
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Phase field crystal simulations of the kinetics of Ostwald
ripening in two dimensions

Kyle A. Moats, Ebrahim Asadi, and Mohamed Laradji
Phys. Rev. E 99, 012803 — Published 22 January 2019

DOI: 10.1103/PhysRevE.99.012803

http://dx.doi.org/10.1103/PhysRevE.99.012803


Phase Field Crystal Simulations of the Kinetics of Ostwald Ripening in Two
Dimensions ∗

Kyle A. Moatsa, Ebrahim Asadib and Mohamed Laradjia †
aDepartment of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA

bDepartment of Mechanical Engineering, The University of Memphis, Memphis, TN 38152, USA

The kinetics of Ostwald ripening of solid domains in the liquid phase of one-component systems in
two dimensions is investigated numerically via the phase field crystal model. The simulations, which
are performed systematically as a function of volume fraction of the solid phase, show that dynamical
scaling is reached during late times, and the growth law is in good agreement with the classical
theory of Lifshitz, Sl yozov and Wagner (LSW) i.e. R̄ ∼ t1/3, an indication that domain growth is
mediated by the long-range inter-domain diffusion of atoms. In contrast to LSW’s theory, however,
the domain size distribution is symmetric, and can be fitted with a Gaussian. The investigation of
the topological domain structure, through the Voronoi tessellation of the domains’ centers of mass
shows that both Lewis’ law and Aboav-Weaire law of two-dimensional cellular patterns are satisfied,
implying that the kinetics proceed such as the conformational entropy of the domains-containing
Voronoi cells is maximized. These results are in very good agreement with an earlier experimental
study of a phase-separating phospholipid-cholesterol Langmuir film.

I. INTRODUCTION

The kinetics of phase separation in materials is cru-
cially important to many materials processes, and has
thus been the subject of many studies during the last
few decades through experiments, e.g. [1–13], theory,
e.g. [14–26] and simulation, e.g. [24, 26–34]. Phase sep-
aration occurs when a system is rapidly quenched from
a homogeneous disordered state to a multi-phase region
of its phase diagram. The early stages of this process de-
pend on the volume fractions of the coexisting phases. If
the volume fractions of the coexisting phases are compa-
rable, the phase separation is triggered by an instability
of the homogeneous concentration against non-localized
fluctuations with infinitesimal amplitudes, leading to the
formation of small domains and their subsequent growth
through a process known as spinodal decomposition [35].
However, if the volume fractions of the coexisting phases
are very different, such that the initial homogeneous state
is supersaturated, the phase separation is triggered by
an instability against localized concentration fluctuations
with finite amplitudes. This instability leads to the nucle-
ation of the minority phase into small domains and their
subsequent growth, to a degree where supersaturation
is relieved, through a process known as Ostwald ripen-
ing [35, 36]. Domain growth in either spinodal decom-
position or Ostwald ripening is driven by the minimiza-
tion of the excess interfacial energy of the domains. In
Ostwald ripening, in particular, domain growth proceeds
through the long-range evaporation-condensation mecha-
nism, whereby material is transported, through diffusion
within the matrix (majority phase), from the shrinking
(small) domains to the growing (large) domains.
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An interesting feature of the late stages of the kinetics
of phase separation is the emergence of a single charac-
teristic length scale with a power-law time-dependence,
R̄(t) ∼ tn, where the growth exponent, n, indicates the
physical mechanism governing the phase separation pro-
cess. The emergence of a single dominant length scale
during the late stages of phase separation implies that
structural functions such as the structure factor, correla-
tion function and domain size distribution, exhibit simple
dynamical scaling behavior [35, 36]. In alloys, where do-
main growth proceeds via the evaporation-condensation
mechanism, the growth exponent n = 1/3. The first
theoretical understanding of this growth mechanism was
developed by Lifshitz and Slyozov [15] and by Wag-
ner [16]. Although the Lifshitz-Slyozov-Wagner (LSW)
theory [15, 16] was developed for the case where the
volume fraction of the minority phase is infinitesimally
small, the growth law predicted by this theory is very
robust, and is in fact independent of volume fraction, ge-
ometry of the domain structure, and spatial dimension.
In the case of binary fluids, hydrodynamics play a more
important role on their phase separation than the long-
range evaporation-condensation mechanism, leading to
growth laws that depend on whether domains are con-
nected or not and on the spatial dimension [35].

The LSW theory [15, 16] is based on few ingredients
corresponding to a quasi-stationary approximation of the
concentration or density field in the matrix, a boundary
condition at the domains interfaces satisfying the Gibbs-
Thomson relation, and the requirement of flux conserva-
tion at the domains interfaces. The theory predicts an
asymptotic average domain size,

R̄(t) =
[
R̄3(0) +Kt

]1/3
, (1)

where, R̄(0) is the initial average domain size in the long-
time regime, and K is the coarsening rate. LSW theory
also predicts a self-similar behavior as displayed by the
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domain size distribution,

g(R, t) ∼ G
(
R/R̄(t)

)
/R̄d+1(t), (2)

where G is a time-independent domain size distribution
and d is the spatial dimension. For tractability, the
LSW theory was developed for the limit of infinitesimally
small volume fractions of the minority phase in three-
dimensional systems [15, 16]. Extensions of the LSW the-
ory were later made to two-dimensional systems (where
the theory suffers from logarithmic singularities), to sys-
tems with finite volume fractions [20, 21, 23–26, 28], and
to multicomponent systems [37].

Materials properties are usually investigated through
microscopic approaches, such as density functional the-
ory [38] and classical atomistic molecular dynamics [39,
40], or mesoscopic approaches, such as phase field mod-
els [41]. The phase field crystal (PFC) model is a rela-
tively new phenomenological approach, developed by El-
der and Grant [42], which can be derived from classical
density functional theory and leads to a periodic field
with atomic-scale structure. The advantage of this model
is that while it accounts for atomic-scale elastic and plas-
tic effects, it is able to describe structural properties on
diffusive time scales. The PFC approach has thus been
used extensively during the last few years in a range of
studies addressing generic phenomena in one-component
and two-component materials, including grain bound-
aries [42], epitaxial growth [43, 44], crystallization [46–
49, 64], and phase separation kinetics [49, 50]. In this ar-
ticle, we present a computational study of the kinetics of
Ostwald ripening, of crystalline domains in a liquid ma-
trix of one-component systems in two dimensions, based
on the PFC model.

Many experiments have been performed to test the va-
lidity of the LSW theory [2, 8, 11–13, 51, 52]. Few exper-
iments have also been performed to investigate Ostwald
ripening in two-dimensional systems [7, 8]. While exper-
iments have shown that domain growth is in accord with
Eq. (1), the domain size distributions from these exper-
iments are broader and more symmetric than predicted
by the LSW theory [53].

Numerical simulations of Ostwald ripening in two
dimensions through phase field simulations of Model
B [30, 54] predict a correct growth law (n = 1/3). How-
ever, the domain size distributions from these simulations
are also broader and more symmetric than predicted
by generalized LSW theory in two dimensions [23, 54].
Phase field simulations, however, are too coarse-grained,
and do not take into account microscopic details of the
systems. Simulations of Ostwald ripening through atom-
istic molecular dynamics are impractical since the phe-
nomenon occurs on diffusive time scales. We therefore
alternatively investigate the feasibility of using the PFC
model to examine Ostwald ripening in two dimensions.
In agreement with the LSW theory, we observed dy-
namical scaling during late times with an average do-
main size that grows as t1/3 as a result of the long-range
evaporation-condensation mechanism. In contrast to the

LSW theory, however, the average domain size distribu-
tion is fairly symmetric and can be fitted with a Gaussian,
in agreement with Seul et al.’s experimental investiga-
tion of phase separation of a Langmuir film phospholipid-
cholesterol mixture [8]. Using Voronoi tessellation, we
also investigated the topological domain structure, and
found that the distribution of coordination number is
symmetric and that the average area of a domain scales
linearly with the number of nearest neighbor domains,
in accord with Lewis’ law [55]. We also verified that the
coordination number of a domain is correlated with the
average coordination number of its neighboring domains
through the universally observed Aboav-Weaire law of
cellular patterns [55]. We also found strong anticorrela-
tion in nearest neighbor domains’ areas, namely, a grow-
ing large domain is on average surrounded by shrinking
small domains, and vice versa.

II. MODEL AND NUMERICAL APPROACH

The starting equation describing the kinetics of the
dimensionless local density field, ψ(~r, t), is the conserved
Langevin equation [42],

∂ψ

∂t
= ∇2 δF

δψ
+ ζ, (3)

where t and ~r are reduced time and space, and ζ is a
reduced Gaussian noise with zero mean and a tempo-
ral/spatial correlation

〈ζ(~r, t)ζ(~r′, t′)〉 = D∇2δ (~r − ~r′) δ (t− t′) . (4)

The PFC approach is based on a free energy functional
given by

F ({ψ}) =

∫
dr

(
ψ

2

[
β +

(
1 +∇2

)2]
ψ +

ψ4

4

)
, (5)

where β is an effective reduced temperature. Using the
free energy functional above, Eq. (3) then becomes

∂ψ

∂t
= ∇2

[
β +

(
1 +∇2

)2]
ψ + ζ. (6)

Here, since we are interested in the late stages of
phase separation where thermal fluctuations are not as
important as during the early stage of nucleation, the
thermal noise is set to zero, i.e. ζ(~r, t) = 0. Eq. (6)
is integrated numerically using a semi-implicit spectral
method according to the following algorithm [42]:

1. Setup of an initial inhomogeneous configuration of
ψ(~r, t = 0) with an average value ψ0, beyond the
early stages nucleation regime, such that there are
N(0) circular solid domains, with a local average
density ψS in a liquid background of density ψL.
The average size of the solid domains is R̄(0). The
domains’ centers of mass are distributed randomly,
with a size distribution predicted by Ardell [23].
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Figure 1: Portion of interest of the phase diagram of the
PFC model in two dimensions. The region of coexistence
between the crystalline solid and liquid phases is shown in
yellow. The solid lines on the left and right correspond to the
solidus and liquidus lines, respectively, and are obtained from
numerical solutions of Eq. (6). Isolated points from right to
left correspond to area fraction of the solid phase σ = 0.1,
0.15, 0.2, and 0.25, respectively.

2. Calculations of the Fourier transforms ψ̃(k, t) and
ψ̃3(k, t) of ψ(~r, t) and ψ3(~r, t), respectively.

3. ψ(k, t + ∆t) is calculated using the approxima-
tion [56],

ψ̃ (k, t+ ∆t) = eω(k)∆tψ̃(k, t)

− k2

ω(k)

[
eω(k)∆t − 1

]
ψ̃3 (k, t) , (7)

where, the amplification factor

ω(k) = −k2
[
β +

(
1− k2

)2]
. (8)

4. Calculation of the inverse Fourier transform ψ(~r, t+
∆t), and repeat steps 2-4.

The numerical integration was performed using a CUDA
code developed by us. The Fourier transforms were
calculated using the freely available cuFFT distributed-
memory parallel code on a square grid of mesh size
∆x = π/4. We used an integration time step ∆t = 2.0
in reduced units.

In two dimensions, the model predicts a stripe phase
and physically relevant triangular and homogeneous (liq-
uid) phases. The simulations were performed at the ef-
fective temperature β = −0.2 in the liquid-solid coex-
istence region of the phase diagram, partially shown in
Fig. 1, and for −0.29767 ≤ ψ0 ≤ −0.29268. These sys-
tems correspond to ψL = −0.3010 at the liquidus line

Table I: Average density, ψ0, and corresponding area fraction
of the solid phase, σ, initial average domain size, R̄(0), and
initial number of domains N(0), of the systems simulated at
β = −0.2.

ψ0 σ R̄(0) N(0)
-0.29767 0.10 49.14 31
-0.29605 0.15 47.74 50
-0.29434 0.20 47.74 67
-0.29268 0.25 45.88 88

and ψS = −0.2677 at the solidus line. The area fraction
of the solid phase, σ = (ψL − ψ0) / (ψL − ψS), the initial
average domain size, and the initial number of domains
of the systems considered in this study are shown in Ta-
ble I. All simulations are performed on systems with
lateral size L = 6 433.98 and four independent runs were
performed on each system.

III. RESULTS

Domain growth is illustrated by a time-sequence of
snapshots shown in Fig. 2 for the case of σ = 0.25. This
figure demonstrates that, on average, domains coarsen
with time, but not as a result of their coalescence. Do-
mains must therefore coarsen via Ostwald ripening, i.e.
the evaporation of atoms from shrinking domains and
their condensation on growing domains. Fig. 2 also
shows, as expected during Ostwald ripening, that do-
mains grow then decay as a function of time (e.g., do-
mains pointed to by the black and red arrows in Fig. 2).
Furthermore, Fig. 2 also shows that the domains are only
slightly distorted from circular shape.

t =2×105  

t =8×106  t =2×107 t =4×107  

t =4×106  t =2×105  

Figure 2: Time sequence of snapshots for a the case of σ =
0.25 and β = −0.2. The black and red arrows point to two
domains that grew then decayed at later times. The domain
indicated by the red arrow disappears by t = 4 × 107.
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Figure 3: (A) R̄3(t) size versus t for β = −0.2. Black, red,
blue and green points correspond to σ = 0.1, 0.15, 0.2, and
0.25, respectively. The dashed lines are linear fits of the nu-
merical data The maximum error bar of the data is shown in
the bottom left of (A). (B) The net area of the solid phase∑N(t)

i=1
R2

i (t) vs time for the systems shown in (a). Same col-
ors as in (A) are used. The dashed lines are horizontal. The
inset shows that the average value of

∑N(t)

i=1
R2

i (t) is indeed
proportional to the area fraction of the solid phase.

The average domain size, calculated as

R̄(t) =
1

N(t)

N(t)∑
i=1

Ri, (9)

where N(t) is the number of domains at time t, is shown
in Fig. 3(A) for all considered values of σ. This figure
demonstrates that domain coarsening is in line with LSW
theory, i.e. R̄(t) ∼ t1/3 (Eq. (1)), with a coarsening rate
that increases with increasing the area fraction of the
solid phase, in agreement with previous theories of Ost-
wald ripening in two dimensions [20, 23, 24]. An interest-
ing feature, shown by Fig. 3(A), is that although, on av-
erage, R̄(t) increases with time, this increase is not mono-
tonic. Instead, R̄(t) increases in steps with the average
domain size that in fact anomalously decreases with time
during each step. We will show later that this behavior is
due to the small number of domains in the system and to
the fact that the material evaporating from the shrinking

domains does not instantaneously condense on the grow-
ing domains. Each discontinuity in R̄(t) corresponds to
a single event of domain disappearance. Fig. 3(A) also
shows that, on average, the time scale of each tread in
R̄ vs. t decreases with increasing σ. This is simply due
to the fact that the number of domains increases with
increasing σ, and therefore the number of domains dis-
appearance events increases with increasing σ.

Fig. 3(B) confirms that, on average, the net area of
the coarsening crystalline domains, N(t)R̄2(t), is indeed
conserved, as expected, and that the net area of the solid
domains is proportional to the area fraction of the solid
phase (see inset of Fig. 3(B)). However, the net area of
the domains is not instantaneously conserved. The small
amplitude fluctuations in the net area of the solid phase
are correlated with the discontinuities in R̄(t) vs. time
shown in Fig. 3(A).

In this article, we are interested in the case where do-
mains are rounded. As previously noted, the advantage
of the PFC approach, in contrast to the phase-field ap-
proach, is that it accounts for the crystallinity of the solid
phase. We have therefore also performed few simulations
for lower values of β, and found that the domains are
faceted for β < −0.25, as shown by the snapshots (A-F)
in Fig. 4 for the case of β = −0.30. During intermediate

0.0 2.5×106 5.0×106 7.5×106 1.0×107t
0

5×103

1×104

2×104

2×104

R(
t)3	

t =5×105 t =2×106 t =4×106 

t =8×106 t =1.2×107 t =2×107 

Figure 4: Time sequence of snapshots for the case of β =
−0.30 and σ = −0.25 (corresponding to ψ0 = −0.37816).
The bottom graph shows R̄3(t) vs. time.
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Figure 5: Evolution of the density profile of a simulation com-
posed of a small and large domain at β = −0.20. The density
profile is averaged over short length scales to integrate out
the atomic scale oscillations in the solid phase.

times, domains grow in accord with Lifshitz-Slyzov the-
ory, as shown by the graph of Fig. 4. However, we found
that domain growth anomalously slows down and halts
at late times, in contrast to the case where domains are
rounded. We repeated the simulations for smaller mesh
sizes and time steps, and found same results. The ob-
served slowing down at late times may be attributed to
the fact that at late times, the local curvature of a faceted
domain becomes independent of the domain size, R. This
is due to the fact that the local curvature of the straight
edges is zero, while the local curvature of the vertices is a
function of the crystallinity, and is therefore independent
of the domain size.

We now turn to the discontinuous growth in R̄(t),
shown in Fig. 3(A), we performed a simulation of a
system consisting of one small domain of initial radius
R↓(0) = 100.5 and two large domains of initial radius
R↑(0) = 201 at β = −0.20. The centers of mass of the
domains are separated by a distance 1020 in dimension-
less units. The configuration is such that the centers of
mass of the three domains are colinear. We note that we
repeated these simulations with different configurations
and found similar results. The time dependence of the
profile of the ψ-field (averaged over small length scales in
order to integrate out the short length scale oscillations in
the solid phase) along the axis containing the domains’
centers of mass is shown in Fig. 5. This figure shows
that while the small domain (in the center) shrinks, the
density profile of the large domains varies very weakly
during this stage. Fig. 6(A), where the average sizes of
the shrinking domain (red curve) and growing domains
(green curve) vs. time are shown, demonstrates that the
shrinking and growing domains sizes do not vary simul-
taneously: While the small domain shrinks, the large do-
mains are not growing, implying that the material evap-
orating from the shrinking domain is contributing to the
increase in the density of the liquid around the shrinking
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Figure 6: (A) Red curve: Radius of the shrinking domain,
normalized by its initial value, R↓(t)/R↓(0)−1 vs time. Green
curve: Radius of the growing domain, normalized by its initial
value, R↑(t)/R↑(0) − 1 vs time. Inset B shows the linear
relationship between R↓ (dR↓/dt) and 1/R↓, in accord with
Eq. (1). (C) the average domain size vs. time. Inset D
shows the deviation of the ψ-field in the region within the
liquid phase between the shrinking domain and the growing
domains.

domain, as shown by Inset D of Fig. 6. This is due to
the fact that material evaporation is faster than material
diffusion during this process. It is worthwhile noting that
the decay rate of the shrinking domain follows Eq. (2), as
demonstrated by Inset B of Fig. 6. The average domain
size of this system, shown in Fig. 6(C), has the same
features as that of Fig. 3(A), namely a discontinuity oc-
curring at the time where a shrinking domain disappears,
and a decay of the average domain size right before the
discontinuity.

As stated earlier, the late-time kinetics of phase sep-
aration is marked by presence of a single characteristic
length scale, which implies that structural functions such
as the structure factor, should exhibit a dynamical scal-
ing behavior,

S(k, t) = 〈ψ̃(k, t)|2〉 = R̄d(t)F (x), (10)

where x = kR̄(t), is the scaled wave vector, ψ̃ is the
Fourier transform of ψ, and F (x) is the time independent
scaling function. The presence of a small wave vector
peak in S(k, t), shown in the inset of Fig. 7, implies that
the domains are spatially correlated, as expected dur-
ing Ostwald ripening and spinodal decomposition. The
time-independence of the scaling function, F (x), shown
in Fig. 7 (which begins at about 11.0×106), implies that
the kinetics of Ostwald ripening in the present study is
indeed in the scaling regime. The presence of a single
length scale during late times implies that other shorter
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Figure 7: Scaled structure factor, F (x, t) = S(k, t)/R̄2(t),
where the scaled wave vector x = kR̄(t) for the case of σ =
0.20 and β = −0.2. Data shown correspond to 1.32 × 106

(red), 2.52× 106 (green), 7.32× 106 (blue), 1.45× 107 (cyan),
2.18× 107 (magenta), 3.86× 107 (blue), Inset shows the time
evolution of the structure factor, S(k, t) vs. k . Times shown
are 1.20 × 105 (black), 1.32 × 106 (red), 2.52 × 106 (green),
7.32×106 (blue), 1.45×107 (cyan), 2.18×107 (magenta), and
3.86 × 107 (maroon). The slope of the solid line in the main
graph is 3, showing that Porod’s law is satisfied.

length scales in the system, particularly the thickness of
the domains interfaces, should be very small in compar-
ison to the average domain size. Scattering from well
defined domain interfaces should therefore obey Porod’s
law at large wave vectors, S(k) ∼ k−(d+1) [57]. The
scaled structure factor, shown in Fig. 7 does indeed scale
as x−3 for large wave vectors, further confirming that
dynamical scaling is indeed reached in the simulations.

The normalized scaled domain size distribution, G(z),
where z = R/R̄(t) (Eq. (3)) is shown in Fig. 8 for all
considered values of σ. We found that G(z) is time-
independent, implying again that the systems are in the
dynamical scaling regime, in agreement with Fig. 8. This
figure shows that the domain size distributions for all val-
ues of σ is fairly symmetric and can be well fitted by a
Gaussian, in contrast to the theoretically predicted mean
field distribution by Ardell in two dimensions, shown by
the dashed curve for the case of σ = 0.15 [23]. Our
results are in very good agreement with an earlier exper-
iment of Ostwald ripening of a two-component Langmuir
surfactant monolayer at an air-water interface [8] and nu-
merical solution of the Cahn-Hilliard equation [54]. The
standard deviation of the Gaussian fits of the distribu-
tions in Fig. 8 ranges between 0.21 for σ = 0.25 and 0.3
for σ = 0.1. These values are close to those obtained by
Seul et al., which are about 0.22 [8].

We also characterized the topological domain struc-
ture during Ostwald ripening, as predicted by the PFC
model in two dimensions, through the Voronoi tessella-
tion based on the domains’ centers of mass. For illustra-
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Figure 8: Normalized scaled domain distribution G(R/R̄) vs.
R/R̄ at β = −0.20. The solid lines are fits with Gaussians.
The dotted line in the case of σ = 0.15 corresponds to Ardell’s
generalized Lifshitz-Slyozov prediction for the same area frac-
tion in two dimensions [23].

tion, Fig. 9 shows a snapshot of the domains with links
to their nearest neighbor domains, as obtained from the
Voronoi tessellation. The coordination number probabil-
ity of the domains, P (q) = N(q)/N , shown in Inset A
of Fig. 10 for the case of σ = 0.25, where N(q) is the
number of domains with q nearest neighbor domains and
N =

∑
q N(q). P (q) is symmetric and centered at q = 6.

We found that P (q) quickly becomes time-independent
and is σ-independent. The values of P (q) 6= 0 for q > 6
or q < 6, implies that the domain structure is charac-
terized by a large amount of topological defects. Inter-

Figure 9: Snapshot of the domains (perimeters shown in
black) with links (red lines) to their nearest neighbor domains,
as obtained from the Voronoi tessellation. Data shown corre-
sponds to the case of σ = 0.25 and β = −0.20.
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with Lewis’ law, Eq. (11). Inset C: The average coordination
number of nearest neighbor domains of q-coordinated domains
vs. topological charge, in agreement with Aboav-Weaire law,
Eq. (12).

estingly, the values of P (q) are in very good agreement
with the experimental values obtained by Seul et al. [8].
The second moment of P (q), µ2 =

∑
q(q−6)2P (q) ≈ 0.8,

which is also very close to the values reported by Seul et
al. [8].

We also found a linear relation between the average
area of q-coordinated domains, normalized by the average
domain area, Ā(q)/Ā, with the topological charge Q =
q − 6, as shown in Inset B of Fig. 10. This result is in
accord with Lewis’ law of cellular patterns [55],

Ā(q)

Ā
= α+ γQ, (11)

universally observed in many systems such as two-
dimensional foam [58], epithelial cells [59], and stratocu-
mulus clouds [60]. Eq. (11) implies that domains with
a coordination number q = 6 tend to have a size equal
to the average domain size in the system, and that do-
mains that are larger (smaller) than the average domain
size tend to have a coordination number larger (smaller)
than 6. This result indicates that domains are positioned
such that the configurational entropy is maximized [59].
We found that the coefficients, in Eq. 11, α ≈ 1.0 and
γ ≈ 0.23 for the case of σ = 0.25, again in good agree-
ment with Seul et al.’s results [8]. It is important to
note that Lewis’ law applies to the areas of the Voronoi
cells, while we verified this law using the domains areas.
Dynamical scaling, however implies that the average dis-
tance between neighboring domains is proportional to the
average domain size. Hence, Eq. (11) should apply to the

domains areas as well.
Optimal space filling of cellular patterns also requires

another universally observed topological correlation be-
tween the coordination number of a domain, q, with the
average coordination number of its nearest neighbor do-
mains, p̄nn(q), known as Aboav-Weaire law [55, 61],

qp̄nn(q) = (6− b)(q − 6) + c, (12)

with c = 36 +µ2. This relation states that domains with
high (low) coordination number, i.e. large (small) do-
mains according to Lewis’ law (Inset B of Fig. 10) are
surrounded by small (large) domains. Inset C of Fig. 10
shows that the Aboav-Weaire law is indeed satisfied dur-
ing the kinetics of Ostwald ripening through the PFC
model, with b ≈ 1.18 and c = 36.75 ≈ 36 + µ2, using
the earlier above found value of µ2 ≈ 0.8. We note that
these results are again in very good agreement with Seul
et al.’s findings [8].

We also inferred the correlation between the area of a
domain, A, and the average area of its nearest neighbor
domains, Ānn. Fig. 10 shows that Ānn/A and A are an-
ticorrelated. Namely, domains larger (smaller) that the
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Figure 11: (A) Charge-charge radial correlation function.
Black circles: Correlation function between domains with op-
posite charge signs. Red circles: Correlation function between
domains with same charge signs. (B) Radial domains size-size
correlation. Black circles: Correlation function between two
domains with one having a size larger than the average do-
main size, R̄, and the other one with a radius smaller than
R̄. Red circles: radial correlation between two domains where
both are either larger or smaller than R̄. Data shown in (A)
and (B) are for the case of σ = 0.25 and β = 0.20.
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average domain size are mostly surrounded by nearest
neighbor domains that are smaller (larger) in size. Using
a maximum entropy theory for random two-dimensional
cellular patterns, Sire and Seul [62] showed that the re-
lationship between x = A/Ā and f(x) = Ānn/A is given
by

f(x) =
1

x

[
1 +

γ2µ2 − bγ (x− 1)

6γ + (x− 1)

]
. (13)

Fig. 10 shows that Ānn/A and A/Ā are indeed anti-
correlated, and that Eq. (13) is indeed satisfied.

The correlations above can also be inferred through
two-point correlation functions as a function of distance
between domains’ centers of mass. The two-point charge-
charge correlation functions, g+(r) and g−(r), defined
as the correlation functions between two domains with
Q1Q2 > 0 and Q1Q2 < 0, respectively. Fig. 11(A)
shows that domains with topological charges of oppo-
site signs are much more correlated at short distances
(black curve) than domains with either both positive or
negative topological charges (red curve). This is another
qualitative confirmation of the Aboav-Weaire law, Inset
C of Fig. 10. Likewise, Fig. 11(B) shows that domains
with a size larger (smaller) than the average domain size
are also correlated within short distances with domains
with size smaller (larger) than the average domain size,
in accord with the main graph of Fig. 10.

IV. SUMMARY AND CONCLUSION

In this article, we presented an investigation of the
kinetics of Ostwald ripening of solid domains in a liquid
matrix of one-component systems in two dimensions from
a numerical simulation of the single mode PFC model of
Elder and Grant [42]. We found that the average do-
main size, R̄(t), grows with time as t1/3, in agreement
with experiments [7, 8], prior simulations using the Cahn-
Hilliard equation [54] and the LSW theory [15, 16]. These
results therefore further confirm the validity of the LSW
theory and, in particular, that the details of the atomic
scale crystalline structure do not affect the kinetics dur-
ing late times in the case where the domains are rounded.
For low temperatures (β < −0.25), domains are faceted,
and their growth agrees well with the LSW theory at in-
termediate times. At later times, however, the dynamics
is slowed down leading to very slow or halted kinetics at
late time.

The domain size distribution, is found to be symmet-
ric and is well fitted by a Gaussian, in disagreement
with Lifshitz-Slyozov-Wagner theory [23] which predicts

a highly non-symmetric distribution. The domain size
distribution from the present simulations is, however, in
very good agreement with the earlier experimental study
by Seul et al. [8] of the kinetics of Ostwald ripening of a
binary phospholipid-cholesterol Langmuir film. We also
confirmed that the systems reached dynamical scaling
during late times, as demonstrated by scaling of the den-
sity structure factor.

Our investigation of the topological structure of the
two-dimensional system during Ostwald ripening, in-
ferred from the Voronoi analysis, indicates that the do-
mains are positioned in space so as to maximize the con-
figurational entropy of the domains’ centers of mass. In
particular, we showed that the average size of the q-
coordinated domains follows Lewis’ law, i.e., domains
with high coordination number are larger than the av-
erage domain size, and vice versa. Furthermore the av-
erage coordination number of neighboring domains of a
given q-coordinate number follows the Aboav-Weaire law,
i.e., domains with high coordination numbers are sur-
rounded, on average, by domains with low coordination
numbers. In other words, the system adopts a structure
such that deviations from a neutral topological charge is
minimized. Our results on the topological structure of
the coarsening system are in very good agreements with
earlier experimental results of Seul et al. [8, 62].

The present study represents the first detailed test
of Ostwald ripening kinetics in two-dimensional one-
component systems through the PFC approach. Suc-
cessful attempts have been made to generalize the PFC
approach to one-component systems with various crys-
talline structures through the addition of higher order
gradients of the density field [63]. The PFC approach
also has the capability to quantitatively describe specific
materials with various crystalline structures [65]. With
further generalizations of PFC to multi-component sys-
tems through coupling the density field to the composi-
tion field [64], future numerical investigations using PFC
of Ostwald ripening in specific alloys can be performed
on diffusive time scales and quantitatively compared with
available experiments.
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