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Acoustic non-reciprocity has been shown to enable a plethora of effects analogous to phenomena
seen in quantum physics and electromagnetics, such as immunity from back-scattering and unidirec-
tional band gaps, which could lead to the design of direction-dependent acoustic devices. One way
to break reciprocity is by spatiotemporally modulating material properties, which breaks parity and
time-reversal symmetries. In this work, we present a model for a medium in which a slow, nonlinear
deformation modulates the effective material properties for small, overlaid disturbances (often re-
ferred to as ‘small-on-large’ propagation). The medium is modeled as a discrete spring-mass chain
that undergoes large deformation via prescribed displacements of certain points in the unit cell. A
multiple-scale perturbation analysis shows that, for sufficiently slow modulations, the small-scale
waves can be described by a linear, monatomic chain with time- and space-dependent on-site stiff-
ness. The modulation depth can be tuned by changing the geometric and stiffness parameters of the
unit cell. The accuracy of the small-on-large approximation is demonstrated using direct numerical

simulations.
I. INTRODUCTION

Acoustic reciprocity is a fundamental physical princi-
ple stating that sound propagation between two points
is independent of the choice of source and receiver [1-3],
and is generally obeyed except for certain specific sce-
narios. Breaking acoustic reciprocity allows waves to be
tailored differently in different directions, including the
possibility of one-way sound propagation [2, 4, 5], and
could lead to the design of direction-dependent acoustic
devices with the potential to aid in numerous acoustical
applications, such as vibration isolation, signal process-
ing, acoustic communication, and energy harvesting.

One way to realize acoustic non-reciprocity is by ap-
plying a bias that is oddly-symmetric upon time reversal,
which has been achieved in moving media [6, 7], gyro-
scopic phononic crystals [8, 9], and piezophononic media
[10], for example, and effectively establishes ‘up-stream’
and ‘down-stream’ directions for propagating waves. An-
other means to break reciprocity is nonlinearity, which
has been used to create one-way sound propagation via
harmonic generation [11-13]. A third mechanism, which
is the subject of the present study, is spatiotemporal
modulation of material properties [14-20]. Past stud-
ies have demonstrated that effective mechanical prop-
erties can be modified using electromagnetic effects in
piezoeletric materials [21-23], magnetorheological elas-
tomers [24], and phononic crystals containing electro-
magnets [25].

Of particular interest to the present work is periodic,
wave-like modulation caused by purely mechanical, non-
linear deformation (the ‘large’ wave), which has the effect
of altering the linearized stiffness and/or mass properties
of small disturbances propagating in superposition (the
‘small’ wave). This behavior is often referred to as ‘small-
on-large’ propagation, and has been of interest for ul-
trasonic, non-destructive testing [26, 27] and mechanical

metamaterials [28-30]. Non-reciprocal elastic wave prop-
agation via nonlinear deformation has previously been
achieved in chains of cylinders in Hertzian contact [31],
where the effective stiffness of waves propagating trans-
versely to the cylinder axes was modulated by dynami-
cally changing the angles between them. In this case, the
nonlinear deformation and overlaid nonreciprocal propa-
gation occurred in degrees of freedom that were naturally
decoupled (torsional and longitudinal displacements, re-
spectively); that is, relative torsional displacements be-
tween the cylinders altered the effective stiffness for lon-
gitudinal waves, but did not directly generate noticeable
longitudinal displacements on their own.

In this work, we present a discrete spring-mass chain
model that achieves modulated elastic properties via
small-on-large propagation, where the small and large
deformations may occur in the same degrees of freedom.
The small and large scales are analyzed via multiple-scale
perturbation analysis, which provides more specific de-
tails about the accuracy of the small-on-large approxi-
mation and its range of validity. We find that where
the approximation is valid, the linearized equation de-
scribing the small-amplitude signal has the same form
as a monatomic spring-mass chain with time-dependent
on-site stiffness, and this stiffness can be tuned signifi-
cantly by varying the geometric and stiffness parameters
of the unit cell. The linearized chain model is suitable
for theoretical analysis using techniques from prior works
[16, 17, 32]. Finally, we demonstrate the effectiveness of
the small-on-large approximation by comparing theoret-
ical results to direct numerical simulations of the fully
nonlinear equations of motion. The methods presented
herein should aid in the design of more complex and/or
continuous structures for manipulating mechanical ma-
terial properties.



FIG. 1. Schematics of representative unit cells of the spring-
mass chain. (a) Two unit cells with labeled displacements and
lumped element parameters. (b) One unit cell with labeled
dimensions.

II. THEORETICAL MODEL

We consider longitudinal wave propagation in a peri-
odic, monatomic chain of springs and masses with the
unit cell shown in Fig. 1(b). The mass m at the n*” site
is coupled to its nearest neighbors and the left and right
movable nodes by linear springs with stiffnesses k, k,,
and ky, respectively, as shown in Fig. 1(a). The horizon-
tal displacement of the n*” mass is denoted wu,, () and the
vertical displacement of the node to the right is denoted
yn(t). The modulation is achieved by prescribing y, (t)
and allowing displacements on the order of the unit cell
height h; this causes significant geometric nonlinearity,
which alters the incremental stiffness of the structure.

A. Equation of Motion

To derive the equation of motion of the unit cell, we
form the Lagrangian £ = 7 —V, where 7 and V represent
the kinetic and potential energies, respectively, and are
given by the relations

1
1 1
VY= §k (tUns1 — un)” + §k (Un — Un—1)°
1 1
+ kb (3 — ) + Ska (60 1) (2)

Here, 4§, = \/(h—&—yn,l)?—i—(a—l—un)Q and &6, =

V(h+yn)? + (b — u,)? are the instantaneous lengths of
springs k, and kp, and the corresponding un-stretched
spring lengths are given by I, = Va?+h? and [, =
Vb2 + h2. Substituting Eq. (1) into Lagrange’s equa-

tion,
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B. Small-on-Large Approximation

We seek to model small-amplitude ‘signal’ waves in
Uy propagating in the presence of a large, slowly-varying
‘pump’ wave generated by nodal displacements y,,. This
is achieved using multiple-scale perturbation analysis
[33], which allows for separation of the pump and sig-
nal wave dynamics.

To begin, we non-dimensionalize Eq. (4) by defining
the dimensionless variables U,, = u,/h, Y, = yn/h, and
T = wot, where wy = y/k/m is a characteristic frequency.
Substitution of these expressions into Eq. (4) gives the
following dimensionless equation of motion:

d?U,
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where Kap) = k@p/k, ANap) = lap/h, o = a/h,
B =0b/h, Ay = /1 +Y,_1)2+ (a+U,)?, and A, =
V@ +Y,)2+ (8 —U,)?% Next, we vary the nodal dis-
placements Y,, in a periodic, wave-like fashion with fre-
quency wp, and wave number gy, i.e.

Y, = Yp cos (an(t))v (6)

where 0,,(t) = gmnD — wyt is the traveling wave phase
and Yj is a constant amplitude. To ensure that Y,, varies
slowly in space and time, we define a small, dimensionless
parameter € << 1, and let ¢, D « € and wy, /wp x €. We
also define fast and slow time scales Ty =T and Ty = €T,
respectively, so that
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as well as the slow, dimensionless spatial variable X; =
en. To solve Eq. (5), we seek a solution of the form

U, = P(Den,T1) + &S, (To)
= P(DX1,Th) + £Sn(Tv), (8)
Upt1 = P(De(n+1),T1) + eSnx1(To)
=P(D(Xy +¢),Th) +eSn+1(Tp), 9)

where P(X1,T1) and S, (Tp) have the roles of pump and
signal waves, respectively, and depend on separate time
scales. In choosing this trial solution, we have assumed a
priori that P varies slowly, with the same length and time
scales as Y,,. To ensure the validity of the approximate
solutions that follow, this assumption must be checked
for specific parameter sets after the complete solution is
obtained.

Substituting Egs. (7) - (9) into Eq. (5) results in the
following relationship:
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where we have used the Taylor expansion
P(D(X,+e),Th) ~ P(DX,,T1)+ 8—P+582P (11)
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Finally, we expand the nonlinear terms of Eq. (10) as
Taylor series in €5,, about €5,, = 0, collect terms propor-
tional to each power of €, and find the following equations
describing the dynamics of the pump and signal waves
(accurate to O(e)):
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C. Effective Linear Chain

Equation (13) has the form of a linear, monatomic
spring-mass chain with space- and time-dependent on-
site stiffness K, as shown schematically in Fig. 2. As is
evident from Eq. (14), this on-site stiffness depends on
the pump wave P,, which can calculated for prescribed
Y, using Eq. (12).

By varying the geometric and stiffness parameters of
the unit cell, we find a wide range of tunability in K.
The variation of K, over one period of the traveling wave
phase 6,, is shown in Fig. 3, where we have numerically
solved for P, using Eq. (12) with Y,, given by Eq. (6),
and substituted the results into Eq. (14). Cases of var-
ied modulation amplitude, unit cell shape, and unit cell
stiffness distribution are shown in Fig. 3(a), Fig. 3(b),
and Fig. 3(c), respectively. We note that care must
be taken to validate the assumption of a slowly-varying
pump wave. Specifically, while the prescribed modula-
tion Y, can always be made to vary slowly by enforcing
gmD o €, the pump wave P, and stiffness K,, depend
nonlinearly on Y,,, and therefore may contain harmonics
that do not vary slowly in comparison to the signal wave.
In situations where significant harmonics are present (e.g.
the dark red curves in all three panels of Fig. 3, which
have sharp changes as a function of the traveling wave
phase), ¢m and wy,, must be made sufficiently small for
the harmonics to be considered slow as well.

Finally, we remark that strong stiffness modulations
can be found in the presence of mechanical instabilities,
i.e. buckling. The dark red curves in Fig. 3(a) and Fig.
3(c) approach zero stiffness at a few points in the cycle
due to proximity to a point of instability. While the pa-
rameters considered in this work were chosen to keep the
effective stiffness everywhere positive, the points of insta-
bility can be reached by further increasing the respective
parameter variations. These instabilities, while interest-
ing in their own right (see [34] and references therein),
would violate the assumptions of a slowly-varying pump
wave and are outside the scope of the present study.
Nevertheless, buckling structures may be useful in future
studies to achieve strong and highly tunable modulations
by operating near, but not fully reaching, instability.
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FIG. 2. Schematic of one unit cell of a linear, time-dependent,
monatomic chain describing the dynamics of the signal wave
Sn(To).

D. Periodic Traveling Wave Solutions

To find periodic, traveling wave solutions of Eq. (13),
we use a Bloch wave expansion approach similar to the
one used in Ref. [16]. We assume solutions of the form

“+o0
S, — oi(én—QTo) Z S‘jeiJ@n(To)7 (15)
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where £ and €2 are a dimensionless wave number and fre-
quency, respectively, and ©,,(Ty) = &mn — QT is the
phase of the traveling wave modulation in terms of the
dimensionless parameters &, = gnD and Q, = wy/wo.
Equation (15) is an infinite sum of plane waves with wave
numbers § + j&n, and frequencies (2 & j{p,, with corre-
sponding complex amplitude coefficients S;. Thus, when
the on-site stiffness is modulated in space and time, the
(&,9) spectrum is not a ‘dispersion relation’ in the tra-
ditional sense, because the presence of one plane wave
necessitates the existence of others. The modulated stiff-
ness K, must also be represented as a summation of
plane waves:

+oo
Kn(On(To)) = D KO, (16)

p=—00

where the amplitude coefficients kp are calculated from
the well-known formula for a complex Fourier series:
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Substituting Egs. (15) - (17) into Eq. (13) and utilizing
the orthogonality of the complex exponential functions to
eliminate one of the summations, we find the hierarchy
of equations
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FIG. 3. Effective on-site stiffness K, as a function of trav-
eling wave phase 0,, for (a) variation of nodal displacement
amplitude Yy in a symmetric unit cell; (b) variation of unit
cell shape a/D with D =1, ko = kp = 1, and Yy = 0.2; and
(c) variation of stiffness ko with ke + ks = 2, a/D = 0.5,
and Yy = 0.2. Colormaps indicate the value of the varied
parameter for each curve.
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where the free index [ = p + j arises from orthogo-

nality. To solve Eq. (18), we must truncate the infi-
nite series in the final term of Eq. (18) at some value
+.J. Then, the indicies j and [ take on integer values
[-J,—(J-1),...,0,J—1, J], and for fixed wavenumber &,
Eq. (18) may be cast as a quadratic eigenvalue problem
with eigenvalues Q and eigenvectors [S’_J,...O,...,SJ]T
[16]. The quadratic eigenvalue problem can be solved nu-
merically using standard computational software (in this
work, we have used the polyeig function in MATLAB).



Example solutions of Eq. (18) for J = 3 and the
parameter values o« = 8 = Kk, = Ky = 1, Yy = 0.2,
&m = 27/10, and Q,, = 0.1, as well as the solution for an
un-modulated chain with equivalent mean on-site stiff-
ness, are shown in Fig. 4(a), where non-reciprocity is ev-
ident from asymmetry about the £ = 0 axis. This (£, Q)
spectrum contains 2J + 1 bands, which appear similar to
the single band of the un-modulated chain, tiled along a
line of slope ¢y = Q4 /Em [20]. However, Fig. 4(a) does
not show the relative amplitudes of the plane waves in
the solution, nor does it indicate which plane waves be-
long to each mode; thus, a more intuitive representation
of the spectrum can be found by 1) coloring each (&, )
point according to the magnitude of its eigenvector com-
ponent, and 2) removing the ‘tilt’ due to the temporal
modulation, i.e. plotting Q — ¢,& on the ordinate axis
instead of Q. This representation is shown in Fig. 4(b),
from which it can be seen that most of the energy in
each mode (a ‘mode’ now corresponding to points on any
horizontal line) is concentrated near the un-modulated
branch.
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FIG. 4. Theoretical band structure for parameters o = 8 =
ke = kp = 1, Yo = 0.2, &m = 27/10, and Qm = 0.1. (a)
Frequency-wave number spectra of the modulated (blue solid
curves) and non-modulated (red dashed curves) linear chains.
(b) Frequency-wave number spectrum of the modulated linear
chain with amplitude visible and tilt removed (color map:
normalized eigenvector components S;/|S|, in decibels).

III. NUMERICAL RESULTS
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FIG. 5. (a) Two-dimensional Fourier transform of the sim-
ulated spatiotemporal data (colormap: magnitude of each
Fourier coefficient, normalized by the maximum magnitude,
in decibels). (b) Fourier transform data from panel (a) with
theoretical curves overlaid. (c¢) Theoretical amplitude-colored
spectrum (same data as in Fig. 4(b), shown with tilt re-
stored).

To demonstrate the effectiveness of the linearized
model developed using the small-on-large approximation,
we simulate Eq. (5) (the fully nonlinear equations of mo-
tion) with the same parameters used in the previous sec-
tion, using a standard fourth-order Runge-Kutta scheme,
and compare the results to the linear theoretical model.
The simulation is performed with a chain length of 600
masses and a dimensionless time step of ATy = 0.01,



for a duration of 8 x 10* time steps. With the pump
wave present, a broad-band signal wave is imparted to
the chain by giving one of the masses an initial dimen-
sionless velocity of 0.01. To isolate the signal wave, we
perform a second simulation with the pump wave only,
and subtract the result from the first simulation. We
note that while the subtraction of the pump wave does
not yield the signal wave exactly (due to nonlinearity), it
gives an accurate representation of the signal wave as long
as the small-on-large approximation is valid. Finally,
we perform a two-dimensional Fast Fourier Transform
on the resulting spatiotemporal data, giving a numerical
frequency-wave number spectrum, which is shown in Fig.
5(a). For comparison, we repeat this spectrum with over-
laid theoretical curves from Fig. 4(a) (modulated case)
in Fig. 5(b), and include the theoretical, color-coded
band structure (i.e. the data from Fig. 4(b) with the tilt
restored) in Fig. 5(c). Overall, we find excellent agree-
ment between the fully nonlinear, numerical results and
the linearized, small-on-large theoretical model.

IV. CONCLUSION

We have developed a model for non-reciprocal elastic
wave propagation via modulated stiffness in a discrete
spring-mass chain, where the modulation is achieved by
applying a slow, nonlinear deformation that alters the
effective on-site stiffness in a quasi-static manner. By
applying multiple-scale perturbation analysis, we have
shown that in the presence of a sufficiently slow, non-
linear deformation (the ‘pump’ wave), a small-amplitude
disturbance (the ‘signal’” wave) can be accurately mod-
eled by a linear spring-mass chain with time-dependent
properties. This effective linear chain model may be ana-

lyzed using existing methods from recent works. By tun-
ing the material and geometric parameters of our unit
cell, we have shown that the modulation depth of the
effective stiffness is highly variable. In particular, it can
be made large (e.g. on the order of its mean value) when
operating near mechanical instabilities. Finally, we have
demonstrated the effectiveness of the linearized model by
comparing the theoretical results to direct numerical sim-
ulations of the fully-nonlinear chain, and found excellent
agreement.

Opportunities for future studies include applying sim-
ilar analyses to chains in which the effective inter-site
stiffness is also modulated by nonlinearity (e.g. by al-
lowing the displacement-controlled nodes to move hor-
izontally) and to continuous structures (for example,
negative-stiffness honeycomb lattices, which have been
shown to exhibit large effective property changes under
an applied strain [29, 35]). Methods for optimizing these
structures to obtain a targeted non-reciprocal response
should be explored. It would also be of interest to revisit
the application of homogenization techniques to modu-
lated media in the context of Willis constitutive equa-
tions [36-39], which have been discussed briefly in some
prior specific cases [19, 40]. Finally, experimental re-
alizations of mechanically-modulated structures are also
within reach, as highly deformable elastic lattices can
be fabricated using additive manufacturing techniques
[34, 35, 41, 42].

ACKNOWLEDGMENTS

This work supported by National Science Foundation
EFRI award no. 1641078 and the postdoctoral fellow-
ship program at Applied Research Laboratories at The
University of Texas at Austin.

[1] J. W. Strutt, Proceedings of the London Mathematical
Society s1-4, 357 (1871).

[2] R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman,
and A. All, Science (New York, N.Y.) 343, 516 (2014).

[3] J. Achenbach, Reciprocity in elastodynamics (Cambridge
University Press, 2003).

[4] M. R. Haberman and M. D. Guild, Phys. Today 69, 42
(2016).

[5] S. A. Cummer, J. Christensen, and A. Alu, Nature Re-
views Materials 1, 16001 (2016).

[6] O. A. Godin, Wave motion 25, 143 (1997).

[7] O. A. Godin, Physical Review Letters 97, 054301 (2006).

[8] L. M. Nash, D. Kleckner, A. Read, V. Vitelli, A. M.
Turner, and W. T. M. Irvine, Proceedings of the Na-
tional Academy of Sciences of the United States of Amer-
ica 112, 14495 (2015).

[9] P. Wang, L. Lu, and K. Bertoldi, Physical Review Let-
ters 115, 104302 (2015).

[10] A. Merkel, M. Willatzen, and J. Christensen, Physical

Review Applied 9, 034033 (2018).

[11] N. Boechler, G. Theocharis, and C. Daraio, Nature ma-
terials 10, 665 (2011).

[12] Z. Zhang, I. Koroleva, L. I. Manevitch, L. A. Bergman,
and A. F. Vakakis, Physical Review E 94, 032214 (2016).

[13] J. Bunyan, K. J. Moore, A. Mojahed, M. D. Fronk,
M. Leamy, S. Tawfick, and A. F. Vakakis, Physical Re-
view E 97, 052211 (2018).

[14] E. Cassedy and A. Oliner, Proceedings of the IEEE 51,
1342 (1963).

[15] E. Cassedy, Proceedings of the IEEE 55, 1154 (1967).

[16] G. Trainiti and M. Ruzzene, New Journal of Physics 18,
083047 (2016).

[17] J. Vila, R. K. Pal, and M. Ruzzene, Physical Review B
96, 134307 (2017).

[18] H. Nassar, H. Chen, A. N. Norris, M. R. Haberman, and
G. L. Huang, Proceedings of the Royal Society A: Mathe-
matical, Physical and Engineering Science 473, 20170188
(2017).

[19] H. Nassar, X. Xu, A. Norris, and G. Huang, Journal of
the Mechanics and Physics of Solids 101, 10 (2017).



[20] H. Nassar, H. Chen, A. N. Norris,
Physical Review B 97, 014305 (2018).

[21] F. Casadei, T. Delpero, A. Bergamini, P. Ermanni, and
M. Ruzzene, Journal of Applied Physics 112, 064902
(2012).

[22] Y. Y. Chen, G. L. Huang, and C. T. Sun, Journal of
Vibration and Acoustics 136, 061008 (2014).

[23] Y. Y. Chen, R. Zhu, M. V. Barnhart, and G. L. Huang,
Scientific Reports 6, 35048 (2016).

[24] K. Danas, S. Kankanala, and N. Triantafyllidis, Journal
of the Mechanics and Physics of Solids 60, 120 (2012).

[25] Y. Wang, B. Yousefzadeh, H. Chen, H. Nassar, G. Huang,
and C. Daraio, (2018), arXiv:1803.11503.

[26] G. Renaud, S. Callé, and M. Defontaine, Applied Physics
Letters 94, 011905 (2009).

[27] Y. Zhang, V. Tournat, O. Abraham, O. Durand, S. Le-
tourneur, A. Le Duff, and B. Lascoup, Journal of Applied
Physics 113, 064905 (2013).

[28] K. Bertoldi and M. C. Boyce, Physical Review B 78,
184107 (2008).

[29] B. M. Goldsberry and M. R. Haberman, Journal of Ap-
plied Physics 123, 091711 (2018).

[30] A. Amendola, A. Krushynska, C. Daraio, N. M. Pugno,
and F. Fraternali, (2018), arXiv:1803.03472.

[31] R. Chaunsali, F. Li, and J. Yang, Scientific Reports 6,
30662 (2016).

and G. L. Huang,

[32] M. Attarzadeh, H. Al Ba’ba’a, and M. Nouh, Applied
Acoustics 133, 210 (2018).

[33] A. H. Nayfeh and D. T. Mook, Nonlinear oscillations
(Wiley, 1979) p. 704.

[34] D. M. Kochmann and K. Bertoldi, Applied Mechanics
Reviews 69, 050801 (2017).

[35] D. M. Correa, T. Klatt, S. Cortes, M. Haberman, D. Ko-
var, and C. Seepersad, Rapid Prototyping Journal 21,
193 (2015).

[36] J. R. Willis, Wave Motion 3, 1 (1981).

[37] H. Nassar, Q.-C. He, and N. Auffray, Journal of the
Mechanics and Physics of Solids 77, 158 (2015).

[38] M. B. Mubhlestein, C. F. Sieck, P. S. Wilson, and M. R.
Haberman, Nature communications 8, 15625 (2017).

[39] C. F. Sieck, A. Alu, and M. R. Haberman, Physical
Review B 96, 104303 (2017).

[40] D. Torrent, O. Poncelet, and J.-C. Batsale,
Physical Review Letters 120 (2018), 10.1103/Phys-
RevLett.120.125501.

[41] J. R. Raney and J. A. Lewis, MRS Bulletin 40, 943
(2015).

[42] K. Bertoldi, V. Vitelli, J. Christensen, and M. van Hecke,
Nature Reviews Materials 2, 17066 (2017).



