g¢;,, which is

2

N

s adjacent to an outflow branch with flux g,4;. The second (opposite) outflow branch lies
220 on the same fracture as the initial inlet fracture and has flux g,,,. The streamline routing

20 Tule dictates that the probabilities of transitioning from the inlet to the adjacent p,q and

w

231 Opposite p,,, outflow branches are:

w

1, Gadj = Qin
Padj = . s Dopp = 1 — Pagj (13)
%7 Gadj < Gin
232 More details on continuous junctions are found in Hull et al. [13].
23 Discontinuous junctions arise from multiple sources and sinks present in the fracture
23 network, such as a geothermal field with production and injection wells [13]. In a discon-
235 tinuous junction inflowing branches are opposite and lay on the same fracture. Hull et al.
26 [13] proposed two distributions of streamline routing through a four branch discontinuous
237 intersection, one equivalent to complete mixing and one where the high discharge inlet is
23 preferentially directed to the high discharge outlet. Philip [39] extended Hull’s analysis by
23 finding solutions for Laplace and Stokes flow through the orthogonal intersections. Philip
20 showed that under certain conditions, mainly when there is significant differences in branch
2nn discharge magnitudes, using complete mixing for streamline routing can result in significant
a2 error. However, Hull’s other proposed streamline routing rule, where the high discharge
23 inlet is preferentially directed to the high discharge outlet, is also prone to error as adja-

aaa cent streamlines can have opposite directions for a considerable distance. Hence, the theory

s for streamline routing through discontinuous intersections is still not fully developed. For

11



a6 completeness, we present Hull’s second proposed streamline routing rule for discontinuous

max

2«7 intersections. In this case, mass from the higher discharge incoming branch ¢

is parti-
max

et and any excess mass exits the smaller

28 tioned to the higher discharge outflowing branch ¢

29 discharge outflowing branch ¢;".

A particle arriving from the inlet with ¢»** has outlet

250 transition probabilities given by

1 qma:v > qmax
) out = din ;
mar __ min __ __ maz
pout - max ’ pout =1 pout (14)
Qout max max
q?#aw ) qout < q’m

in

51 A particle arriving from the weaker inflow branch has transition probabilities:

max max

dout —9in mazx max
: Uout = 4 :
maxr __ qm ’ ou m min __ 1 _ ,max
pout - ) pout =1 pout (15)
mazx mazx
O’ Aoyt < Qin,

22 We performed simulations using both of Hull’s discontinuous streamline routing rules. Re-
253 sults were not effected by different rules due in part to the observation that discontinuous
254 intersections are rare in the systems under consideration. Our presented results are only
255 shown for the case described above.

6 The occurrence and frequency of triple intersections, where three fractures come together
»s7 at point, depends on the particular fractured media under consideration. However, these
258 triple intersections do occur regularly in unconstrained stochastically generated DFN, their
250 frequency depends on the fracture length distribution, network density, and fracture family
x0 orientation. Thus, from a practical and computational point of view, a rule for particle
21 behavior at these points needs to be adopted in DFN modeling. We apply complete mixing
2 at all triple intersections primarily due to the lack of experimental data concerning flow

263 properties at triple intersections by which to verify appropriate streamline routing rules.

264 IV. RESULTS

s A. Sample Fracture Networks

%6 We consider flow and transport within two distinct fracture network structures. The first
27 18 a quasi-two-dimensional lattice network and the second is a set of stochastically generated

28 networks, where fracture radii are sampled from a truncated power law distribution. These

12



x0 two network structures are considered because they display different features that drive
o0 flow channelization. The lattice networks have an idealized, regular geometry and flow
on channelization arises from variations in the permeability field. In the truncated power law
a2 networks, fracture intersections are less frequent and the geometry of the network drives
o713 flow channelization. In the analysis of results we non-dimensionalize distance with [*, the
o7 maximum fracture radius in the system, and time with 7%, the time required to traverse [*

o5 traveling at the mean particle velocity.

276 1. Lattice Network

a7 The lattice network is comprised of two sets of 50 parallel 3-dimensional planar fractures,
s where fractures in each set are spaced one meter apart and intersect fractures of the other
20 sets at a 45° angle. The computational domain has size [32, 1, 16]m in the z, y, z directions.
20 A pressure gradient of 1 MPa is used to drive flow in the x-direction. The imposed pressure
2a1 field results in a quasi-two-dimensional velocity field because velocity in y is negligible.

2 Fracture apertures are sampled from a lognormal distribution in accordance with obser-
23 vations [40-42]. Each lattice network has a mean aperture b = 10~%m and three aperture
284 Variance cases are considered, an(b) = 0.1,0.5,1. Twenty-five realizations are generated
285 for each mixing rule and aperture variance combination. For each combination, transport
286 is simulated for both point source and flux weighted initial injections. These simulations
27 are similar to the 2D lattice simulations of Kang et. al [10]. However, in our experiments
288 velocity field heterogeneity is controlled by changing the distribution of aperture sizes and
280 we consider an additional flux weighted initial injection case. The objective of studying
200 this network set is to fix the network structure and focus on the effects of variability at the

201 fracture scale.

202 2. Truncated Power-law Network

23 The second set of networks are composed of disk-shaped fractures whose radii are sampled
20 from a truncated power-law distribution, which is a commonly observed length distribution
25 in field data [1, 43-45]. Bour and Davy [43] showed a power-law distribution accurately

206 captures the wide range of fracture lengths often observed in geological datasets [44, 45]. In

13



207 our power law networks, fracture radii are sampled from a truncated power-law distribution

208 with exponent o and upper and lower cut-offs of (Ry; Ry)

RO a1 —1/a
R=Fo|1=n+n (7 , (16)

200 where 7 is a random number sampled from a uniform distribution on [0,1]. We choose an
300 exponent o = 2.1 and cut-offs Ry = 2 R, = 30m based on field data [1, 46]. The networks are
300 not meant to be realizations of the networks reported in [1] and [46], but rather semi-generic
s2 fracture networks. Fracture orientations are uniformly random and centers are uniformly
s03 distributed throughout the domain. Fracture apertures are positively correlated to their
ss radius, b = 5 - 1077 - v/R, which controls the hydraulic properties within the fracture. This
305 correlation between fracture size and aperture is common in DFN models [29, 31, 47-50]. The
306 computational domain is a cube with sides of length 100m. We refer to these as truncated
307 power law (TPL) networks.

s Ten independent identically distributed network realizations are generated. We stop the
s00 generation of the networks once 1000 fractures are accepted into the network. This results in
s10 & network that is about 7 times more denser a network at the percolation threshold defined
su by [7, 51]. This procedure ensures that there is a subnetwork that connects inflow to outflow
s12 boundaries. To reduce computational cost, we remove all isolated clusters of fractures, those
a3 that that do not connect inflow to outflow boundaries, because they do not contribute to
su flow. There are roughly 200 fractures the final networks and the average fracture intensity
us (Psy: Surface area over total volume) is approximately 0.1. Flow is forced along the z-axis by
s16 imposing constant pressure conditions at the inlet and outlet control planes perpendicular

a7 to . The pressure difference in = across the inflow and outflow boundary is 1MPa.

318 B. Lattice Network Simulations
319 1. Breakthrough Curves: Lattice

20 Figure 3 shows the cumulative distribution of first passage arrival times (Eq. 8) for the
a1 point injection (a) and flux weighted (b) initial conditions. Thick lines (streamline routing)
2 and stars (complete mixing) are median breakthrough curves for twenty-five realizations and

23 transparent lines correspond to single realizations. For each realization, solid lines indicate

14
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FIG. 2. One realization of a DFN with fracture lengths drawn from a power law distribution.

Fractures are colored by their permeability, which is positively correlated with fracture radius.

24 streamline routing and dashed lines indicate complete mixing. Colors correspond to different
35 aperture variances; afn(b) = 0.1,0.5,1 are depicted with blue, red, and green, respectively.
26 As velocity field heterogeneity decreases, breakthrough curve realizations homogenize and
27 the range of arrival times decreases. In both injection conditions and for all values of afn(b)
s there is little impact of the mixing rule on the median observed travel time distributions.
29 In turn, these results indicate that the mixing rule has no major impact on mean particle
30 velocities, demonstrated by no significant change in breakthrough curve behavior (Figure
m 3). Additionally, breakthrough curve realizations are more clustered near the median break-
s22 through curve for the flux weighted initial condition, e.g. the range of Psy values, the time
513 at which 50% of mass has crossed the outlet control plane, decreases with the flux weighted

334 Case.
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FIG. 3. Cumulative distribution of first passage arrival times (breakthrough curves) for point
injection (a) and flux weighted (b) initial condition. Thick lines are median breakthrough curves
for 25 realizations and transparent lines correspond to single realizations. For each realization, a
solid lines indicate streamline routing and dashed lines indicate complete mixing. Colors correspond
to different aperture variances; UZQn(b) = 0.1,0.5,1 are depicted with blue (steepest slope), red, and

green (least steep slope), respectively.

335 2. Solute Spreading: Lattice

16 Figure 4 shows the spatial evolution of the transverse breakthrough position distribution
w7 fy,(2) for simulated flow and transport through single realizations of lattice networks of
18 varying velocity field heterogeneities with a point source injection initial condition. The
330 top row shows f,,(z) for complete mixing, the middle is for streamline routing and the
;0 bottom shows the ratio of streamline routing to complete mixing transverse breakthrough
a1 position concentrations. In each column, the streamline routing and complete mixing lattice
s2 networks are identical realizations. Colors are the logarithm of the concentration with yellow
a3 corresponding to relatively high concentration values and blue corresponding to lower values.
sas In both mixing rule cases, there is more pronounced flow channeling as alzn(b) increases due to
us the formation of paths of lower resistance. We calculate the percent of particles concentrated
us on each fracture at each control plane. As heterogeneity increases from len(b) = 0.1 to
347 an(b) = 1, the largest value of percent particles on a single fracture increases by nearly a
s factor of 2 at distances greater than x/lx > 1, demonstrating increased flow channelization

20 (results not shown).
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FIG. 4. The transverse distribution at sequential control planes through a lattice network with a
point injection initial condition for one realization. All lattices have the same mean aperture size.
Variance of aperture size is selected from a lognormal distribution and increases from the left to
right column. Simulations are completed for complete mixing (row 1) and streamline routing (row
2) intersection rules for the same network realization. Row 3 gives the ratio of streamline routing to
complete mixing transverse breakthrough position concentrations. Colorbars show log probabilities
(rows 1,2) and absolute ratio values (row 3). Complete mixing enhances particle spreading. As
velocity field heterogenity increases, the impact of the mixing rule on particle spreading decreases.

The transverse direction z is normalized by half the length the of domain z*.

When complete mixing is used, the particles disperse transversely faster than in this case
of streamline routing and the plume reaches the lateral boundary of the domain closer to the
inlet. By contrast, streamline routing increases channelization, which is most notable at low
values of Ufn(b). Hence, both streamline routing and increasing velocity field heterogenity
increase channelization of particles. The ratio of the streamline to complete mixing TBPD
highlights how the evolution of f,,(z) changes because of the intersection mixing rule. Areas
of dark blue have value 0, indicating positions where breakthrough occurred under complete

mixing but not streamline routing. The yellow areas through the center of the lattice show
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358 fractures where streamline routing increases particle concentration.

Complete Mixing Ratio: SR/CM
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FIG. 5. The transverse breakthrough position distribution at each control plane for one realization
of the lattice with a flux weighted injection. Simulations are completed for complete mixing (a)
and streamline routing (b) intersection rules. Subfigure ¢ gives the ratio of streamline routing to
complete mixing transverse breakthrough position concentrations. Colorbars show log probabilities
(row a,b) and the absolute ratio (c). Ul2n(b) = 0.5 is the only aperture variance shown because results
do not significantly change for different velocity field heterogenties. The mixing rule has less impact
on particle spreading with a flux weighted initial condition. The transverse direction z is normalized

by half the length the of domain z*.

s Figure 5 shows the same plots as in Fig. 4 for a flux weighted injection. Only the o7 = 0.5
w0 is provided as all o values displayed nearly identical behavior. The ratio of streamline
361 Touting to complete mixing for f,, (2) is close to 1 throughout much of the domain, indicating
s2 nearly identical distribution of the solute plume for the two mixing rules. One exception is
363 the area of yellow in the bottom right corner of the ratio figure (c), where streamline routing
34 has a higher particle concentration. This is an area of low particle concentrations and is
365 therefore more sensitive. The results presented here indicate that the mixing rule’s impact
366 on the evolution of f,. (z) is less significant when particles are injected using a flux weighted
se7 initial condition.

s 10 demonstrate these differences, Figure 6 shows particles within one realization of the
360 lattice network with afn(b) = 1.0 where fractures are colored by pressure. The left sub-figure
w0 (a) is a snapshot of particles injected from a point injection where the complete mixing rule
s is applied and in the middle sub-figure (b) streamline routing is applied. As discussed above,

a2 the application of the complete mixing rule leads to higher transverse dispersion when com-
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FIG. 6. Particles within the quasi-two-dimensional lattice network. In the left (a) and middle (b)
sub-figures particles injected from the same point source on the left boundary and driven right
by a pressure gradient. In sub-figure (a), particles adhere to a complete mixing rule (red) and
in sub-figure (b) they follow streamline routing (blue). The choice of a complete mixing rule in
combination with a point injection leads to higher transverse dispersion than if streamline routing is
used under the same initial conditions. Sub-figure (c¢) shows particles injected using flux-weighting
adhering to both mixing rules (red-complete mixing / blue-streamline routing). Here, no significant

difference between the distribution of particle locations between the two rules is observed.

w3 pared to streamline routing. The right sub-figure (c¢) shows both particles (red-complete
s mixing / blue-streamline routing) injected using flux-weighting. Here, no significant differ-
ss ence between the distribution of particle locations between the two rules is observed.

v  Figure 7 shows the mean value of the mean squared displacement (MSD) for point (a)
w7 and flux-weighted (b) initial conditions. These are calculated at each control plane by
ws averaging over all particles and all 25 realizations. Solid lines indicate streamline routing and
;9 stars indicate complete mixing. Colors correspond to different aperture variances; afn(b) =
380 0.1,0.5, 1 are depicted with blue, red, and green, respectively.

;1 For the point injection, there is a significant difference between the observed MSD values
2 for complete mixing and streamline routing. For all values of afn(b) complete mixing results
3 in an increased MSD. The impact of the mixing rule on MSD decreases with increasing
ssa velocity field heterogeneity, shown by a decreasing difference in MSD between mixing rules.
35 For the flux weighted injection the mixing rule’s impact on MSD is less than in the point
ss6 ijection case, as the complete mixing and streamline routing curves more closely match.
se7 Note that the MSD is driven by displacements in the z direction due to the quasi-2D nature
sss of the lattice.

0 In the point injection, the number of times particles change fractures averaged over all
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FIG. 7. The mean MSD in the lattice network is calculated at each control plane by averaging
over all particles and all 25 realizations. Solid lines indicate streamline routing and stars indicate
complete mixing. Plotted is MSD for both the point (a) and flux weighted (b) initial conditions.
Colors correspond to different aperture variances; o*l?n(b) =0.1,0.5,1 are depicted with blue (upper
curve in b), red, and green (lower curve in b), respectively. As velocity field heterogenity increases
the mixing rule’s impact on MSD decreases. A flux weighted injection results in less spatial

variability of MSD.

300 particles and over 25 realizations increases for streamline routing by 52, 36 and 33% for
301 alzn(b) = 0.1,0.5, 1, respectively. As the velocity field heterogeneity increases, particles change
s fractures less frequently due to increased channelization to high discharge pathways. In the
s03 case of flux-weighted injection, streamline routing increases the mean number of times a
s04 particle changes fractures by 52, 39, and 36% for an(b) =0.1,0.5,1 compared with complete
35 Mixing. Again as the velocity field heterogenity increases particles change fractures less

306 Often and more particles are channelized to high discharge fractures.

307 C. Power Law Networks Simulations
308 1. Breakthrough Curves: TPL Network

39 The median breakthrough curves through the ten truncated power law (TPL) realizations
a0 for complete mixing (green stars) and streamline routing (thick orange lines) are shown in

1 Figure 8. Solid lines correspond to point injections and dashed lines correspond to a flux
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FIG. 8. Median breakthrough curves of 10 TPL realizations for complete mixing (green stars) and
streamline routing (thick orange lines). Solid lines correspond to point injections and dashed lines
correspond to a flux weighted initial condition. Each breakthrough curve realization is plotted with
a transparent line. The mixing rule has a negligible impact of the distribution of arrival times. A

flux weighted initial conditions homogenizes the spread of breakthrough curves.

w02 weighted initial condition. Each breakthrough curve realization is plotted with a transparent
w03 line. No significant difference in the breakthrough curves is observed between the two mixing
a4 Tules indicating that the choice of mixing rule has a negligible impact of the distribution of
a0s arrival times. The breakthrough curve is changed in two ways when using the flux weighted
w06 injection. First, breakthrough curves are shifted left, meaning particles on average traverse
a7 the entire network in less time compared with a point injection. This indicates that on
w8 average, the selected flow paths resulting from the sampled point injection in this study are
a0 slower than the fluxed weighted velocity average. However, given a larger sample of networks,
a0 we expect median breakthrough curves to converge. Second, the variability in breakthrough
a1 arrival times decreases with the flux weighted injection; the flux weighted breakthrough
a2 curves are more clustered near the median, whereas the point injection breakthrough curves

a3 display greater variation in arrival time for an associated cumulative concentration value.

414 2. Solute Spreading: TPL Network

a5 Figure 9 shows the transverse breakthrough position distributions in z for one realization

a6 of a truncated power law distributed radii network for the point (a) and flux weighted (b)
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FIG. 9. The transverse breakthrough z-position distribution for one realization of a TPL network
for a point (left column) and flux weighted (right column) initial injection mode. Simulations are
completed for complete mixing (row 1: a,d) and streamline routing (row 2: b,e) intersection rules.
Row 3 gives the ratio of streamline routing to complete mixing transverse breakthrough position
concentrations. Colorbars show log probabilities (row 1,2: a,b,d,e) and the absolute ratio value
(row 3: c¢,f). Streamline routing increases channelization of particles to secondary fractures, shown
as areas of yellow in the ratio figures. The transverse direction z is normalized by half the length

the of domain z*.

22



a7 injection modes. The percent of particles on primary fractures remains similar across mixing
a8 ules and over 50% of particles at a given control plane are concentrated on less than 10% of
a0 the total fractures in the system. In the case of point injection, there are primary fractures
0 as indicated by the brightly colored areas lying between 0 and 0.5 in z/z*. Between 0 and 2
a1 x/l* there is a relatively low number of fracture intersections and particles trajectories are
42 similar. In this region the ratio of streamline routing to complete mixing TBPD is O(1). At a
w3 distance greater than 2 in x, the fracture intersection density increases and complete mixing
20 more evenly distributes particles across secondary fractures, observed as a more uniform
a5 color in TBPD distributions. In streamline routing, increased channelization to secondary
a6 fractures is observed as an increased number of streaks in the TBPD, particularly prevalent
227 in the top and bottom right corners of the TBPD figures. These streaks also appear as
s yellow areas in the bottom figure that shows the ratio of the concentration for the two rules.
w20 With a flux weighted initial condition, the mixing rule again causes significant differ-
a0 ences in TPBD on secondary fractures, observed as an increased number of streaks in the
a1 streamline routing simulations. However, the general evolution of particle spreading remains
s similar. Areas of high particle concentration (green and yellow colors) are similar for each
3 mixing rule. There is a primary fracture (brightly colored) that extends from 1 to 2 in x
s and 0 to 0.5 in z that has a streamline routing TBPD to complete mixing TBPD of O(1),
w35 indicating particle concentration on this fracture is approximately equal.

a6 Figure 10 shows the MSD, averaged over all particles in the 10 realizations of TPL
a7 networks, for complete mixing (green) and streamline routing (orange) with a point (solid
a3 lines) and flux weighted (dashed lines) injection. There is less spatial variability in MSD for
w30 the flux weighted injection condition. As opposed to the lattice, the complicated network
ao structure constrains the spreading of particles thereby limiting the impact of the mixing
a1 rule on MSD. The observed channelization due to streamline routing has a small impact
w2 on average particle behavior. The mean (averaged over all particles and all realizations)
a3 number of times a particle changes fractures from inlet to outlet increases approximately
ws 5% from 7.7 in complete mixing to 8.0 in streamline routing. This change percentage is less
ws than in the lattice because the fracture intersection density is lower in the TPL networks.
as Consistent with the point injection on the lattice, MSD increases with increasing distance
a7 from the initial point of injection.

ums  In the case of the flux-weighted injection, the mean number of times particles change
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FIG. 10. The MSD is averaged over all particles in 10 realizations of stochastically generated TPL
networks for complete mixing (green) and streamline routing (orange) with a point (solid lines) and
flux weighted (dashed lines) injection. The MSD for the flux weighted injections has less spatial
variability. The network structure drives particle spreading and so the impact of the mixing rule

on MSD is negligible.

wo fractures increases 5% from 6.2 for complete mixing to 6.5 for streamline routing. The flux
0 weighted initial condition increases the initial spread of particles compared to the point in-
w51 jection, which allows transverse breakthrough to occur across a larger portion of the domain.
2 Hence, the flux weighted injection increases MSD at all measured control planes. As was
153 the case for the point injection, the MSD values are nearly the same for both mixing rules.
s Similar to the lattice flux weighted injection simulations, MSD remains relatively constant as
a5 distance from the inlet increases, with spatial changes resulting from the network structure

a6 and not the mixing rule.

7 V. DISCUSSION

s The results of the simulations presented in the previous section indicate that there are
a0 scenarios where the choice of mixing rule at fracture intersections can have a large impact
a0 on transport behavior and other scenarios where the impact is negligible. As noted in the

a1 introduction, this is consistent with the literature where seemingly opposite statements are
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w2 made with regard to how important is the mixing rule. The magnitude of the mixing rule’s
a3 influence is determined by how particles enter the network, the complexity of the fracture

se network, and the heterogenity of the velocity field.

w65 A. Injection Mode

ws  There are two major differences between the flux weighted and point injection modes
w7 that cause differences in solute spreading. First, a point injection releases particles onto one
s fracture and all particles are influenced by the same local effects near the injection point.
w0 Therefore, the initial behavior is highly dependent on where the particles are released. The
a0 flux weighted initial condition spreads particles across the entire inlet, thereby reducing the
«n impact of such local effects and reflecting a more broad statistical sampling of the hetero-
a2 geneous system. Second, a flux weighted injection channelizes particles to high discharge
a3 fractures from the start of the simulation. The flux weighted injection weights high dis-
s charge fractures more than low discharge fractures by distributing particles proportionally
a5 to fracture discharge, meaning particles channelize on primary fractures immediately. As
a6 a fracture’s discharge increases the probability of a particle leaving that fracture decreases.
a7 Thus the mixing rule’s impact decreases as more particles are distributed to high discharge
as fractures because particles preferentially remain on these high discharge pathways. This
a0 decreased impact is demonstrated by similar TPBD evolution for each mixing rule when
a0 particles are flux weighted injected.

w1 In a large enough network, the initial distribution of Lagrangian velocities evolves to an
2 asymptotic stationary distribution, where Langrangian velocities becomes proportional to
a3 the local velocity field, i.e. the transverse concentration distribution for the point injection
ssa Will converge to the flux weighted injection concentration distribution. The time needed to

a5 for this to occur can be characterized with a Taylor-like timescale, T = g—i, where a is a
s characteristic length and Dy is effective dispersion. In both network structures we observe
se7 that the point injected MSD approaches the flux weighted MSD as distance (and time) from
ass particle release increase. Note that a and Dy are strongly affected by the network geometry
a0 and so T changes with varying network structures. Additionally, the mixing rule influences
w0 Dp; mainly complete mixing increases D, and thus T decreases.

w1 In a regularized geometry, such as the lattice, we observed complete mixing enhances
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42 initial particle spreading for a point injection (Figure 4). At the length scales considered,
03 the point injection breaks Lagrangian ergodicity, that is the Lagrangian velocity statistics
w0 sampled along a particle trajectory is not equivalent to an ensemble average across all
405 particle velocities. Dentz et al. [52] showed that in steady heterogenous flows, a Langrangian
w06 distribution found by spatially sampling along particle trajectories is stationary if the initial
a7 particle velocity distribution is equivalent to the Eulerian flux weighted velocity distribution.
w8 Once sufficient time has passed and the initial condition is erased, ergodicity is established
a9 and the mixing rule becomes negligible for transverse particle spreading (Figure 5). Since
so0 ergodicity is not established at pre-asymptotic times for a point injection, the mixing rule
so0 does impact spreading on the lattice. However, in networks with highly heterogeneous
se2 structures, network geometry becomes increasingly important and the impact of the injection
s03 mode decreases. For example, in the TPL networks there is a relatively small number of
soa fracture intersections and so particle transport is constrained by the network geometry and
sos the injection mode and mixing rule has negligible impact even at pre-asymptotic times

sos (Figure 9).

507 B. Network Structure

ss A fracture network’s geometry, specifically the fracture intersection density and fracture
s00 Orientation, constrains plume spreading. As the fracture intersection density increases, par-
s10 ticles have an increased probability of changing fractures. The lattice network has a higher
su density of fracture intersections than the TPL networks and all intersections are continuous
s12 junctions, i.e. incoming inlets are adjacent. Therefore the mixing rule more significantly

s13 impacts particle spreading behavior. In continuous junctions, streamline routing increases

f 9adj +4opp or 9adj +4opp

adj Qin

s1e the probability of changing fractures (to the adjacent) by a factor o
sis when ¢, < @aqj and @in > qaqj, Tespectively. In the lattice network, particles regularly visit
s16 fracture intersections and streamline routing probabilisticly directs more particles to adja-
si7 cent fractures, causing particle pathlines to more frequently alternate between positive and
s18 negative directions. This alternating pattern of positives and negatives cancel, focusing the
s10 particle concentration near the initial inlet transverse position (Figure 4). Hence, particle
s20 pathlines are significantly altered by the intersection mixing rule, especially when outlet

sa1 discharges are similar in magnitude.
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s2 The 3D geometry and reduced connectivity of the TPL networks results in transport that
s23 is constrained by geometrical and topological network properties. In turn, these features,
s2« which are far more complex than the quasi-2D lattice, decreases the impact of the mixing
s25 Tlle relative to the lattice. One such geometrical effect, local flow cells, develop from vari-
s26 ations in fracture radii length and orientation, which manifests as elongated tails in solute
s2r breakthrough [53]. Additionally, particles remain on fractures for longer distances because
s2s they encounter fewer intersections, i.e., solute spreading is structurally constrained. More-
s20 over, fracture aperture is positively correlated to the fracture radius in the TPL networks.
s3 By nature of the truncated power law distributions a small percentage of fractures will
sa1 therefore have substantially larger permeability and dominate transport due to geometric,
s»2 topological, and hydrological preference. In combination, these attributes dominant local
s13 flow behavior and decreases the impact of the mixing rule.

s Furthermore, streamline routing increases the probability of transferring particles to the
s3 adjacent fracture in a continuous intersection by a factor of ‘M];;% for gin > qaqj, which is
s36 typical in the case of a particle traveling on a preferential flow path. For a particle traveling
s37 on such a pathway (which is the majority) in the TPL network, g;, & g as they lie on the
s same fracture; ¢;, >> gqq; is expected due to the fracture length distribution. This suggests
s3 that the probability of a particle changing fractures remains nearly identical (%"lﬂ;r% ~ 1)
ss0 between streamline routing and complete mixing, and the choice of mixing rule is negligible
san in networks with strong preferential flow pathways, such as the TPL networks considered in

sa2 this study.

543 C. Velocity Field Heterogeneity

saa Closely coupled with the network structure is the velocity field heterogeneity. In fact,
sss Margolin et al. [54] found that increasing the network sparseness has the same effect as
sas increasing the velocity field heterogeneity. As the difference between incoming discharge
se7 magnitudes increases, the probability of being routed to the higher magnitude outlet also
sas increases and the impact of the mixing rule decreases. On the lattice, velocity field hetero-
sa9 geneity increases as the variance of the fracture aperture distribution increases. Increasing
sso velocity heterogeneity leads to the development of preferential flow paths in large aperture

ss1 regions [55], which cause greater channelization of particles and form a subnetwork of frac-
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ss2 tures that dominate transport. The mean number of times a particle changes fractures
ss3 decreases with increasing velocity heterogeneity because the probability of transferring from
ss« primary fractures decreases. Additionally, the difference in the number of fracture changes
s55 between mixing rules also decreases as the velocity field heterogeneity increases. Hence, par-
ss6 ticle pathlines become more similar and the mixing rule’s impact decreases as the velocity
ss7 heterogeneity increases,which is consistent with the conclusions of Kang et al. [10].

sss  In the TPL networks, discharge through a fracture is directly related to the fracture radii,
sso hence the distribution of fracture sizes naturally forms a highly heterogeneous velocity field.
ss0 ' The evolution of transverse spreading for both mixing rules looks very similar through TPL
ss1 networks because the large radii fractures channelize particles and the network geometry
se2 drives overall spreading trends. In addition to the velocity field heterogeneity, other factors
se3 control transport and reduce the impact of the mixing rule, e.g. network connectivity and
s geometry [56]. In the context of conservative transport, the higher heterogeneity of the
ses 1 PL network makes the impact of the mixing rule negligible on spreading metrics, a finding
ses consistent with Park et. al. [19] who studied conservative transport through 2D DFNs with

ss7 power law radii distributions.

sss D. Implications for Reactive Transport

sso  The results of this study suggest that the mixing rule has an small impact on common
s70 conservative transport metrics, i.e. breakthrough curves; mean square displacement; and the
s general distribution of TBPD, in complicated geologic media where the network structure
s2 and velocity field are often highly heterogeneous. While these metrics quantify transport
s73 behavior at the network scale there are smaller-scale physical and chemical variations in
s geologic media that are important in the context of reactive transport [57]. In this study we
s7s observe that the mixing rule significantly impacts channelization of particles at the fracture
s76 scale.  Such channelization is important because it drives solute together, enhancing the
s77 mixing rate and increasing the probability that two species react [24]. Zho et al. [18] showed
s7s that the fracture surface roughness increases particle channelization through an intersection,
s79 thereby increasing solute mixing at the fracture intersection scale. Similarly, we investigate
ss0 how channelization due to the intersection mixing rule influence solute mixing, and thus

ss1 Teactions, at the fracture scale.
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s.2 Consider a system with two reactive species A and B, who undergo the irreversible
se3 chemical reaction A+ B — (', such as precipitation of a mineral and two ions [58-61]. The
ssa nature of such reaction requires the difference in concentrations of species to be conserved.
sss Denote u as the conserved quantity, where u = ¢4 — c¢g and ¢; is the concentration of species
se5 ¢ [D8]. Consequently, the amount of C' that can be precipitated is dependent on the less
ss7 abundant species between A and B. In geochemical systems described by instantaneous
ses equilibrium reactions, De Simoni et al. [58] showed the reaction rate between A and B
se0 is a product of a flow driven mixing term VZuVu and a stochiometric term. Hence, the
so0 ixing rate is directly related to the rate of reaction. The mixing rate is independent of
so1 the chemical effects. Since u and particles in DFNWORKS are both conserved quantities
s2 and have the same governing equations, we can measure u and therefore the mixing rate.
s3 Similar to the TBPD measured in Figure 9, we also measure the joint y — z breakthrough
se« position distribution at each control plane, i.e. we discretize each control plane into a 2D
sos grid and measure breakthrough concentration in each cell. This enables construction of
so6 the 3D position breakthrough field. The position breakthrough field provides the entire
sor u—concentration field that arises after large time in a steady flow, in which u particles are

ses continuously injected. The mixing rate is calculated from this u—concentration field.

s9  The ratio of computed mixing rates using streamline routing and complete mixing is
s00 plotted throughout the three dimensional domain (Figure 11) for one network realization
so1 with a point injection (a) and flux weighted injection (b). The injection plane is on the front
s02 Tight face and the primary flow direction is directed to the back left face in both sub figures.
sz The ratio of mixing rates at areas near the inlet where particles have yet to encounter a
s0a fraction intersection is 1. After particles pass through fracture intersections, the mixing
s0s Tule distributes particles differently causing significant local effects in the mixing rates, e.g.
s0s Notice the yellow colored streak intersecting the outlet plane where the local mixing rate

sor differs by two orders of magnitudes.

s  Figure 12 shows the mean normalized mixing rate at each control plane averaged over all
s00 realizations for a point injection (a) and flux weighted injection (b) in the TPL networks.
s10 For each realization, the mixing rate is normalized by the maximum mixing rate observed in
su1 the streamline routing case. On average, streamline routing elevates the mean mixing rate
s12 for both modes of injection. The mixing rate is similar across mixing rules when z*/l < 1,

s13 which corresponds to a distance equal to the radii of the largest fracture in the network.
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FIG. 11. The ratio streamline routing to complete mixing local mixing ratios is shown for one
TPL network realization for a point (a) and flux weighted (b) intial injection. The front right face
is the plane of injection and the back left face is the domain outlet. Color bars plot the absolute
ratio value. Near the inlet plane, the ratio between mixing rules is 1 because transport has yet
to encounter fracture intersections. Near the outlet plane, we observe streaks where local mixing
rates differ by a factor of 100. Differences in mixing rate occur from differences in channelization

of particles due to the mixing rule.

s After traveling this distance, the mixing rate is noticeably greater when streamline routing

615 1S used in the domain.

s The transverse breakthrough position distributions in the TPL networks display increased
sz channelization of particles on secondary fractures for a streamline routing mixing rule, cf.
s1s Fig. 9. These regions of increased channelization are therefore also areas of increased mixing.
s10 Hence, it is expected that streamline routing increases the average mixing rate at each
s20 control plane. Figure 12 shows that streamline routing increases the mean mixing rate at
s21 & distance of approximately equal to the length of the largest fracture radii in the system
e22 [*. Near the particle source, the mixing rule has a smaller impact on channelization because
s23 particles have encountered less fracture intersections. At distances exceeding [* a particle
s2« Must have encountered at least one fracture intersection and so the mixing rule becomes more

s2s important, as fracture intersections enable particles to be channelized to other fractures.

o6 At the fracture scale the local mixing rate can differ by a factor of 100 or greater between
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FIG. 12. The mean mixing rate averaged over 10 TPL realizations at each control plane is compared
for complete mixing (green) and streamline routing (orange) with a point injection (a) and flux
weighted (b) initial injection. In each realization, the mixing rate is normalized by maximum
mixing rate observed for streamline routing. Streamline routing increases the mean mixing rate.
At distances greater than [* from the particle source the difference between mixing rules is greater

because particles have encountered at least one fracture intersection.

the different mixing rules. Such large variation occurs on smaller fractures, which are more
sensitive to the mixing rule. Large fractures are less sensitive to the mixing rule because
they carry more particles and the probability of switching from them is lower, meaning the
concentration gradient is more stable. In systems where solute and the rock boundary react
to dissolve and precipitate minerals, a large difference in mixing rate may lead to significant
differences in the temporal evolution of transport. Hence implementing the most physically
appropriate mixing rule is necessary for developing reliable predictive DFN modeling of
reactive transport.

Cvetkovic et al. [5] simulated sorbing tracers through a 3D DFN. Reactive transport
was quantified with a hydrodynamic retention variable 3, which is a normalized surface
area for diffusion transfer into the rock boundary [62]. They found that streamline routing
has a small impact on 8 compared with complete mixing, but streamline routing does
slightly shift 8 towards higher values. The increased [ suggests streamline routing is more
reactive. These results are consistent with our observations of increased channelization
to secondary fractures under streamline routing, as [ increases as aperture size decreases

and secondary fractures typically have smaller apertures than primary fractures. [ is an
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sa3 averaged parameter over particle trajectories and so the significant local effects observed
sas in this studied are not apparent by a slightly increased value. The results of our study
oss suggest that the slight increase in 8 observed by Cvetkovic et. al [62]. could be the result

sas Of increased channelization of particles to secondary fractures with streamline routing.

7 VI. REMARKS

ss  We presented a study characterizing the impact of particle behavior at fracture intersec-
sa9 tions in three-dimensional DFNs on upscaled transport behavior. Mass transfer at fracture
ss0 intersections in DFN models is represented with two subgrid processes, complete mixing
es1 and streamline routing, which are the end member cases of the Péclet number, i.e. particle
ss2 motion through a fracture intersection is governed only by diffusion or advection, respec-
ss3 tively. The simulations presented in the previous section indicate that there are scenarios
s« Wwhere the choice of mixing rule at fracture intersections have a large impact on transport
ess behavior and other scenarios where the impact is negligible. The magnitude of impact of
ss6 the mixing rule is determined by the particle initial injection mode, the fracture network
es7 structure, and the heterogenity of the velocity field. The mixing rule’s impact increases
s With a point injection because local effects associated with the fracture of injection control
ss0 initial particle transport. As the network geometry and velocity field heterogeneity increase,
ss0 particle channelization to high discharge fractures increase and the impact of the mixing rule
1 ON conservative transport at the network scale decreases. In all cases, however, streamline
s2 TOUting increases channelization of mass to secondary fractures, resulting in an increased
s63 average mixing rate and local mixing rates that can differ by two orders of magnitude.
sss Therefore, the choice of mixing rule at fracture intersections will influence reactive trans-
ss port simulations within DFN models. We consider the two end members for intersection
ses ixing rules and our simulations enforce that every intersection prescribes to the same rule.
ss7 In real geologic media, both advection and diffusion affect mass transfer and a distribution
scs Of local fracture intersection Pe exists. Quantifying the impact of these processes warrants

sso future investigation.
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