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Previous work (S. Davidovits and N. J. Fisch, “Sudden viscous dissipation of compressing turbu-
lence,” Phys. Rev. Lett., 116(105004), 2016) demonstrated that the compression of a turbulent field
can lead to a sudden viscous dissipation of turbulent kinetic energy (TKE), and suggested this mech-
anism could potentially be used to design new fast-ignition schemes for inertial confinement fusion
(ICF). We expand on previous work by accounting for finite Mach numbers, rather than relying on
a zero-Mach-limit assumption as previously done. The finite-Mach-number formulation is necessary
to capture a self-consistent feedback mechanism in which dissipated TKE increases the temperature
of the system, which in turn modifies the viscosity and thus the TKE dissipation itself. Direct
numerical simulations with a tenth-order accurate Padé scheme were carried out to analyze this
self-consistent feedback loop for compressing turbulence. Results show that, for finite Mach num-
bers, the sudden viscous dissipation of TKE still occurs, both for the solenoidal and dilatational
turbulent fields. As the domain is compressed, oscillations in dilatational TKE are encountered due
to the highly-oscillatory nature of the pressure dilatation. An analysis of the source terms for the
internal energy shows that the mechanical-work term dominates the viscous turbulent dissipation.
As a result, the effect of the suddenly dissipated TKE on temperature is minimal for the Mach num-
bers tested. Moreover, an analytical expression is derived that confirms the dissipated TKE does
not significantly alter the temperature evolution for low Mach numbers, regardless of compression
speed. The self-consistent feedback mechanism is thus quite weak for subsonic turbulence, which

could limit its applicability for ICF.

I. INTRODUCTION

The compression of a turbulent flow occurs in a
broad array of applications. Examples include one-
dimensional compressions in internal combustion en-
gines [1] or across shock waves [2], axisymmetric
compressions in Z-pinches [3], spherically-symmetric
compressions in inertial confinement fusion (ICF)
[4, 5], and three-dimensional complex contractions
in the interstellar medium [6]. Moreover, the com-
pression mechanism often leads to complex turbu-
lence dynamics, and the resulting evolution of tur-
bulence can have a strong effect on the overall behav-
ior of the application under consideration. Thus, in-
creased levels of understanding and improved mod-
eling capabilities for this phenomenon are essential.

Numerous direct numerical simulations of com-
pressing turbulence have been previously carried
out with the aim of improving engineering turbu-
lence models; see for example [7-11]. These studies
treated the fluid as a traditional gas, for which the
dependence of viscosity p on temperature T is given
by pu ~ T", with n having a value of, or close to,
3/4. On the other hand, [12] demonstrated, through
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computational simulations, that when a power law
exponent characteristic of weakly-coupled plasmas
is used, i.e. n = 5/2, a sudden viscous mechanism
occurs which dissipates the turbulent energy. Their
results showed that a turbulent field subjected to
a continuous isotropic compression initially creates
an amplification of turbulent kinetic energy (TKE),
until viscous scaling dominates and TKE is rapidly
dissipated into heat. It was thus proposed in [12]
that the resulting increases of temperature could be
used to improve the ignition conditions for ICF.

Subsequent work has expanded on the simula-
tions of [12]. The effect of ionization on the scal-
ing of viscosity was accounted for in [13]. For that
study, the ionization state Z was assumed to depend
solely on temperature, and thus the plasma viscos-
ity u ~ T°/%/Z* was simplified to the form p ~ T7,
Their analysis of the evolution of the energy spec-
trum showed that the sudden dissipation of TKE
occurs for > 1 only. A TKE model that accounts
for the viscous dissipative mechanism for isotropic
compressions is presented in [14]. This model was
validated against direct numerical simulations, and
showed excellent agreement for viscosity-power-law
exponents greater than one. The model was then
used to estimate the partition of energy between the
turbulence and heat, as the compression proceeds
in time. A two-point spectral model based on the



EDQNM formulation was used by [15], along with
direct numerical simulations, to reproduce the sud-
den viscous dissipation mechanism. The lower com-
putational cost of the EDQNM model allowed for the
analysis of high-Reynolds-number effects and thus
the identification of three distinct regimes: turbulent
production, non-linear energy transfer, and viscous
dissipation. Moreover, the assumption of homoge-
neous turbulence was relaxed and a spherical inho-
mogeneous turbulent layer under compression was
simulated with both DNS and EDQNM closures.
The sudden dissipation of TKE was also observed
for this new case. Finally, in [16], a stability bound-
ary for hot spot turbulence was derived to demar-
cate states of the compression for which a decrease
of TKE is guaranteed. Moreover, an upper limit for
the amount of TKE that can be generated during
a compression was proposed. This upper limit was
then compared to the internal thermal energy of the
system.

The simulations of the sudden viscous dissipation
mechanism previously conducted have relied on the
zero-Mach-limit assumption. Given a decomposition
of the velocity U; = (U;) + u;, where (U;) is the
Reynolds-averaged mean flow and u; the fluctuating
velocity, the governing equations for the fluctuations
in the zero-Mach limit take the form [7]
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In the above, (p) is the Reynolds-averaged density,
P the pressure, p the viscosity, and f; a forcing func-
tion that accounts for the effect of the compression.
The viscosity depends on temperature and thus an
a-priori time evolution for temperature needs to be
provided. For an adiabatic isotropic compression,
this is

T =TyL 2, (3)

where L is a characteristic length of the domain be-
ing compressed and 7Tj the initial temperature.

The approach described above is suitable for
demonstrating the sudden dissipation of TKE, but
does not capture the self-consistent feedback mech-
anism mentioned in [12]. This mechanism begins
with a self-consistent energy transfer from the TKE
towards the internal energy, as a result of the sudden
viscous dissipation. This, in turn, causes increased

temperatures that amplify the viscosity of the sys-
tem. The stronger values of viscosity then precipi-
tate the viscous dissipation of TKE, thus completing
a feedback loop. In the zero-Mach limit, an evolu-
tion equation for the internal energy is not solved,
and thus the effect of the dissipated TKE on the
internal energy and the viscosity cannot be repro-
duced in a self-consistent fashion. It is expected
that accounting for the feedback mechanism would
lead to viscous dissipations that are more sudden,
or of increased intensity [12]. An alternative to the
assumption of the zero-Mach limit is turbulence be-
longing to the finite-Mach number regime. For this
case, fully coupled governing equations for density,
velocity, and energy are solved, which allows for an
explicit accounting of the forward transfer of dissi-
pated TKE into heat, and the subsequent effect of
increased temperature and viscosity on the dissipa-
tion. The focus of this study is the simulation of
turbulence in the finite-Mach number regime to in-
vestigate the complex self-consistent feedback mech-
anism, and thus further assess the benefits of viscous
dissipation for ICF and other high-energy density
applications.

The outline of the paper is as follows. Section II
includes a description of the governing equations for
turbulence in the finite-Mach number regime. The
mechanisms that account for the energy transfer be-
tween the TKE and the internal energy are also dis-
cussed. In Section III, details of the numerical sim-
ulations, such as the discretization scheme and the
creation of realistic initial conditions, are included.
The results of the simulations are then provided in
Section IV, which is divided into two subsections.
Section IV A focuses on the component of the feed-
back mechanism related to the TKE. Thus, the evo-
lution of the TKE, its budget, and spectra are an-
alyzed in this subsection. The component of the
feedback loop associated with the internal energy is
then investigated in Section IV B, where an analysis
of the temperature evolution and sources for the in-
ternal energy are included. Finally, the paper ends
with Section V, where concluding remarks and a dis-
cussion of future work is provided.

II. GOVERNING EQUATIONS

A. Navier-Stokes equations for isotropic
compressions

We denote U; and u// as the Favre-averaged and
Favre-fluctuating velocities, respectively, so that



U; = U; +u” [17]. In analogy to the zero-Mach-
limit formulation of [12], we analyze the effect of
a compression on a statistically homogeneous tur-
bulent field u!, where the compression is achieved
through a specified Favre-averaged mean flow Us;.
The Favre-averaged velocity for homogeneous com-
pressible turbulence needs to be restricted to the
form U; = Gyjz; [9]. The deformation tensor Gjj;
corresponding to an isotropic compression is given
in [7, 9, 12], and can be expressed as
L

Gij = 704, (4)
where L is a time-dependent characteristic length
of the compressed domain, and L is the constant
time rate of change of L. Given this formalism,
one can derive, as detailed in Appendix A, a set
of Navier-Stokes equations for the fluctuating veloc-
ity undergoing mean-flow compression. These equa-
tions, which are summarized below, constitute the

finite-Mach-number analog of the low-Mach-number
Egs. (1) to (3),

9p Ui’ _ ()

o om =1 (5)
Opui | Opuivi  oij |
T A e (©)

ot axl 8xj 83:]- ij

In the above p is the density, u; the Favre-
fluctuating velocity, and T the temperature. FE; is
the total energy, which is given by E, = U + K,
where U = C,T is the internal energy and K; =
1u/ul/ is the kinetic energy associated with the tur-
bulent fluctuations. C, is the specific heat at con-
stant volume. The stress tensor is given by
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(8)
where P is the pressure and p the viscosity. A power
law of the form p = o (T/Tp)" is used, where pq
and Ty represent reference viscosity and tempera-
ture values, and n is the power-law exponent. The
thermal conductivity x is computed according to
k = uCp/Pr, where C), is the specific heat at con-
stant pressure and Pr the Prandt]l number. An ideal
equation of state P = pRT is used, where R is the

1
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ideal gas constant. The forcing functions f(¥), fi(“)7
and f(®) account for the effect of the mean com-
pression on the density, velocity, and total energy,
respectively, and are defined as

f) = —2Lp, 9)
;Y = —3Lpu, (10)
) = —[2pE, + pu’u! + 3P] L. (11)

The equations above are suitable for numerical simu-
lations now that the compressive effect of the mean
flow U; has been abstracted into the three forcing
functions above. These are the equations solved for
the current study.

B. Energy exchange for compressible
turbulence

For turbulence in the finite-Mach-number regime,

the Helmholtz decomposition is often employed to
11(d)

express the fluctuating velocity as u} = u;/(s) +u,;

where ug(s) and ug/(d) are the solenoidal and dilata-
tional velocities, respectively. The solenoidal com-
ponent satisfies V x u”/(®) = w and V- u”®®) = 0,
where w = V x u” is the vorticity vector, and the
dilatational component satisfies V x u”(¥ = 0 and
V- u’@ = d, where d = V- u” is the dilatation.

Given this decomposition, two TKEs can be de-
fined. These are the solenoidal TKE

1
g — 5 u/ ) (12)

the dilatational TKE
| —~—
L@ — gu;/(d)u;/(d). (13)

There are two additional energies in the system,
namely, the mean kinetic energy

~U,U;, (14)
and the mean internal energy

U=c,T. (15)

The governing equations for the solenoidal and di-

latational TKEs given a non-zero mean flow can be
derived following the procedure of [18]. Along with



TABLE I: Sources in the evolution equations for the solenoidal, dilatational, mean, and internal energies.

Upper scripts « stand for either s or d. 7;; represents the Favre-averaged Reynolds stresses (7;; = u//u/

u ;/)

Name Symbol Definition
IR TN a u”u/./(a)
Intermode advection TA®  — <WZ#\/ﬁug< )> + <p1+d>
Production Pl —% (p) kG
Solenoidal dissipation (p) ™ (pw;w;)
Dilatational dissipation (p) €D 2 {(ud®)
Pressure dilatation PD (Pd)
Mean kinetic energy advection AD) (p) ﬁngk_
J
Mean kinetic energy transport 175 8%,- ((71 (p)mij + U, (P))
Mechanical work MW —(P)Gy

the evolution equations for K and U , one can sum-
marize the governing dynamics of the four relevant
energies for homogeneous turbulence as follows

(s)
p d’;t =TA®) 4 PO — (p)el®), (16)
(@)

(p) % = JAD 4+ P _ (p)eD 4 pD, (17)
() %L: — _ADE) _(K) _ ypyy — ple) _ pla),

(18)

dU (s) @

() & = MW 4 ()l + (9 —PD. (19)

Each of the sources in the evolution equations above
is defined in Table I. We note that the deriva-
tion of the evolution equations for the four ener-
gies assumed a generic yet isotropic deformation
tensor G;;, and neglected the averaged heat flux
since for homogeneous turbulence the averaged tem-
perature is uniform in space [9]. The intermode
advection represents a transfer of energy from the
solenoidal and dilatational modes, and thus satisfies
TA®) = —TA@_ The production terms transfer the
compression energy stored in the mean flow to the
solenoidal and dilatational TKEs. The solenoidal
and dilatational dissipations then transfer energy
stored in the solenoidal and dilatational fields into
heat. The pressure dilatation represents a two-way
energy transfer between the mean internal energy
and the dilatational TKE only, and the mechanical
work transfers energy of the compression directly
into heat. The mean-kinetic-energy advection and
transport are not identically zero, unlike the case

for the other three energies. These various energy-
transfer mechanisms are depicted in Fig. 1. We note
that each energy component has a direct interaction
with each of the other three energies. We also note
that the driver for the interactions is the mean ki-
netic energy, since it has a predetermined time evo-
lution that emulates the compression of the system.
The other three energy components then respond in
a self-consistent fashion to the time evolution of the
mean kinetic energy. The self-consistent feedback
mechanism for the sudden viscous dissipation relies
on these complex interactions, and thus can only be
represented using the finite-Mach-number formula-
tion and not the low-Mach-number assumption.

IIT. COMPUTATIONAL DETAILS

Direct numerical simulations of Egs. (5) to (7)
are carried out with the Miranda code developed at
the Lawrence Livermore National Laboratory. This
solver employs a tenth-order accurate Padé scheme
[19] for the discretization of the spatial derivatives,
and a fourth-order, low-storage, five-step Runge-
Kutta solver [20] for the temporal derivatives. An
eighth-order compact filter is applied to the con-
served variables p, pu!, and E; after each substep
of the Runge-Kutta scheme, for the purposes of sta-
bility.

Miranda relies on the artificial-fluid-property ap-
proach to stabilize shock waves and contact disconti-
nuities. Thus, an artificial bulk viscosity 5* is intro-
duced in the definition of the viscous stress tensor,
and an artificial thermal conductivity x* is added to
the thermal conductivity x of the fluid. The artificial
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FIG. 1: Schematic of energy transfer between the four energy components: mean kinetic energy, mean
internal energy, solenoidal TKE, and dilatational TKE.

bulk viscosity and artificial thermal conductivity are
computed as

8" = CapD(d). (20)
K* = C“"TZ D(T). (21)

In the above, At is the time step, the overbar denotes

a truncated-Gaussian filter, and D(-) is an eighth-
order derivative operator defined as

Azlo) .

(22)
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This operator strongly biases the artificial proper-
ties towards high wave numbers. The coefficients
Cs = 0.07 and C,x = 0.001 have been calibrated
for simulations relevant to ICF—see for example
[4, 21, 22]. For further details or capabilities of the
code, the reader is referred to [23-25].
The computational domain consists of a cube of
length 27, with a uniform distribution of 2563 grid

0
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points. Periodic boundary conditions are applied
on all sides of the cube. The ratio of specific heats
has a value of v = 5/3, and the Prandtl number
is set to Pr = 1. The gas constant is computed
as R = R, /M, where the universal gas constant
is R, = 8.314474 x 107 (cgs units), and the molar
mass used is that of Deuterium, i.e. M = 2.014102.
Statistical quantities are obtained by averaging over
all nodes of the mesh.

The initial flow field is extracted from a sim-
ulation of linearly-forced compressible turbulence
[26, 27]. This preliminary simulation is carried out
for a duration of 18 initial eddy-turn-over times.
The forcing coefficients introduced in [26] require
the specification of a priori values for the solenoidal
and dilatational dissipations. These two quanti-
ties were obtained from specifying a total dissipa-
tion € = €®) + €@ and a dissipation ratio (4 /e().
As was done for the direct numerical simulations of
[26], the value of the total dissipation was chosen
a priori so that the corresponding Kolmogorov scale
n = (v /€)'/* is sufficiently larger than the grid spac-
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FIG. 2: The dissipation spectrum, normalized by the Kolmogorov velocity u, = (61/)1/ 4. at the final time of
the linearly-forced simulation. Plots using a (a) linear scale and a (b) log-log scale are included.

ing and thus sufficient resolution is achieved. Using
both a linear and a log-log scale, Fig. 2 shows the
dissipation spectrum for the final time of the pre-
liminary forced-turbulence simulation, and thus il-
lustrates the range of scales resolved on the mesh,
i.e. 0 < kn < 2. This figure shows that the simula-
tions reproduce the long tail at high wavenumbers
as it smoothly approaches a value of zero (compare
Fig. 2(a) with fig. 6.16 of [28]), and a fictitious energy
pileup or unphysical rapid decay at the highest wave
numbers is avoided. This serves as further evidence
that the chosen combination of forcing coefficients
and mesh resolution appropriately capture all of the
dissipative scales, as should be the case for any di-
rect numerical simulation. The ratio of dissipations
was set to €(? /e(*) = 0.01. Simulations of compress-
ing turbulence that were initialized from a linearly-
forced case with €@ /e(*) = 1.0 were also carried out.
The results obtained with this larger initial dissipa-
tion ratio are qualitatively similar to those with an
initial condition of €(?) /e(*) = 0.1, and the same con-
clusions regarding the self-consistent feedback mech-
anism are obtained. Thus this additional case is not
included in this paper.

The turbulent Mach number and Taylor-scale
Reynolds number are defined as

M, =Y+ * (23)
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where ¢ = /yRT is the speed of sound, and v =
(uy / {p) is the averaged kinematic viscosity. The
extracted turbulent field at the end of the linear
forcing has M; =~ 0.65 and Rey =~ 70. The corre-
sponding ratio of dilatational to solenoidal TKE is
k@ /E() = 0.033. For the linearly-forced simula-
tions, the power law exponent is set to the tradi-
tional fluid value of n = 3/4. However, once the
isotropic compression is applied to the initial flow
field, the power law exponent is switched to the
value used in [12], namely n = 5/2, so as to re-
produce the sudden viscous dissipation mechanism.
Thus, effects of the stronger power-law scaling have
been isolated to the compressive phase only, and the
linearly-forced simulations used the traditional fluid
power-law exponent so as to have a standard turbu-
lent flow field as the initial condition.

Once the compression starts the small scales will
dissipate first, and only larger and larger scales will
remain (see [12] and Fig. 9). Thus, if the initial con-
dition is well resolved, then the flow field through-
out the remainder of the simulated time will be well
resolved as well. Whereas [12] stated that their sim-
ulations are initially under-resolved, but quickly be-
come resolved as the compression progresses, for this
case even the initial conditions are well-resolved, as
described in the previous paragraph. An additional
indication that the resolution improves as the com-
pression proceeds is that the ratio of artificial dis-
sipation [27] to physical dissipation, which has an
already-low initial value of 0.016, decays rapidly as
the compression is initiated. Thus, the simulations
are mostly affected by physical rather than artificial



dissipative mechanisms, as should be the case for a
properly-refined direct numerical simulation [25].

IV. RESULTS

The analysis of the self-consistent feedback mech-
anism is divided into two subsections. The first fo-
cuses on the behavior of the TKEs and the various
mechanisms depicted in Fig. 1 that modulate their
temporal evolution. The second half of the analy-
sis is centered around the resulting evolution of the
internal energy, and the amplification of the temper-
ature due to the viscous dissipation.

A. Turbulent kinetic energies
1. Profile histories

The time evolution of the solenoidal and dilata-
tional TKEs are shown in Figs. 3(a) and 3(b), re-
spectively. As done in [12], rather than plotting the
TKE evolution against time, a parameterization in
terms of the length of the domain L is used, and thus
time progresses from right to left. Also equivalent
to the results in [12], the TKE evolutions for differ-
ent compression speeds L are shown. These different
cases are labelled by the initial value of the RDT pa-
rameter S* = Sk/e, where S = L/L is the inverse
time scale of the compression, and k/e is the time
scale of the turbulence. For sufficiently large values
of §*, the compression is rapid enough that the non-
linear turbulence-turbulence interactions are negligi-
ble, and the evolution of the turbulence is described
exactly by rapid-distortion theory (RDT) [11, 28].

As Fig. 3 shows, it is not only the solenoidal but
also the dilatational TKE that exhibits the sudden
viscous dissipation mechanism of [12]. Even though
the compression speeds used in this study are dif-
ferent from those of [12], there is strong qualita-
tive agreement with the previously published results.
The dilatational TKE is also in strong agreement
with RDT [11] for the fastest compression rates. A
notable difference to highlight for this new case is
that increasingly strong oscillations of dilatational
TKE appear as S is decreased. This highly oscilla-
tory behavior is discussed further in Section IV A 2.
Additionally, the dilatational energy has not decayed
to values as low as those of the solenoidal TKE. For
example, at the last recorded instance in time, the
solenoidal TKE has decayed by more than three or-
ders of magnitude for case S; = 500, whereas the

dilatational TKE has decreased by less than two
orders of magnitude. Lastly, for the slowest com-
pression rate, the solenoidal and dilatational TKE
diverge in their initial behavior: whereas the dilata-
tional TKE slightly increases until it suddenly dissi-
pates, the solenoidal TKE decreases from the start.
As will be described in Section IV A 2, this is most
likely due to the pressure dilatation acting as an en-
ergy source for the dilatational TKE.

An alternate representation of the evolution of
TKEs is given in Figs. 4(a) and 4(b). In Fig. 4(a) the
evolution of the solenoidal TKE is parameterized by
the solenoidal shear parameter S} = Sk:(s)/e(s)7 and
in Fig. 4(b) the evolution of the dilatational TKE
is parameterized by the dilatational shear parame-
ter S = Sk(9) /e, The dashed vertical lines cor-
respond to the point in time at which production
is equal to dissipation, that is, the point at which
P = (p)e® for Fig. 4(a) and P = (p)e@
for Fig. 4(b). The dashed diagonal lines corre-
spond to the assumption of RDT scaling, for which
el ~ (k:(“))3 for « = s,d. That is, assuming this
relationship between TKE and dissipation, the TKE
can be expressed as

(k)72 -

k(o) —
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~ SY2 55712 (25)

for &« = s,d. It is important to note that k(® does
not scale simply as S ~1/2 gince § also depends on
time. However, the dependence of S on time is given
by the predetermined and known compression his-
tory of the domain L.

Fig. 4(a) shows that for compressions S§ = 5.0,
50, and 500, the initial increase in solenoidal TKE is
in close agreement with the RDT scaling of Eq. (25),
which could be beneficial for modeling purposes.
Significant divergence from the RDT scaling occurs
once the vertical line at which solenoidal produc-
tion equals solenoidal dissipation is reached. After
this point, the solenoidal dissipation overtakes the
solenoidal production, and the turbulence decays.
For the S§ = 0.50 case, the compression is slow
enough that the solenoidal production is never larger
than the solenoidal dissipation, and thus the entire
curve is located to the left of the vertical dashed
line. Fig. 4(b) shows a similar trend. We first note
that the rapid oscillations in the dilatational pro-
files corresponding to slow compression speeds are
also evident in this figure. The agreement with the
RDT scaling still holds for the Sg = 5.0, 50, and 500
cases, although, for the S; = 5.0 case, this agree-
ment is not as strong as that of the corresponding
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FIG. 4: (a) Solenoidal TKE against the solenoidal shear parameter S* = Sk(*)/¢(*) and (b) dilatational
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corresponds to the time at which P(¥) = (p) ¢(¥). The dashed diagonal lines correspond to Eq. (25).

since for S = 50 the dilatational TKE keeps on in-
creasing after this vertical line is reached. Lastly,
Fig. 4(b) shows that the decrease in energy is slower
than that observed in Fig. 4(a) for cases S = 50

solenoidal field. More importantly, the vertical line
at which dilatational production equals dilatational
dissipation no longer demarcates the domains of in-
creasing and decreasing turbulence for all four cases,



and 500. This suggests that the dilatational dissipa-
tion is acting against an additional source of energy,
which, as will be shown in Section IV A2, is the
pressure dilatation.

2.  Budgets

Figures 5 to 8 contain the TKE budget for the
solenoidal and dilatational fields. For the S§ = 0.5
case shown in Fig. 5, oscillations in the pressure di-
latation and dilatational dissipation are observed.
The magnitude of the oscillations in (p) (¥ are sig-
nificantly smaller than those of PD. We also note
that the oscillations of the pressure dilatation and
dilatational dissipation are correlated, with the di-
latational dissipation slightly lagging the pressure
dilatation. Moreover, the oscillations in k(% shown
in Fig. 3(b) are also correlated with PD, with k(@
lagging behind PD. This serves as evidence that
pressure dilatation is responsible for the oscillatory
behavior of the dilatational TKE. The strong oscil-
latory nature of PD has been observed elsewhere,
see for example [18, 29] for the case of forced tur-
bulence and [9, 30] for sheared turbulence. For the
Sy = 5.0 case shown in Fig. 6 the oscillations in PD
and (p) ¢(Y have been attenuated. Figures 7 and 8
show that as the compression speed is increased to
Sg = 50 and 500, PD and (p) ¢/ do not exhibit os-
cillations up to the last simulated instance in time.

The dashed vertical lines in Figs. 6 to 8 indicate
the domain length at which the maximum value of
solenoidal or dilatational TKE is achieved. As the
figures show, peak values of TKE occur at larger
domain lengths than peak values for sources of the
TKE. An additional behavior to highlight is that for
the faster compression speeds, peak values for the
dilatational TKE sources occur at smaller domain
lengths than those of the solenoidal energy. For ex-
ample, for compression speed Sg = 50, peak values
for the solenoidal dissipation and production occur
at L = 0.04, whereas peak values for dilatational
dissipation and pressure dilatation have not yet oc-
curred even by the last simulated time. This same
lag in peak values is observed for the S5 = 500 com-
pression.

Figures 5 to 8 also show that the pressure dilata-
tion is either skewed towards positive values, as is
the case for S5 = 0.5, or is positive throughout the
entire compression. This is further exemplified by
looking at Table II, which shows the integrated val-
ues of the energy transfer mechanisms, from the ini-
tial to the last available simulated time. All inte-
grated values for the pressure dilatation are positive.

Thus, PD behaves more as a source rather than a
sink or a neutral term in the balance of dilatational
TKE. As a consequence, the dilatational dissipation
needs to counteract the effect of both the dilatational
production and pressure dilatation for the sudden
viscous dissipation to occur in the dilatational field.
Given that for the two fastest compressions the in-
tegrated contribution of PD is almost as large as
that of (p)e(@), it is thus not unexpected that the
dilatational TKE decays at a slower rate than the
solenoidal TKE, as shown in Fig. 4.

8. Spectra

The energy spectra for the solenoidal and dilata-
tional fields are shown in Fig. 9, for the compression
speed of S§ = 5.0. The profile obtained at L ~ 0.10
corresponds to a time during which the sudden vis-
cous dissipation mechanism is taking place, and the
profile at L =~ 0.04 to a time for which most of the
turbulence has already been dissipated. The shapes
and trends are similar for the solenoidal and dilata-
tional spectra. Additionally, these profiles are in
qualitative agreement with results shown in [12]. As
the compression proceeds, the energy in the higher
modes decreases whereas the energy in the lower
modes increases. The set of modes for which the
energy decreases expands as the compression pro-
gresses, and eventually even the lower modes are
dissipated, as shown by the profile corresponding to
L =~ 0.04.

B. Internal energy

The temperature evolutions as a function of the
domain length are shown in Fig. 10 for all the com-
pression speeds. These are also compared against
the 1/L? temperature scaling corresponding to an
adiabatic isentropic process with v = 5/3, as as-
sumed in [12]. As the figure shows, the temperature
evolutions are in very close agreement with the adi-
abatic scaling. This indicates that the terms in the
mean internal energy equation neglected under the
assumption of adiabatic compression, namely the
solenoidal dissipation, dilatational dissipation, and
pressure dilatation, do not provide a strong contri-
bution towards the increase of temperature for the
current simulations.

The negligible effect of the dissipations and the
pressure dilatation is confirmed by comparing the
source terms of the mean internal energy, as is done
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in Fig. 11. These figures show that, throughout
the compression, the dominant source in the mean
internal-energy equation is the mechanical work,
which takes the form of MW = —3(P)L/L for the
given isotropic compression of Eq. (4). For all com-
pression speeds tested, the solenoidal dissipation,
dilatational dissipation, and pressure dilatation are
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eclipsed by the mechanical work at all times dur-
ing the compression. However, for the two fastest
compression rates, the peak values of the dilata-
tional dissipation and pressure dilatation are not
achieved by the last-available simulated instance in
time. Nonetheless, as shown in Fig. 3, by this last
simulated instance in time the dilatational TKE
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has already surpassed its peak value and has dis-
sipated by more than an order of magnitude, and it
is thus unlikely that the dilatational dissipation and
pressure dilatation will ever overtake the mechan-
ical work. Since the mechanical work overpowers
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the other sources of mean internal energy, the sim-
ulation results should follow the idealized adiabatic
compression scalings. For the specific-heat ratio of
v = 5/3 and the assumption of an adiabatic com-
pression, the mechanical work scales as 1/L°, which



TABLE II: Integrated energy sources given different compression speeds. All values are normalized by
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FIG. 9: Energy spectra for the (a) solenoidal and (b) dilatational TKE, at different times (or domain
lengths) throughout the compression. The spectra correspond to the S5 = 5.0 case.

is shown as black dots in Fig. 11. As expected, this is
in close agreement with the actual mechanical work,
given by the blue dashed-double-dotted lines. The
minor difference between the blue lines and the black
dots is due to the fact that the terms neglected in
an idealized adiabatic compression, such as the vis-
cous dissipation, thermal conduction, and pressure
dilatation, are not identically zero in the Miranda
code.

The dominance of the mechanical work can be fur-
ther exemplified by considering the integrated val-
ues of the mean internal energy sources, shown in
Table II. The time-integrated contribution towards
the increase of temperature due to mechanical work
is at least three orders of magnitude larger than the
second most significant time-integrated source term,
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namely, the solenoidal dissipation. A similar met-
ric for highlighting the dominance of the mechanical
work is the comparison of the time-integrated total
contribution from the TKEs to mean internal en-
ergy against the time-integrated total contribution
from the mean kinetic energy to the mean internal
energy. The ratio of these two factors for the four
cases S§ = 0.50, 5.0, 50, and, 500 is 0.0005, 0.0006,
0.0008, and 0.002, respectively.

Given that, for the parameters used in these simu-
lations, the dissipated turbulent kinetic energy does
not significantly increase the temperature of the sys-
tem above the adiabatic prediction, it is crucial to
determine under which conditions would the dissi-
pated TKE actually lead to meaningful increases in
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temperature. To do this, we make use of the relation

7)o

dt
which is derived in Appendix B. U@ is the mean
internal energy of the system given the idealized adi-

U+k

26
=@ (26)

abatlc compression, and is thus given by U'* U@ =

Uo , where UO is the initial value of U. Integrat-
ing from the initial time to to a final time t;, one
obtains

U+k
7@

_U+k
U@

ki 5
U= 14 M2, (27)

Uo 9

ty 0

In the above we have made use of the definition of
the fluctuating Mach number [9]

S
o(T)

whose initial value is denoted by M, g. We introduce

T(®) = TyL~2 as the temperature corresponding to

an adiabatic compression. If we define ¢; as the

time by which all of the turbulent kinetic energy has

(28)

dissipated, and Tf and T( as the temperatures T

and T@ at times ¢ > ty, rcspcctlvcly7 then Eq. (27)
can be expressed as

Ty 5
(a) =1+ 9M

(29)
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The above relation highlights a few notable aspects
of the compression mechanism. Given Ty and kg,
M, o is known, which, along with values of L smaller
than those corresponding to the time ¢y, can be used
in Eq. (29) to obtain the temperature after the TKE
has been fully dissipated. The second aspect to high-

light is that the temperature ratio Tf /f;a) is inde-
pendent of the compression speed. Thus, whether
the system is compressed slowly so that there is
no sudden viscous dissipation or the compression is
rapid and thus the sudden viscous dissipation occurs,
the temperature obtained after all the TKE has been
depleted will always be of the same proportion to the
idealized adiabatic temperature.

For the simulations described in this paper, the
initial fluctuating Mach number immediately pre-
ceding the start of the compression is M, o = 0.651.
Using Eq. (29), this gives Ty /T+" = 1.235. Table I11
lists this ratio computed from simulation data avail-
able at the last simulated instance in time, for the
four compression speeds. As the table shows, there is
strong agreement with the analytical value of 1.235.
The slightly lower ratio for the fastest compression is
most likely due to the fact that all of the TKE, spe-
cially the dilatational TKE, has not yet fully dissi-
pated into heat. Equation (29) can now thus be used
to predict under which conditions the dissipated
TKE would lead to meaningful increases in tempera-
ture. For subsonic initial fluctuating Mach numbers,
the temperature post TKE depletion can be up to
about 1.5 times larger than that obtained with an
adiabatic compression. If supersonic Mach numbers
are used, such as M, o = 2 and 5, then the temper-
ature post TKE depletion would be about 3 and 15
times larger, respectively, than for an adiabatic com-
pression. For highly supersonic turbulence such as
that encountered in the interstellar medium [31, 32],
a Mach number of M, o = 17 would lead to final
temperatures about 160 times higher than those pre-
dicted assuming an adiabatic scaling. As stated in
[16], the hot spot of an ICF capsule can be character-
ized by a turbulent Mach number M; ~ 0.4. Using
this value in Eq. (29) leads to Ty /7" ~ 1.09. This
increase of temperature is minimal, and is eclipsed
by the effect of the mechanical work. For example,
if we assume that the sudden viscous dissipation of
TKE occurs at L = 0.1, a small reduction of the
domain size to L = 0.0958 would already allow the
mechanical work to generate an equivalent increase
in temperature. It is thus expected that only for
flow fields with large initial Mach numbers would
the self-consistent feedback mechanism lead to sud-
den dissipations with significant effects.

~
~



4
1.0 x10 :
PD :
0.8‘ — <p>€(d) .‘_‘
\
0.6] ==eee <p>€(s) '-‘
—-—— MW )
0.41 6 \
e RDT1/LS “\
o
0.21 ‘.~.,‘
K Trea, "t
0.01 _n’—"'“-"-n--_:::'_':Hu.uuu.u—u..._.‘.
—0.21 (a)
0.1 02 03 04 05 06
L
10
1.0 x10 -
\
0.81 s
o\
061 1} o,
| Y S
041 '\ ., 3
‘\-: “” .‘}o
0.21 8 * é
¥
R ‘v
0.01 — S Bl el e
—0.21 (c)
0.10

002 004 006 008

107
102 -
\
0.8 \
\
0.6 kY
0.4 Y
0.2 " s
' : e, e
00 _n:—“'-'-'—-—-—:::'—':Hlulululuun
—0.2 (b)
0.05 0.10 0.15 0.20 0.25
L
10 x10'3
. -
v
0.8 - A
0.6 "\
-: “‘ \t
0.4 H Y
. %, N
\ Y3 . .
02 (Y . f\
A Y ‘e, [
K eeaa, Seeo
0.0 o B Sl e )
09 (d)

001 002 003 004 005
L

FIG. 11: Mean internal energy budget for the four compression speeds (a) S* = 0.5, (b) S* = 5.0, (¢)
S* =50, and (d) S* = 500. The initial length of the domain is L = 1, which decreases as time progresses.
All terms have been normalized by ,DOU(‘;3 /Lo.

TABLE III: Ratio Tf/T|" obtained at the last

simulated instance in time.

Sp =0.50 S =5.0 S5 =50 S5 =500

1232 1232 1.232
Ty

1.230

V. CONCLUDING REMARKS

A sudden viscous dissipation of plasma turbulence
under compression was demonstrated in [12]. We
expand on this previous work by accounting for the
self-consistent feedback loop associated with this vis-
cous mechanism. The feedback loop entails a trans-
fer of energy from the turbulence towards the inter-
nal energy, and the subsequent increased tempera-
tures and viscosities that in turn accelerate the orig-
inal dissipation of TKE. Although previous efforts

14



have reproduced the sudden dissipation of TKE,
these do not capture the subsequent effect of the
dissipated energy on the temperature, and the con-
sequences thereof. This limitation is due to the use
of the zero-Mach-limit assumption. To capture the
increase of internal energy resulting from the dis-
sipated TKE, and thus account for the entire self-
consistent feedback loop, direct numerical simula-
tions have been carried out using a finite-Mach num-
ber formulation that solves transport equations for
the density, fluctuating velocity, and total energy.
The analysis of the self-consistent feedback loop was
divided into two parts: the first focused on the evo-
lution of the solenoidal and dilatational TKEs, and
the second on the evolution of the mean internal en-
ergy as it absorbs the dissipated TKE.

The first part of the analysis revealed new in-
sights into finite-Mach-number flow physics for this
particular compression. The simulations show that
not only the solenoidal but also the dilatational
TKE experiences the sudden viscous dissipation. Al-
though this outcome might initially seem expected,
it is instead a somewhat subtle result given that the
time-integrated effect of the pressure dilatation is
to transfer energy from heat towards dilatational
TKE, even for cases when the pressure dilatation
transfers energy in both directions on short time
scales. Thus, the dilatational dissipation has had
to counteract both the dilatational production and
pressure dilatation for the sudden viscous dissipa-
tion of dilatational TKE to take place. The simu-
lations also showed that both the solenoidal and di-
latational modes do not evolve in synchrony, since,
for the largest compression speeds, peaks in the
sources for dilatational TKE occur well after those
of the solenoidal TKE. Finally, large oscillations in
the temporal evolution of dilatational TKE for slow
compression rates are observed, which are correlated
with the highly-oscillatory nature of the pressure di-
latation.

The second part of the analysis revealed that me-
chanical work, which transforms energy from the
mean flow to increase heat, dominates all other
sources of mean internal energy for the turbulent
Mach numbers chosen in this study. For all instances
in time, the mechanical work term is larger, often by
multiple orders of magnitude, than the solenoidal
and dilatational dissipation and the pressure dilata-
tion. As a result, the contribution of the dissipated
TKE towards the increase of temperature is mini-
mal, and the temperature evolution closely follows
an adiabatic scaling. This validates previous efforts
[12-15] that relied on a fixed adiabatic scaling for
the temperature evolution.
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So as to estimate for which parameters the
suddenly-dissipated TKE would lead to a significant
increase in temperature, a simple analytical expres-
sion was derived for the ratio of the temperature post
TKE depletion to the idealized adiabatic tempera-
ture. This ratio depends on the initial fluctuating
Mach number only, indicating that the rate of com-
pression does not affect the magnitudes of the tem-
perature post TKE depletion. The derived analyti-
cal expression confirms that for subsonic initial fluc-
tuating Mach numbers the true temperature of the
system can not be substantially larger than the adi-
abatic temperature. To provide a point of reference,
it was shown that all of the suddenly-dissipated TKE
for an initial turbulent Mach number characteristic
of an ICF implosion would have an equivalent effect
as that of an adiabatic compression from L = 0.1 to
only L = 0.0958. Scenarios where the the turbulence
is highly supersonic are thus required for the dissi-
pated TKE to have a significant contribution. It is
still a matter of debate whether hydrodynamic insta-
bilities develop into turbulence during a short-lived
ICF implosion [4, 33, 34], let alone a transition to
significant turbulence intensities characteristic of su-
personic turbulence. Thus, the potential of the sud-
den viscous dissipation mechanism to significantly
enhance the heating of the plasma by dissipating the
inherent turbulence could be limited for this appli-
cation. Nonetheless, this viscous mechanism could
serve as an effective tool to diminish detrimental tur-
bulent mixing if hydrodynamic instabilities do tran-
sition into a turbulent state. It is also crucial to high-
light that the finite-Mach-number framework chosen
here, although more general than the zero-Mach-
number formalism, is still missing physics relevant
to ICF, such as non-ideal equations of state, radi-
ation transport, multiple species, plasma viscosity
models, separate ion and electron temperatures, al-
pha heating, and non-isotropic compressions, which
could all affect the conclusions reached herein. Thus,
these factors need to be explored to provide a defi-
nite assessment on the ability of the sudden viscous
dissipation mechanism to improve the performance
of ICF.
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Appendix A: Derivation of the
finite-Mach-number Navier-Stokes equations for
isotropic mean compression

The derivation of the governing equations used
for the computational simulations in this study is
detailed below. This derivation is divided into five
distinct steps, each described in the five subsections
below.

1. Compressible Navier-Stokes equations

The starting point are the Navier-Stokes equations
for a compressible fluid. Thus, the evolution of the
density p = p(¢,x), velocity U; = U;(t,x) and total
energy F = E(t,x) is governed by

Op | OpU;
ot ox; 0, (A1)
8pU¢ 6pUin 60’ij
= A2
at 3x]— a:ﬂj ’ ( )
8/)E apEU]‘ anO'ij 0 oT
= —(k— . (A
8t 81']‘ ai[,'j 8:10]- K@xj ( 3)
Closure of the above is achieved with
oUu; oU; 1 90U,
-P 2 J
0ij + 2p [ (8% + 8:61-) 3 0xp }
(Ad)
EF=U+K, (A5)
U=0C,T K ==-UU;, (A6)
= pRT, (A7)
G,
-2 (A8)
T n
u—m(%>- (A9)

P = P(t,x) is the pressure, T' = T'(t,x) the temper-
ature, U = U(t,x) the internal energy, K = K(t,x)
the kinetic energy, u = p(t, x) the dynamic viscosity,
and k = k(t,x) the thermal conductivity. C,, Cp,
R, and Pr are the specific heat at constant volume,
the specific heat at constant pressure, the ideal gas
constant, and the Prandtl number, respectively. For
the power law of viscosity, po and Ty represent refer-
ence viscosity and temperature values, and n is the
power-law exponent.
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2. Homogeneous turbulence

We summarize here and in the following subsec-
tion the derivations carried out by [9] to obtain the
governing equations for homogeneous compressible
turbulence. The quantities (p) and (P) are defined
as Reynolds-averaged density and pressure, respec-
tively, and U; as the Favre-averaged velocity. [9]
showed that for turbulence to remain homogeneous,
necessary and sufficient conditions are that (p) and
(P) depend on t but not x, and that U; be given by

0: = Gija, (A10)

where G;; = glle
x. Given the above assumptions, averaging of the

momentum equation shows that the evolution of G;;
is dictated by

also depends only on t and not

dGij

at + GG = 0.

(A11)
Moreover, using the assumptions above and plugging
in the decomposition U; = U; + u in Egs. (Al) to
(A4), [9] derived the governing equations in terms of
the fluctuating velocity. These are

dp

ap opulf

(P) A12
8t + a GZJ J + a f ( )
opul!  Opul! dpuiulf _ 004 | o)

L C = Al
ot o, Gt g = gy, P (A13)
OpE;  OpE; OpEw]

T T R
8u’-’0ij 0 oT
— L — Al4
0z 0 < 8@) 9. (A
Closure of the above is achieved with
05 = —P(Sij—f—
oul  ouff 10uf,
2 J ks,
“[ <8x]+8xi> 3 9 J]
2u |:2 (Gij + Gji) — 3G”(5”:| , (A15)
Et = U + Kt, (A].G)
1 "1
U=0C,T K = ol Ui (A17)



G,
_ 1y, (A19)
T n
w=m(g) 420
£ = pG, (A21)
f(e) — —pEtG“ pu;’u"G” + G”O'” (A23)

3. Rogallo transformation

As is typically done for simulations of homoge-
neous turbulence (see for example [9, 35]) one can
reformulate the equations using a deforming refer-
ence frame—referred to here as the Rogallo reference
frame—to eliminate those terms in Eqgs. (A12) to
(A14) that have an explicit dependence on position.
The variables in the Rogallo reference frame are de-
noted as p = p(t,x), @' = @"(t,%), P = P(t,%),
T = T(t,%). The relationship between the variables
in the original reference frame and the Rogallo ref-
erence frame is

p=p(t,f)
w! =) (t,f)
P:P(t,f)
T =T(t,f), (A24)
where f; = A;x;.  Aj; is referred to as the

coordinate-transformation tensor, it depends on t
only, and is defined so as to satisfy

dAij

dt

+ Aika]‘ =0. (A25)

Using this transformation, the governing equations
in the Rogallo reference frame are

dp  Ipu!
£ LA = ) A2
ot 0% J f ’ (A26)
opul  Opuguf 06y, ()
C ! A Y Ay e A27
ot Din = a5, M T A, (A2D)
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OpE;  OpE.i!

ot 0
D! Gy o (., 0T :

U — | = | A A, + [, (A2
i 0, <“a:zk> ki + S (A28)

Closure of the above is achieved with

O',L = —]56”-—}—

ou!
& [2 (a

20 {+2 (Gij +Gji) — 3Gz‘i5z‘j] , (A29)

10y
- 30%

Apj +

Guj 4
a 'I’LZ

Ankaz]:|

B, =U+K,, (A30)

U=c,T K, = %u;’u;’, (A31)

P = pRT, (A32)

- %, (A33)

fi = o <;;>n ; (A34)

F°) = —5Gy, (A35)

F1 = —pi) Gy — il Gy, (A36)

f(e) = —p°E'tG” pu;’u”G” + Gij0i;. (A37)

4. Isotropic compression
The mean flow deformation for isotropic compres-
sion is given in [7, 9, 12], and can be expressed as
L
Gij = —0ij

7 %> (A38)

where L is constant and thus L = 1 4 Lt. The
corresponding coordinate transformation tensor is

(A39)



Thus, using the above in Egs. (A26) to (A28), we
obtain
op  Opui 1 2,
— L— = A40
ot 0x; L 7 (440)
opu | Opuiul 1 06,1 s
: —+ f; A4l
ot " ow, L an Lt (A
OpE, _ OpEa 1
ot ox; L
ouei; 1 o . 0T\ 1
— T + ). (Ad2)
oxr; L 81‘] < 8,@])
Closure of the above is achieved with
= —103(51']'-1-
oul 1 ouj 1 19u) 1
2 e 17 A43
“[ <axj * ok, L) 300 L ”} » (A49)
E, =U+ K, (A44)
” 1 o110
U=C,T K, = Ui i, (A45)
= pRT, (A46)
ic,
= A4
L, (Aa7)
T n
M Ho <T0> ) ( )
: L
FO ==3p7, (A49)
o oo L
70 = —apurk, (A50)
L
L L _-L
Fe = —3pEt— — pu"u;’L 3PZ. (A51)
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5. Re-scaling

An additional transformation can be performed
so that, as the simulation advances in time, division
by very small values of L is avoided. The analogue
of this re-scaling for the zero-Mach limit is detailed
in [12] and in the Appendix of [13]. The new re-
scaled flow variables are p = p(t,%), @) = @/ (t,%),
P = P(i,%), and T = T'(f,%). Their relation to the
original variables is

p=plg, X)L}

W =i} (g,%)

P=P(g,x)L7"

T =1T(g,%), (A52)

where g = g(t) is defined by 5 dg =L L
Using this re-scaling, the governmg equations be-
come

@ a""lli .

— £ A

2+ L fO, (453)
(9 o A” aﬁﬂ;/uﬂ (90'” (u)
o on, w1 (A54)
ot 6.131 6$j 83,‘]‘ 633]‘
(A55)
Closure of the above is achieved with
ouy 3”’ 104

AZ‘ = P(SZ 2 -k i

%ij it ”[2(61 axz> 3 0y J]
(A56)
E, =U+ K, (A57)

2 a > 1 N
Uu=cC,T K; = S Ui (A58)
P = jRT, (A59)
i A
R=—2" (A60)
T n

0= — A61
M Ho <T0> y ( 6 )



fo = —aip, (A62)
f = —sLpay, (A63)
7O = _[9pE, + pata + 3P] (A64)

The last issue to be addressed is the time # that
corresponds to L = 0. Solving dg = L7 ! leads to

(A65)

Since we evaluated the equations at time t = g~(£),
we have

(A66)

Thus, L = 0 corresponds to ¢ — co. However, it is
not expected that the simulation will need to pro-
ceed up to infinity, and that instead the viscous in-
stability would kick in prior to this limit.

Appendix B: Proof of time invariance for the
energy ratio (f] + k) /[7<a)

The chain rule applied to the time derivative of
the energy ratio gives

U+k
dt(U(a >
jt (U+k) (@ (U+k) jt (%) . (B1)

Given the definition of the adiabatic internal energy
U@ = UyL~2, we have

i 1 2LL (B2)
dt \ (@ Uo
Using Egs. (16), (17) and (19), one obtains
d MW + P
k _ B
dt (T+k) = o (B3)

where P is the total production P®) 4 P(d),
Given the deformation tensor G;; used for isotropic
compressions, MW = —3(P)L/L and P =
—2(p) kL/L. Using the equation of state (P) =
(p) RT, the definition of the internal energy U =
Cvf, and the specific heat ratio v = 5/3, we have

d (0+k) =

~ L L
—2U= —2k=. B4
dt v " (B4)

L

We note that the equation above corresponds to eq.
(26) in [14]. Using Egs. (B2) and (B4) in Eq. (B1),
we can show that

d (U+k\ _
dt\ g |

_IL LL LL
CopLE gL opLE o Ll (s
Uo U Uo Us
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