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The structure of flow networks determines their function under normal conditions as well as
their response to perturbative damage. Brain vasculature often experiences transient or permanent
occlusions in the finest vessels, but it is not clear how these micro-clots affect the large scale blood
flow or to what extent they decrease functionality. Motivated by this, we investigate how flow is
rerouted after the occlusion of a single edge in networks with a hierarchy in edge conductances. We
find that in 2D networks, vessels formed by highly conductive edges serve as barriers to contain the
displacement of flow due to a localized perturbation. In this way, the vein provides shielding from
damage to surrounding edges. We show that once the conductance of the vein surpasses an initial
minimal value, further increasing the conductance can no longer extend the shielding provided by the
vein. Rather, the length scale of the shielding is set by the network topology. Upon understanding
the effects of a single vein, we investigate the global resilience of networks with complex hierarchical
order. We find that a system of veins arranged in a grid is able to modestly increase the overall
network resilience, outperforming a parallel vein pattern.

I. INTRODUCTION

Damage and recovery play an important role in how
biological and man-made flow networks are designed and
operate. Depending on the network architecture, it is
possible to inflict massive cascading failure in a function-
ing network by knocking out just a few key nodes or edges
[1]. Previous work on power grid networks has sought
to identify vulnerable edges that are most susceptible to
overload and will cause global failure if removed [2–5].
Another example arises in ecological networks, where re-
moving a keystone species can result in the collapse of
an ecosystem [6]. However, in many cases a network is
able to sustain damage without complete failure. Recent
work on network structure has identified architectural
and topological features that allow networks to withstand
limited damage or operate in unstable fluctuating condi-
tions [7–9]. For example, architectures with many hier-
archically nested loops allow complex networks to main-
tain optimal function in the presence of load fluctuations
or damage [10–12], and the wiring of scale-free networks
increases tolerance to random failures and renders the
network more easily repairable in the event of damage
[13, 14].

Central to all this work has been the notion of resilience
or robustness [9]. We refer to the resilience of a network
as its ability to maintain functionality in the event of fail-
ures or environmental changes. Of course, this depends
on how the functionality of a network is evaluated. One
way of quantifying functionality is to track how network
connectivity properties change as edges are gradually re-
moved. Percolation theory has been used extensively to
describe how different complex networks break down as
they are subjected to increasing damage [15, 16]. In a
network that transports material, there is the additional
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consideration of how changes to the network structure
alter the flow field. There has been increasing evidence
suggesting that the flow of a transportation network in-
fluences the network structure [17]. For instance, in the
finest vessels of microvasculature, red blood cells cause
transient occlusions that may be important in regulat-
ing uniform flow throughout the network [18]. More-
over, networks are thought to evolve based on adaptive
rules controlled by the edge flows that could be subject
to transient occlusions [19, 20]. In this work we explore
the resilience of networks to single edge perturbations.
If one network edge is occluded, flow will be rerouted
around the occlusion resulting in a new equilibrium flow
field. Depending on the edge capacities, the rerouting
of flow may leave some edges overloaded, some under-
supplied, and others with the flow direction reversed. All
of these situations may be detrimental to network func-
tionality. Moreover, depending on the network structure,
the rerouting of flow can affect sites far from the per-
turbed link. For regular lattices, such as the square grid,
the flow redistribution after a single edge is removed can
be computed exactly by utilizing symmetries of the net-
work [21]. For disordered networks, a numerical approach
is required.

The problem of flow disruption after network damage
has been heavily developed in the field of power engi-
neering. When a line goes down in a power grid, the
power that was once transferred by that line must be re-
distributed across the remaining lines. The altered flow
can be computed using line outage distribution factors
[22]. Because these distribution factors are useful in pre-
dicting weaknesses in the network, considerable work has
been done to optimize the calculation of distribution fac-
tors while minimizing the amount of resources used to
monitor the system [23–25]. Line outage distribution fac-
tors have also been used to demonstrate the presence of
Braess’ paradox in power grids, where the addition of a
single edge has the potential to cause overloads on dis-
tant edges [26, 27]. The asymptotic form for line outage
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distribution factors has been derived for several network
topologies, including small-world networks, in [28] and
[29]. Here we focus on a class of networks with two dis-
tinct features: elements of disorder and a hierarchical
structure of edge conductances. To our knowledge, the
effects of damage in heterogeneous networks with high
conductance veins have not yet been considered.

This work can also serve as a minimal model relevant
to clots in brain vasculature. Brain vasculature forms
a network with hierarchically ordered vessels: blood is
routed from highly conductive surface cortical arteries to
the intricate structure of micro-vessels that supply the
brain tissue with oxygen via mid-sized penetrating ar-
terioles [30]. The same equations that govern resistor
networks have been used to describe vascular flow net-
works [31]. Several experimental studies have aimed to
model the impact of flow redistribution on global brain
functionality [32, 33]. Previous work on ischemic strokes
has shown that the penetrating arterioles are especially
vulnerable to damage because the network is unable to
efficiently reroute flow after an obstruction [34, 35]. The
goal of our work in this context is to understand how
highly conductive vessels, such as the penetrating arteri-
oles that permeate the capillary bed of the cortex, change
the redistribution of fluid flow when an occlusion forms
close to the vessel. While real brain vasculature contains
both veins and arteries, here we consider only half of the
system, tracking the current from a single input point
to distribution in the capillaries and venules, modeled as
sinks. Colloquially we will refer to any highly conductive
vessel as a vein, although it is understood that it can
function as either a vein or artery.

II. CALCULATION OF NETWORK FLOW

The basic calculation of flow redistribution after a lo-
cal occlusion in a network is outlined here and presented
fully in Appendix A. Given a laminar, non-pulsatile flow
network with edges ij weighted by conductance Cij and
with current Qi injected into node i, the goal is to deter-
mine the edge currents Iij . This can be done exactly by

solving for the vector of node potentials v using Lv = Q

where L is the graph Laplacian, then solving for I using

Iij = Cij(vi − vj). Since L does not have full rank, the

node potentials satisfying Lv = Q are not unique. A so-
lution can be found by setting a reference node vk = 0,
which is equivalent to adding a uniform potential bias
to all nodes, effectively setting vk to be ground. The
remaining node potentials can be computed by invert-
ing the truncated Laplacian matrix with the kth row and
column removed [36]. Since Iij depends on the differ-
ence between two node potentials, the constant potential
bias does not change the values of the edge currents. An
alternate method is to calculate the Moore-Penrose pseu-
doinverse of the Laplacian and obtain v = L+Q.

When the network is perturbed by blocking edge κλ,

that is, by setting Cκλ = 0, the network edge currents
change to a new flow field I ′ij . However, the final flow
is not a sufficient measure to describe network flow dis-
ruption, since an occlusion may potentially reverse the
direction of flow on an edge yet maintain the same flow
magnitude. Because we define disruption as a signifi-
cant change between the initial and final states of the
edge flows, we instead track the displaced current, or the
change in the current flow through each edge:

∆Iij = I ′ij − Iij (1)

Figure 1(a) shows an initial flow network with a single
source and sink and Fig. 1(b) shows the final edge cur-
rents after the occlusion of edge κλ as well as the dis-
placed current ∆I in floating arrows. ∆Iij can either
be positive, as seen on edges marked with red arrows,
or negative, as seen on edges marked with blue arrows.
Moving forward, we will use the absolute value of the dis-
placed current as an indicator of disruption in network
function.
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FIG. 1. A model flow network with one current source node
(red cross) and one sink node (blue dash). (a) The initial flow
field Iij . (b) The new flow field I ′ij after Cκλ is set to 0, with
floating arrows illustrating the displaced current ∆Iij . Blue
arrows indicate Iij×∆Iij < 0 (Iij and ∆Iij are in the opposite
direction) and red arrows indicate Iij × ∆Iij > 0. (Iij and
∆Iij are in the same direction). (c) The undamaged network
now with a dipole current source and sink, which we refer to
as the (κλ) system. The black arrows in (c) are proportional
to the colored arrows in (b), indicating that the displaced
current field after damage is proportional to the current in
the undamaged system with a dipole current source and sink.

While the difference between two flow fields is not nec-
essarily intuitive, there is an alternate formulation that
results in an equivalent form for ∆I. We consider the
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original undamaged network, but now with a dipole cur-
rent source and sink at nodes κ and λ, which we refer to

as the (κλ) system. Specifically, we set Q
(κλ)
κ = Iκλ and

Q
(κλ)
λ = −Iκλ, with zero injected current for all other

nodes. The current flow I(κλ) in this system is related to
the differential current flow in the damaged system by

∆Iij =
1

1− CκλReff
κλ

I
(κλ)
ij . (2)

Here, Reff
κλ is the effective resistance between nodes κ

and λ in the original network and can be written as
Reff
κλ = L−1

κκ − 2L−1
κλ + L−1

λλ (see for instance [37]). The
full derivation of Eq. 2 is included in Appendix A, but
this result is well-known. In the language of power engi-
neering, this is the fact that the line outage distribution
factor is proportional to the power transfer distribution
factor [22, 23].

Equation 2 can be observed by comparing the edge
arrows in Fig. 1(c) to the floating arrows in Fig. 1(b)
and noting that they qualitatively match. Moreover,
tracing the edge arrows in Fig. 1(c) reveals a coarse-
grained dipole pattern. In a large network far from the
boundaries, the displaced current ∆I behaves like the
electric field generated by a dipole charge, decaying as
a power law as a function of distance from the damage
site. Thus, far from the dipole current source (or equiva-
lently, the damaged edge) ∆I ∼ r−2 in a planar network
and ∆I ∼ r−3 in a 3D network. In this work we study
exclusively 2D networks as a starting point to establish
methodology. Examples of 2D or nearly 2D flow systems
that experience perturbative damage can be found in leaf
venation, slime molds, and retinal vasculature [38]. The
study of 3D networks has a wider range of biologically
relevant applications and is reserved for future work.

III. A MEASURE FOR RESILIENCE

Given the form of the displaced current ∆I, here we
present a way to quantify the extent of flow rerouting in
order to compare the total network disruption for differ-
ent damage sites. Our approach is to consider how far a
test edge may be from the damaged edge and still expe-
rience a significant change in flow caused by the distur-
bance. We introduce the notion of edge tolerance, defined
as the normalized maximum displaced flow that an edge
can sustain without being under-supplied, overloaded, or
otherwise disrupted. We define the damage zone for an
edge to contain all edges that experience a change in flow
exceeding their tolerance threshold. Specifically, upon
inflicting damage to edge κλ, the damage zone includes
edges ij that satisfy ∣∣∣∣∆IijIκλ

∣∣∣∣ > t (3)

where t is a fixed threshold value. We normalize by the
initial current flow at the damaged edge, which is the to-
tal amount of displaced flow that needs to be distributed

among other network edges. With this in mind, ∆Iij/Iκλ
is the damage sustained by edge ij when edge κλ is oc-
cluded, and the edge is included in the damage zone if the
damage sustained exceeds the damage tolerance. The left
side of the inequality is referred to the linear outage dis-
tribution factor in the context of power grid engineering.
Using Eq. 2 (see Appendix B), Eq. 3 becomes∣∣∣∣Cij(L−1

iκ − L−1
iλ − L−1

jκ + L−1
jλ )

1− Cκλ(L−1
κκ − 2L−1

κλ + L−1
λλ )

∣∣∣∣ > t. (4)

Thus, the inclusion of edge ij in the damage zone of edge
κλ is dependent only on the threshold t, the conduc-
tances, and the connectivity of the graph (encoded in the
Laplacian). In particular, the damage zone is indepen-
dent of the initial current Iκλ and thus also the initial
current sources and sinks, which is convenient because
these are difficult to measure in a real biological flow
network. Furthermore, because the damage zone is not
sensitive to the net current, this metric truly probes the
effects of network topology, or the properties that arise
from the way the network is wired. The damage zone
quantifies the extent of the network that is affected above
the threshold by the damage of a single edge. A small
damage zone signifies that the rerouted flow is contained
within a small neighborhood around the damaged edge,
whereas a large damage zone reflects that the rerouting is
more spread out. A more resilient network minimizes the
damaged region and thus is less affected by perturbative
disturbances.

(a)
t = 0.0005

t = 0.001

t = 0.002

t = 0.01

(b)
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FIG. 2. An example of damage on a randomly packed (RP)
triangular tiling with 5000 nodes. The bulk edges are set to
conductance 1 and edges forming the central vein are set to
conductance 5. (a) A close up view of the occluded edge (red
dashed line) to show the network structure. (b) Contour lines
indicate damage zones of different thresholds; edges within a
boundary satisfy Eq. 3 for different values of t. The shape of
the damage zone becomes distorted upon crossing the vein.

This study intends to couple the local edge tolerance
with the global network resilience. In this work we con-
sider the resilience to be the ability of the network to
withstand damage by minimizing the expected number
of disrupted edges. In a realistic system, edges often
have the ability to slightly change their conductance, for
instance, by modulating the channel radius in response
to a change in flow. This adaptive behavior complicates
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the problem of determining edge currents; this work will
consider only systems with fixed edge conductances.

To study how a network feature such as a highly con-
ductive vein changes the resilience, we examine the differ-
ence in the number of edges in the damage zone when a
vein is present versus when it is absent. We first consider
a simple structure: a single vein of increased conductance
in a randomly packed (RP) triangular tiling network with
otherwise uniform bulk conductance. The procedures for
generating a RP triangular tiling and for drawing a highly
conductive vein are outlined in Appendix C. Figure 2(a)
shows a typical network with a central vein and illus-
trates the shape of the damage zone for damage near the
vein. Network sizes are chosen to be around 5000 nodes.

We choose current boundary conditions that may be
reasonable for a section of biological tissue: the node at
the top of the vein is set to be a source of 1 unit of flow,
the node at the bottom of the vein is set to be a sink for
1/2 of the input flow, and all other nodes are set to be
uniform sinks to accommodate the remaining 1/2 of the
input flow. This ensures that all edges have nonzero cur-
rent flow and the network obeys net current conservation.
Choosing different current sources and sinks does not sig-
nificantly affect the current redistribution, as seen in the
discussion of Eq. 4. Whereas the damage zone in a uni-
form network has a roughly circular shape, the damage
zone near a vein is asymmetric, and the shape changes
discontinuously upon crossing the vein. The vein serves
to decrease the damage zone on the unperturbed side of
the network, providing a shielding effect. The damage
zones for four different threshold values are shown. For
all following work, we fix t = 0.005, so the typical area
covered by a damage zone is ∼ 1% of the total network
area. Results qualitatively apply to a range of t values,
as shown in Appendix D.

If the occluded edge is sufficiently far from a vein then
the damage zone will be the same regardless of whether
or not the vein is present. However, if the edge is close by,
the vein in the network will alter the damage zone. We
calculate the edge shielding sij by counting the number
of edges Nij in the damage zone for a removed edge ij
for a network with the vein present and again for a net-
work with the vein absent, then taking the normalized
difference:

sij =
Nij,vein present

Nij,vein absent
− 1 (5)

If sij < 0 the presence of the vein has decreased the
damage zone, increasing the global network resilience.

IV. RESULTS

A. Veins Provide Shielding

We study how adding a highly conductive vein affects
the global network resilience by computing sij for each
edge individually and analyzing the distribution of sij

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30
(a)

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

sij

−30 −20 −10 0 10 20 30
Distance From Vein x

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

E
d

ge
S

h
ie

ld
in

g
F

it
F

u
n

ct
io

n
S

(x
)

(b)

FIG. 3. A RP triangular tiling with 5500 nodes, edges of
conductance 1, and a single vertical vein through the center
of the network composed of edges with conductance 5. The
effect of the vein on the global network resilience is shown by
computing sij for each edge individually. (a) The real-space
network with edges colored by sij . The vein provides shielding
for edges with sij < 0 (blue) but increases the damage zone
for edges with sij > 0 (red). Distances are measured from the
network center in units of mean edge length. (b) The edge
shielding fit function S(x) is attained by projecting sij onto
the x-coordinate of the edge center and fitting the binned data
using GPR. Edges on the vein are omitted from the plot and
the calculation of S(x). The shielding length Ls is defined as
half of the distance between two maximum of the S(x).

across the full network. Fig. 3(a) shows sij in the real
space of the network and Fig. 3(b) shows what we will
refer to as the edge shielding fit function S(x), which is
a fit to the x-coordinate projection of sij for each edge.
Spatial dimensions are expressed as the Euclidean dis-
tance in units of the mean edge length. The center of
the network lies on the origin and the vein lies roughly
on the line x = 0. In this convention, the x-position of
an edge can be positive or negative, depending if it lies
to the right or to left of the vein respectively. The dis-
tribution of sij forms alternating regions of negative and
positive value around the vein. Edges on the vein will
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always have sij > 0. Close to the vein edges tend to
have sij < 0, meaning that the vein decreases the size of
the damage zone for these edges. Beyond this, there are
two significant regions of the network where sij > 0 and
the vein increases the damage zone. Far from the vein
sij = 0, and the effects of the vein decay.

We define the shielding length Ls for a vein as the
distance from the vein at which S(x) achieves a maxi-
mum, beyond which it gradually decays to zero. More
precisely, the shielding length is defined as half of the
distance between the two maxima on either side of the
vein. Qualitatively, the shielding length is the distance
that the vein shielding effects extend on the network: an
edge with −Ls < x < Ls will likely experience a reduced
damage zone when the vein is present, but an edge be-
yond this distance can only experience an increased dam-
age zone. Another candidate for Ls is the zero crossing
of S(x), but we use the location of the peaks because
firstly, the maxima are strong features that can be iden-
tified independently of the type of fitting procedure used
and secondly, because the positive region of the curve
is a prominent feature of S(x) indicating a strong vein
effect and should not be excluded. The fit for S(x) is
produced by projecting sij onto the x-axis, and binning
these values using a bin size set to the mean network
edge length. We model the binned data using Gaussian
process regression (GPR). GPR succeeds in fitting to the
two maxima, whereas a simple spline fails to provide reli-
able fits primarily due to the sharp minimum inherent to
S(x). Generally GPR fits have a coefficient of determina-
tion greater than 0.90, and typically poorer fits are due
to lattice effects in the more symmetric networks. On-
vein edges pose a problem for calculating the shielding
signal since they are highly positive and thus interfere
with the negative regions of S(x). Since we are primarily
interested in the behavior of the edges surrounding the
vein, the on-vein edges are excluded from the fitting.

We use the damage zone as a method of inferring how
the flow in the system changes when a vein is added to
the network. Edges in the damage zone have experienced
the greatest amount of flow change. Without focusing
on the details of how the current is rerouted, looking at
changes in the damage zone will explain how the vein af-
fects the flow. We have identified edges for which adding
a vein results in a significantly changed damage zone, but
now we want to see where this change comes from. We
will examine which areas of the damage zone contribute
most to the overall change, and why the damage zone is
increased for some edges and decreased for others. This
will reveal the mechanism behind edge shielding.

We separate the damage zone into three populations
of edges: Ne = NL

ij + NV
ij + NR

ij , where NL
ij is the num-

ber of edges to the left of the vein, NV
ij is the number

of edges on the vein, NR
ij is the number of edges to the

right of the vein. For a veinless network, we draw an
imaginary boundary where the vein would have been, so
the three populations are still well-defined. In Fig. 4 we
consider only edges that lie on the left side of the dam-
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FIG. 4. Difference of damage zone edges to the left of the
vein, ∆NL

ij , shown in (a) the real-space network and (b) the
x-coordinate projection, with green points showing the binned
averages, with error bars indicating one standard deviation of
the bin. Edges with 0 < x < 5 have ∆NL

ij < 0, indicating the
vein serves as a conduit to absorb displaced flow, preventing
it from leaking to the opposite side. This negative region
explains the minimum in Fig. 3.
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FIG. 5. Difference of damage zone on the main vein, ∆NV
ij ,

shown in (a) the real-space network and (b) the x-coordinate
projection, with green points showing the binned averages,
with error bars indicating one standard deviation of the bin.
Axis scales and color bars are as in Fig. 4 for comparison. The
effects of the vein hold for −11 < x < 11, which is a greater
range compared to Fig. 4, although the magnitude is smaller.
This effect explains the two maxima of S(x) in Fig. 3.

age zone; an analogous plot may be drawn for the right
side. To avoid problems with division by zero, we plot
∆NL

ij = NL
ij,vein present − NL

ij,vein absent, the unscaled dif-
ference in number of edges on the left side of the damage
zone, as opposed to sij , the percentage difference in the
number of edges. All edges on the right side of the vein
have ∆NL

ij ≤ 0. This means that crossing the vein signif-
icantly shrinks the damage zone, effectively shielding the
damage. This shielding effect in which ∆NL

ij < 0 holds
for edges with 0 < x . 5. Edges on the left side of the
vein attain both positive and negative values of ∆NL

ij .
This means that if there is damage on the left side of the
network, the left side of the damage zone may increase or
decrease while the right side of the damage zone always
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shrinks. However, the mean amplitude on the left side
of the vein remains close to zero, as seen by the green
averaged points.

The most prominent effect of the vein is to prevent dis-
placed flow due to damage on the right side of the vein
from crossing over to the left side, and vice versa. This is
the cause of the observed edge shielding, and it is visual-
ized in Fig. 3(b) by the deep minimum of S(x) centered
at the vein. The vein provides a low resistance channel to
reroute displaced current for nearby damage, containing
flow in the vein edges and preventing it from leaking to
the other side of the vein. The high conductance of the
vein allows the network to use a smaller portion of edges
to reroute flow.

0 5 10
Distance from Vein x

(a)

0 5 10
Distance from Vein x

(b)

FIG. 6. The damage zones for two damage sites (denoted with
a small cross), one close to the vein (a) and one far from the
vein (b). As in Fig. 1, edges with Iij × ∆Iij < 0 are colored
blue and edges with Iij × ∆Iij > 0 are colored red. The
damage zone may be divided into two distinct parts: edges
on the vein and edges enveloping the damage site.

However, adding a vein does not decrease the damage
zone for all network edges. The positive regions in Fig. 3
are edges for which the damage zone has been increased.
To explain these regions, we once again split the damage
zone into three populations of edges, now plotting NV

ij ,
the number of edges that lie on the vein, in Fig. 5. The
main observation is that edges with −11 < x < 11 will
have on-vein edges in their damage zones. Compared
with the effect seen in Fig. 4 which only persists for x < 5,
this is a long range effect. Even for distant damage, the
vein actively serves to reroute flow. Individual inspection
of the full damage zone for two sample edges is shown
in Fig. 6. The on-vein edges of the damage zone are a
distinct component, clearly separated from the part of
the damage zone that envelopes the damage site.

This discontinuity can be explained by Eq. 4, the dam-
age zone threshold condition written in terms of edge
flows and conductances. The denominator is indepen-
dent of ij and thus constant for all edges. The term
L−1
iκ − L−1

iλ − L−1
jκ + L−1

jλ is dependent primarily on dis-
tance from the damage site, as information about Cij is
lost in the matrix inversion. Thus, this term does not
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FIG. 7. Edge shielding fit functions S(x) for a RP triangular
tiling with 5500 nodes with bulk edge conductance 1 and a
central vein set to 10 different conductance values Cvein. Inset:
the shielding length LS appears clearly by Cvein = 2, increases
until Cvein = 5, then becomes asymptotic. For Cvein = 1.2,
S(x) is nearly flat, so the maxima are not clearly distinguished
and the derived Ls is unreliable.

distinguish the highly conductive vein edges. However,
the other term in the numerator, Cij , is of course sensi-
tive to the vein and is able to bump on-vein edges beyond
the damage zone threshold even if they are at a further
distance. In other words, Eq. 3 is likely to be satisfied
because ∆Iij is large compared to Iκλ, even though ∆Iij
is small compared to Iij . This means that our model
is likely to qualify an on-vein edge ij as a significant
disturbance in the system when in fact the percentage
change in current through ij is quite small. Effectively,
in this model, the tolerance of an on-vein edge and an
off-vein edge have been set to equal values. A more re-
alistic model should possibly scale edge tolerance with
conductance. For the current model, the low tolerance of
the vein edges is the reason for large regions of S(x) > 0.

One final note is that superimposing Fig. 4 with its
mirror image and with Fig. 5, effectively summing all
three parts of the damage zone that we had previously
separated, recovers Fig. 3, up to normalization. This
decoupling of the damage zone is essential for explaining
the short-range negative region, the mid-range rise, and
the far range decay of the edge shielding. Although we do
not derive a functional form for S(x) we can explain each
feature separately through the behavior of the damage
zone at different distances from the vein.

B. Shielding is Controlled by Topology

In this section we ask what network properties control
the shielding effects of the vein. We show how the shield-
ing length is dominated by network topology, as opposed
to geometry. An example of changing the geometry of a
network includes changing edge conductances while pre-
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dual to RP triangular
tiling (d = 3)
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FIG. 8. Segments of the lattices used in Fig. 9. The mean network degree d varies between 3 and 6. Both regular lattices and
networks with elements of disorder and noise are used. The edge conductance is set to the edge length scaled by the mean edge
length of the network, so the average edge conductance is 1.

serving their relative hierarchy, or in other words, not
suddenly making a bulk edge thicker than a vein edge.
Changing the topology of the network entails a more se-
vere modification to the underlying network connectivity,
such as removing edges or growing additional veins. We
will provide two examples of changes to the network ge-
ometry (thickening the central vein and increasing the
network size) that do not significantly impact the shield-
ing length. Then we will show that the shielding length
is governed by a topological property of the network,
namely the average degree of the nodes.

The first surprising result is that the shielding length is
not controlled by the vein conductance. The edge shield-
ing fit functions for networks with one central vein of
increasing conductance Cvein are shown in Fig. 7 and
the inset tracks the shielding length Ls. Fits are ob-
tained as in Fig. 3b and Ls is defined as half of the dis-
tance between the two maxima. The shielding effect of
the vein is characterized by a central minimum and two
maxima. This effect is first noticeable once the vein con-
ductance reaches 1.5 times the value of the bulk network
conductance. However, after a relatively short period of
growth, Ls asymptotes to the constant value Ls = 5.6.
This means that the positive shielding effects yield di-
minishing returns. When the vein conductance is four
times larger than the bulk conductance, only edges with
−5.5 < x < 5.5 experience a significant edge shielding
sij and increasing the vein conductance further does not
significantly increase the shielding length. While the lo-
cation of the maxima and the zeros of the shielding stay
constant, the magnitude of S(x) grows with increasing

conductance. This means that the magnitude of shield-
ing felt by edges within Ls increases, and also that the
long-range effects of the vein persist over a longer scale.
For a fixed lattice, the edges that feel a shielding effect
can be predicted by their distance to the damaged vein,
making the shielding length a topological effect.

As a second probe of shielding effects, we study a cen-
tral vein in networks of varying size and topology. Pre-
viously we have just considered a single type of network:
the RP triangular tiling. Now we extend our arsenal
to include nine additional types of networks, shown in
Fig. 8. We are particularly interested in networks with
a mean node degree between 3 and 4, which is typical
for biological networks [39]. For each network we set the
edge conductance to the edge length scaled by the mean
edge length of the network, so the average edge conduc-
tance is 1. The standard deviation of edge conductances
is 0.2 for the noisy square lattice and around 0.15 for
other nonuniform lattices. Setting the edge conductance
proportional to edge length is used to distinguish between
the square lattice and the noisy square lattice, but the
variation in edge conductances is small enough that re-
sults for a network with the variable edge conductances
are similar to a network with uniform edge conductances.
A central vein of conductance 5 is drawn for each network
following the procedure in Appendix C. For each network
type we compute the shielding length Ls for networks of
increasing size, ranging from 10,000 to 40,000 edges.

In Fig. 9(a) we show that for a single network type, Ls
is independent of network size above a certain threshold
size. For each network of the same type and a sufficiently
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FIG. 9. (a) Shielding length Ls as a function of network size
for a variety of networks shown in Fig. 8. For a fixed network
type, Ls remains constant as the network grows in number of
nodes. Solid lines indicate the mean Ls for a network type.
(b) Ls is a monotonically decreasing function of the mean
network degree.

large size, Ls is closely approximated by the mean Ls
over all network sizes, indicated by the solid lines. First
of all, this confirms that finite boundary effects do not
influence Ls for these network sizes. This is expected
because boundary effects are seen on the order of Ls, so
finite size effects are negligible for networks larger than
a few shielding lengths.

Moreover, we find that Ls is a strictly decreasing func-
tion of the mean node degree d. We plot the mean Ls
for each network type as a function of the mean net-
work degree in Fig. 9 (b). This relation can be fit by
Ls ∼ d−1.21 for the limited range of available data. Thus,
network degree dictates Ls, as expected since d is a mea-
sure of the network connectedness, strongly correlated
with other measures such as the effective resistance be-
tween neighboring nodes. This result indicates that net-
works which are more tightly connected require a smaller
area to reroute displaced flow, and inversely, the shield-
ing effects of a vein drop off faster in a network with
higher d. Because the shielding length is dictated by the
average node degree (and thus the network connectivity)
and not the main vein conductance, it can be classified
as a primarily topological effect.

C. Interactions of Multiple Veins

To describe the effects of complex vein hierarchies on
network resilience, we begin by quantifying the interac-
tion of edge shielding fit functions for two nearby veins.
To see if the edge shielding is an additive effect, we com-
pare S(x) for a system of two veins with separation D
with the sum SL(x) + SR(x) from two distinct systems,
one with just the left vein present and one with the
right vein present. The amplitude of the residual signal,

∆S = S(x)−SL(x)−SR(x), is a measure of nonlinearity
in the system: if the system with two veins is exactly a
sum of the shielding effects from two separate veins, the
residual will be zero. We plot ∆S for two veins of increas-
ing separation D in Fig. 10 and we find that it becomes
zero for D ≥ 12. The shielding length for an individual
vein has been found to be 5.6, so two veins become inde-
pendent when their shielding lengths no longer overlap.
Even for small separation distance D, the residual ∆S is
small relative to S(x).

−20 −10 0 10 20
x

−0.2

−0.1

0.0

0.1

S
(x

)

D = 1

(a)

−20 −10 0 10 20
x

D = 5

(b)

−20 −10 0 10 20
x

D = 10

(c)

FIG. 10. Edge shielding fit function S(x) for three RP tri-
angular tilings of 6000 nodes with bulk edge conductance 1
and two veins of conductance 5 at varying separation D, in-
dicated by the vertical dashed lines. The composite system
S(x) (solid red curve) is compared to the sum of two single-
vein systems SL(x) + SR(x) (solid blue curve). The residual
is ∆S = S(x) − SL(x) − SR(x) (dotted green curve).

Taking inspiration from natural hierarchically ordered
networks, we examine systems of multiple veins with
two different hierarchies. Leaf venation networks often
feature complex hierarchical structures, the purpose of
which is not completely known [40]. Brain vasculature
contains penetrating arterioles and venules that form a
class of hierarchy, but interestingly these higher order
veins do not have loops; loops exist in the denser smaller
veins that form the bulk region.

Here we want to explore how presence of intersecting
higher order veins affects resilience. We compare a hier-
archy of strictly vertical veins (parallel hierarchy) with
a hierarchy that has both vertical and horizontal veins
arranged in a grid (grid hierarchy). As a null model com-
parison we use a network with edges chosen at random
to be highly conductive (null hierarchy), which lacks any
kind of hierarchical ordering. We generate networks with
these three types of hierarchies at different values of vein
density to see if there is an favorable design for resilience.

We define the occupation fraction f of a network with
veins to be the fraction of on-vein edges to bulk edges.
Although any 0 < f < 1 is allowed in principle, it is
limited by the fraction of vertical edges in the under-
lying lattice. For a square grid, half of the edges are
oriented vertically, so the maximal occupation fraction
is f = 0.5. We find that for the RP triangular tiling
f ∼ 0.33 is the highest possible occupation fraction with
non-intersecting veins. For the grid hierarchy, where in-
tersection of perpendicular veins is allowed, f ∼ 0.6 is
a reasonable upper limit for the RP tiling. To generate
networks of higher f , we invert the edge conductances
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for a lower occupation fraction network. For example, a
network with f = 0.8 is generated by taking the network
with f = 0.2 and switching every edge with conductance
1 to conductance 5 and vice versa. The resulting network
has thicker veins consisting of several columns of edges,
interspersed with small strips with conductance 1.

We consider the network resilience for a class of vein
hierarchies as a function of f . To quantify network re-
silience, we use E[Ne], the expected number of edges in
the damage zone for an edge, using the distribution of
Ne across all edges in the network. This is an estimate
for the expected amount of disruption in the network if
one edge is damaged with uniform probability over all
edges. A high value of E[Ne] means that on average, a
large amount of edges will exceed their threshold value of
flow disruption, and thus a larger proportion of the net-
work will have disrupted functionality in the event of an
occlusion. A network with high E[Ne] is more sensitive
to damage and thus less resilient.

Figure 11 shows how E[Ne] changes as a function of f
for the three hierarchy types. For a single network with
a given hierarchy and f , we fit the distribution of Ne to
a Gaussian function and record the expected value. We
repeat the calculation for 10 different instances of the
RP tiling for each value of f . Data points represent the
average E[Ne] and error bars indicate five standard de-
viations of E[Ne] across different instantiations of the 10
RP tilings. One standard deviation due to changes in the
underlying lattice is less than 0.5 percent for each data
point, which is negligible compared to the magnitude of
variation of E[Ne]. The y-axis is scaled by E[Ne] for a
veinless network, so E[Ne] of the initial f = 0 network
is 1. Note that as E[Ne] decreases the network becomes
more resilient, since the deletion of one edge results in a
smaller number of disrupted edges than in the uniform
veinless network.

The first thing to note is that E[Ne] = 1 for f = 1.0,
so the network where every edge is a highly conductive
vein has the same resilience as the veinless network. This
is expected as the threshold expression was designed to
capture the effects of hierarchy and not the absolute value
of the conductance. Changing the conductance of every
edge in the network results in scaling all Cij by 5 and

all L−1
ij by 1/5 in Eq. 4. This factor cancels, resulting in

the same threshold expression, so the damage zone of an
edge will stay the same if all network conductances are
rescaled by the same constant.

We have shown that the presence of a vein increases
the resilience of some edges but decreases the resilience of
others, however it is not obvious which of these effects is
dominant. As seen in the form of S(x), plotted in Fig. 3,
edges within the shielding length typically have a lower
Ne and edges just outside the shielding length, as well as
edges that are on the actual vein, have a higher Ne. As
highly conductive veins are added to the system, edges
close to the vein will experience a shielding effect, in-
creasing the resilience of the system, and edges in a strip
further away will contribute to the decreasing resilience

of the system. We suspect that once the venation attains
the density such that every edge is within one shield-
ing length of the vein the system will reach maximum
resilience.

We find that networks of the three hierarchies exhibit
different behavior in their global resilience as f varies.
The null hierarchy network attains a single shallow max-
imum at f = 0.28, or 28 percent occupancy. Because
E[Ne] > 1 over the entire range of f , the null hierarchy is
always less resilient than a network with no veins. This
can be explained by reasoning that the shielding effect
holds only when there is a nearly continuous vein present.
The two networks with hierarchical vein structure first at-
tain a minimum value before reaching a maximum. The
maximum of the grid hierarchy occurs at f = 0.50. Be-
cause the parallel hierarchy is not well-defined around its
maximum value, we do not extrapolate the exact value.
The minima of the parallel hierarchy and the grid hierar-
chy occur at f = 0.10 and f = 0.23, respectively. For the
parallel hierarchy, this value of f is reasonable for natural
flow networks. An example be found in leaf venation, as
demonstrated in Appendix E.

We interpret the minimum as the occupation fraction
that produces the most resilient network. For f < 0.05,
E[Ne] for the two hierarchies behaves almost identically;
in this regime the veins are too sparse to have a mean-
ingful impact on the global resilience. For f > 0.1, the
grid hierarchy is always more resilient than the parallel
hierarchy. The parallel hierarchy is only able to provide a
2 percent decrease of E[Ne] compared to a network with
no veins, while the grid hierarchy is able to provide a 7
percent decrease. The position of the minimum is deter-
mined by the competition between the positive and nega-
tive effects of adding a highly conductive vein. Increasing
the vein density increases resilience to some degree, but
since damage of on-vein edges results in a high amount
of displaced current, soon veins become detrimental to
the overall network resilience.

The position of the maximum indicates the vein den-
sity generating the least resilient network. A network
that is minimally resilient is maximally sensitive in the
sense that the damage response is not localized, and that
a distant edge is likely to detect that damage has oc-
curred. This may be a useful feature for some appli-
cations; for instance, if the network has the ability to
mediate damage by adding edges it may be beneficial to
measure that damage has occurred far from the damage
site. In this case, the parallel vein hierarchy is preferable.

Note that most likely actual biological flow networks
are optimized for many functions, and resilience poten-
tially plays a minor part in network design. The two
types of hierarchy explored are just to offer an intuitive
idea about the effects of hierarchical architecture in net-
work resilience, and not meant as an exhaustive opti-
mization.
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FIG. 11. The expected number of edges in the damage zone as a function of vein occupation fraction f for three different
types of vein hierarchies. Networks are RP triangular tilings with 6000 nodes with bulk edge conductance 1 and vein edge
conductance 5. Each data point is the average over 10 different tilings; error bars denote 5 standard deviations across the 10 RP
tilings. Circles indicate networks formed by adding veins and squares indicate networks formed by inverting the conductances of
a network with occupation fraction 1−f . Values of E[Ne] are normalized with respect to a network with no veins, so E[Ne] > 1
indicates that a network is less resilient than the veinless network and E[Ne] < 1 indicates a more resilient network. For the
null hierarchy, increasing f always yields a less resilient network. For the parallel and grid hierarchies, adding more veins first
increases the resilience of the network by providing a shielding effect to off-vein edges, but then decreases resilience by filling
the network with edges that have a high damage cost. A spline fit is provided to guide the eye for type of vein hierarchy. The
central piece of the curve fit for the parallel veins has been removed to avoid extrapolating the location of the maximum due to
a sparsity of data in that region. Insets are partial network segments 4% of the total network area in size, shown to illustrate
the vein hierarchies of different occupation fraction.

V. SUMMARY AND CONCLUSIONS

The ability of networks to withstand damage with lim-
ited consequences to their function is important for un-
derstanding biological networks and for designing engi-
neered networks. The question of how a network reroutes
the flow in the event of an occlusion and how the hier-
archical vascular architecture determines the size of the
affected areas has been studied empirically in the con-
text of ischemic strokes [34] but no significant theoretical
exploration has to our knowledge taken place. A theoret-
ical framework of the effects of topology and hierarchy in
flow displacement after an occlusion would allow a more
fundamental understanding of why some vascular archi-
tectures are more susceptible to damage than others. For
this reason, in this work we have studied the resilience
of flow networks by examining how displaced flow is dis-
tributed throughout the network after perturbative dam-
age. We have shown that network hierarchy has resound-
ing implications for network resilience. In particular, we
found that the presence of a vein in a network changes
the resilience by providing an efficient channel to reroute

displaced flow.

We have developed a local and global measure of net-
work resilience. The damage zone caused by edge removal
tracks the network area that has experienced a signifi-
cant disruption after an edge occlusion. By separately
analyzing different parts of the damage zone, we can un-
derstand the underlying mechanism of shielding that the
vein provides to its surrounding edges. Further, this can
be turned into a global network measure by consider-
ing how the ensemble of damage zones changes across
networks of different architectures. We believe that the
damage zone is a biologically meaningful measure, as it
can represent an area of tissue that has suffered hypoxia
after a stroke.

We find that a highly conductive vein contains the
spread of flow disruption for damage to edges close to
the vein, but increases the effect of damage on edges fur-
ther away. We call the change in damage zone the edge
shielding, since the vein tends to decrease the damage
zone for the nearest edges. Specifically, we show that the
vein serves to prevent displaced flow due to damage on
one side of the vein from reaching the other side. We have
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characterized the length scale of the vein effect through
the shielding length Ls, i.e. the distance from the vein
at which vein effects start to decay.

We have shown that Ls for a network is primarily con-
trolled by the network topology. In particular, increasing
the conductance of the vein beyond the initial thickness
necessary to establish a shielding length does not sig-
nificantly change Ls. If Cvein is the ratio of the vein
conductance to the ambient conductance, we find that
Cvein = 1.5 is sufficient to observe a shielding effect and
any Cvein > 5 results in Ls = 5.6. By comparing uniform
networks with a variety of topologies, we have shown that
the shielding length is determined by the mean network
degree, with more tightly connected networks having a
smaller Ls. Because the shielding length is primarily af-
fected by the network wiring and has a slight but much
less weaker dependence on the conductance of the cen-
tral vein, we classify the shielding length as a primarily
topological effect.

Lastly, we have used the intuition acquired by studying
a single vein to analyze networks with varying vein hi-
erarchies. The shielding effects are nonlinear, and when
two or more veins are present, their effects are coupled.
We have shown that veins separated by two shielding
lengths affect the displaced current independently. We
study two types of vein hierarchies, one with the veins
arranged in parallel tracks, and one where they form a
grid, and compare with a null hierarchy that has no con-
tinuous veins, where edges are chosen at random to have
high conductance. We find that the null hierarchy can
only increase the network resilience. However, the grid
venation network is able to increase the global network
resilience by 7 percent, while the parallel network is only
able to provide a 2 percent effect.

The shielding length is an inherently discrete effect.
Consider the limit in which the number of network nodes
grows while the network is contained in a square box of
length L, so the mean edge length a = L/

√
N . For a fixed

network topology, Ls is proportional to a regardless of
N , as seen in Fig. 9. As N grows to infinity, Ls becomes
zero, and the shielding effect of the vein disappears. Thus
the shielding property is a truly discrete effect, lacking a
continuous limit.

If indeed resilience is a feature that biological networks
favor, then this should be reflected in certain network fea-
tures. We have shown that from a damage perspective,
a greater investment in network resources to build and
maintain a vein will not necessarily yield more benefits.
This is seen in two ways: increasing the vein conductance
will not always yield a greater shielding length, and in-
creasing the vein density will not always result in greater
network resilience. This leads to the notion that there
is an optimal vein structure that balances the cost and
benefits to the entire network. In certain circumstances
it might be beneficial to have large damage zones (which
would translate to low resilience), as this would spread
out the displaced current.

For ease in visualizations and computation, in this

work we chose to focus on planar networks. From pre-
liminary work on 3D networks, we expect that some of
our results hold in non-planar networks, whereas others,
like the size of the negative S(x) zone near the vein, are
dimensionality dependent. The full study of the 3D sys-
tem is complex and beyond the scope of this work, and
thus reserved for a future publication.

While this model was meant as an initial step towards
visualizing and understanding the role of highly conduc-
tive veins in flow rerouting for biological systems, real
biological networks have features that are not captured
by the model, yet may play an important role in network
optimization and resilience. One implicit assumption is
that a single edge is able to sustain any amount of flow,
even independent from the initial edge flow. However, a
biological system will have limits on the node pressures
that it cannot exceed without breaking the connections
of the network. We do not consider these limits, but
it would be interesting to see how the extent of dam-
age would change if there were an imposed limit on the
pressure drop across an edge. In addition, it is known
that brain vasculature is adaptive: network edges are
able to dilate or contract their ambient diameter in order
to modulate their conductance in response to changes in
flow [41]. This ability has strong consequences for the
flow redistribution, and our work could shed light on the
extent of vascular remodeling after network injury.

Despite the focus on vascular networks, this work is
more general and should apply to any laminar flow or
electrical network. We have made the initial steps for
a mechanistic statistical analysis of the effects of dam-
age in flow networks. Future work should be devoted
in understanding the specifics of more complex network
architectures and response.
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Appendix A: Removing a single edge is equivalent
to adding a single flow dipole

For a general flow network, the known quantities are
the edge conductances Cij and the injected or extracted
node currents Qi. We will solve for the node potentials vi
and the edge currents Iij . For the system to be physical,
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the total node current must be conserved:
∑
iQi = 0.

From Ohm’s Law and Kirchhoff’s vertex law

Iij = Cij(vi − vj)∑
j

Iij = Qi (A1)

we derive the basic flow equation

Qi =
∑
j

Cij(vi − vj) =
∑
j

δijvj
∑
n

Cin −
∑
j

Cijvj

=
∑
j

(δij
∑
n

Cin − Cij)vj =
∑
j

Lijvj

(A2)
since δij

∑
n
Cin − Cij is the ijth entry of the weighted

graph Laplacian L. Thus we have

Q = Lv (A3)

and we can take the pseudo-inverse of the Laplacian to

get v = L
−1
Q. Using A1 we can calculate the edge flow:

Iij = Cij

(
(L−1Q)i − (L−1Q)j

)
(A4)

Suppose that we change the graph by perturbing the con-
ductance of edge κλ, so that C ′κλ = Cκλ + δC. The new
graph conductances thus read:

C ′ij = Cij + δCδij,κλ (A5)

The perturbation to the Laplacian is a rank-1 matrix,
namely

L
′

= L+ uuT , whereui =
√
δC(δiκ − δiλ) (A6)

To find the inverse of the perturbed Laplacian, we use
the Sherman-Morrison formula:

(L′ij)
−1 = (Lij + uuT )−1

= L−1
ij −

(
L−1uuTL−1

1 + uTL−1u

)
ij

(A7)

We can rewrite uTL−1u in terms of the effective resis-
tance Reff

κλ between nodes κ and λ. The effective resis-
tance (or resistance distance) between two nodes in a
graph is defined as the resistance of the system when a
test current Itest is injected in κ and extracted from λ:

Reff
κλ =

vκ − vλ
Itest

=
1

Itest

∑
n

(L−1
κn − L−1

λn)Qn

=
1

Itest

∑
n

(L−1
κn − L−1

λn)(δκnItest − δλnItest)

= L−1
κκ − L−1

κλ − L−1
λκ + L−1

λλ

=
1

δC
uTL−1u

(A8)

So 1 +uTL−1u = 1 + δCReff
κλ. Let Ω ≡ 1 + δCReff

κλ, which
is an ij-independent constant. Then from Eq. A7

L′−1
ij = L−1

ij −
1

Ω
(L−1uuTL−1)ij

= L−1
ij −

1

Ω
(L−1u)i(L

−1u)Tj

(A9)

Evaluating:

(L−1u)i =
∑
j

L−1
ij uj =

√
δC(L−1

iκ − L−1
iλ ) (A10)

(L′ij)
−1 = L−1

ij − (L−1u(L−1u)T )ij

= L−1
ij −

δC

Ω
(L−1

iκ − L−1
iλ )(L−1

κj − L−1
λj )

(A11)

The edge current after the perturbation is given by

I ′ij = C ′ij(v
′
i − v′j) (A12)

Evaluating:

v′i − v′j =
∑
m

(L′)−1
imQm −

∑
m

(L′)−1
jmQm

=
∑
m

(
L−1
im −

δC

Ω
(L−1

iκ − L−1
iλ )(L−1

κm − L−1
λm)

− L−1
jm +

δC

Ω
(L−1

jκ − L−1
jλ )(L−1

κm − L−1
λm)

)
Qm

=
∑
m

(L−1
mi − L−1

mj)Qm

− δC

Ω
Λijκλ

∑
m

(L−1
mκ − L−1

mλ)Qm

=
Iij
Cij
− δC

Ω
Λijκλ

Iκλ
Cκλ

(A13)
where Λijκλ = L−1

κi − L−1
λi − L−1

κj + L−1
λj . The change in

current before and after bond κλ is broken reads:

∆Iij = I ′ij − Iij =

= (Cij + δCδij,κλ)

(
Iij
Cij
− δC

Ω
Λijκλ

Iκλ
Cκλ

)
− Iij

= δij,κλ

(
δCIij
Cij

− δC2

Ω
Λijκλ

Iκλ
Cκλ

)
− δC

Ω

Cij
Cκλ

IκλΛijκλ

(A14)
We can now rephrase the problem slightly. Suppose
that we have the original network with a different set
of current sources and sinks: let Q(κλ) be the set of
node currents such that a current of magnitude Iκλ (the
current flow through edge κλ in with the original Qi)
is injected at node κ and extracted at node λ. Thus,

Q
(κλ)
i = Iκλ(δiκ − δiλ). We can then write down the

basic flow equations for the system with the new dipole
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current source and sink but the original graph Laplacian:

v
(κλ)
i − v(κλ)

j = (L−1Q(κλ))i − (L−1Q(κλ))j

=
∑
m

L−1
imQ

(κλ)
m −

∑
m

L−1
jmQ

(κλ)
m

= Iκλ

(∑
m

L−1
im(δmκ − δmλ)−

∑
m

L−1
jm(δmκ − δmλ)

)
= Iκλ(L−1

iκ − L−1
iλ − L−1

jκ + L−1
jλ ) = IκλΛijκλ

(A15)
and, as an analogue to equation A1:

I
(κλ)
ij = Cij(v

(κλ)
i − v(κλ)

j ) (A16)

where the superscript (κλ) denotes quantities evaluated
with the node currents Q(κλ). Combining Eq. A15 and
Eq. A16 gives:

Λijκλ =
v

(κλ)
i − v(κλ)

j

Iκλ
=

I
(κλ)
ij

CijIκλ
(A17)

In the case where the edge is completely removed, δC =
−Cκλ. So for ij 6= κλ, Eq. A14 reads:

∆Iij =
1

Ω
I

(κλ)
ij =

1

1− CκλReff
κλ

I
(κλ)
ij (A18)

This shows that for all edges besides κλ, the displaced
edge current ∆Iij in a network after removing edge κλ is

proportional to the edge current through I
(κλ)
ij with the

undamaged structure but new node currents Q(κλ).

Appendix B: The damage zone is independent of the
initial currents and the current sources and sinks

Using Eq. A15 and Eq. A16, we write I
(κλ)
ij =

CijIκλ(L−1
iκ − L−1

iλ − L−1
jκ + L−1

jλ ). Then,

∣∣∣∣∆IijIκλ

∣∣∣∣ =

∣∣∣∣I(κλ)
ij

ΩIκλ

∣∣∣∣ =

∣∣∣∣Cij(L−1
iκ − L−1

iλ − L−1
jκ + L−1

jλ )

1− Cκλ(L−1
κκ − 2L−1

κλ + L−1
λλ )

∣∣∣∣
(B1)

Edge ij is included in the damage zone for edge κλ with

threshold t if |∆IijIκλ
| > t, so the equivalent condition is:∣∣∣∣Cij(L−1

iκ − L−1
iλ − L−1

jκ + L−1
jλ )

1− Cκλ(L−1
κκ − 2L−1

κλ + L−1
λλ )

∣∣∣∣ > t (B2)

which is independent of the initial edge currents.

Appendix C: Network and Vein Generation

We use disordered networks in simulations to emulate
biological networks and to avoid lattice effects observed
in periodic networks. The most common network used

is the randomly packed (RP) triangular tiling. To create
this tiling, we first generate a set of Poisson distributed
points on a square domain and apply a repulsive point-
wise potential iteratively to generate a set of randomly
but uniformly distributed points. These points are used
for the network nodes. Edges are formed from the De-
launay triangulation of the nodes. The final network has
an approximately uniform distribution of edge lengths.
Most commonly, the conductances of all edges are set
to be a constant equal to 1 in our dimensionless units.
For some applications, we set edge conductances to be
inversely scaled with length and normalized by the mean
edge length, which yields a distribution of edge conduc-
tances centered at 1.

Veins are formed by selecting a subset of edges from the
underlying network to set to a high conductance, equal
to 5 unless otherwise stated. To draw a vertical vein
centered at the x-coordinate p, we use Dijkstra’s algo-
rithm to find the minimum distance path from (p, 0) to
(p, 1) and penalize deviations in the x-direction from p.
This procedure yields a vein that approximately follows
the vertical line x = p, but has some inherent stray due
to the disorder of the underlying network. For a net-
work with densely packed veins, this procedure decreases
the chance of spuriously overlapping veins. Lifting the
penalty on deviation from p would yield a vein that is
inclined to follow natural curved paths in the underlying
lattice, resulting in veins of smaller total length but with
the cost of increased vein crossings.

Appendix D: Threshold Choice

The characteristic size of the damage zone is set by the
threshold t. Changing the t corresponds to changing the
sensitivity of the edges to displaced current. Increasing t
will increase all damage zones, and the effects of the vein
extend to a further distance. A lower threshold limit is
imposed by the requirement that the shielding effect falls
zero at a distance shorter than the system length. Set-
ting the threshold too high results in too few edges in
the damage zone, and the effect is too local to quanti-
tatively describe the system. We find that t = 0.005 is
a suitable threshold for the a system size on the order
of 5000 nodes, and we use this value for all calculations.
For this value of t, a typical damage zone for an edge is
∼ 1% of the total network size. Changing the threshold
smoothly deforms the shape of the shielding effect, as
seen in Fig. 12. For smaller t, the shielding effect is shal-
low and diffuse. For larger t, S(x) has sharper peaks and
increases in magnitude but dies out fairly close to the
vein. All S(x) are qualitatively similar and the choice
of t should ultimately be a value that yields reasonable
damage zone sizes compared to the system size.

Other results hold for a range of threshold values as
well. Here we replicate two main results for the five val-
ues of t shown in Fig. 12. Figure 13 (a) shows that just
as in Fig. 7, the shielding effect emerges after Cvein is
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FIG. 12. Comparison of S(x) for different damage zone
thresholds t for a RP tiling with 5000 nodes with bulk edges
of conductance 1 and a single central vein of conductance 5.
As t becomes smaller the shielding effect becomes more dif-
fuse, but S(x) maintains the same characteristic shape. The
value t = 0.005 is used for all calculations.
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FIG. 13. Summary of our main results with varying values of
t. We use t = 0.0005, 0.001, 0.002, 0.005, and 0.01, with colors
as in Fig. 12. (a) For all values of t, Ls becomes constant
for Cvein > 6, although the asymptotic value increases with
smaller t. (b) For all values of t, the shielding length falls
monotonically with increasing d, although the amplitude of
the curves increases with smaller t.

larger than 1.5 times the bulk conductance. Once Cvein
exceeds around 5, Ls becomes constant. This effect is
not as prominent for t = 0.0005, when the average dam-
age zone becomes so large that finite network size effects
come into play. Figure 13 (b) shows the same analysis
as Fig. 9(b). For all values of t, Ls decreases monotoni-
cally as a function of d, and a best fit curve of the form
Ls ∼ dα is drawn to guide the eye.

Appendix E: Hierarchy in a Leaf Network

To put the hierarchical networks considered in Section
IV C into context, we give an example of vein hierarchy

in a leaf network. There are many diverse leaf vein pat-
terns. While one might be hard-pressed to find a leaf
with a grid hierarchy of veins, a structure of parallel sec-
ondary veins is quite common. To show that the optimal
occupation fraction that we have derived in Fig. 11 is a
reasonable value one might expect to see in a real world
network, we calculate the occupation fraction for parallel
veins in a leaf in Fig. 14. The leaf sample was bleached
and stained to increase the visibility of the smallest veins.
The venation network was extracted from a scan of the
leaf using the Network Extraction Tool, providing node
locations and edge weights [42]. We selected two regions
of the leaf containing only the secondary veins forming
the parallel network, shown by the blue boxes in Fig. 14.
In these regions, any edge with a width more than one
standard deviation above the mean width was consid-
ered to be a vein edge and colored in red, and all other
edges were considered to be bulk edges. The occupa-
tion fraction f was the ratio of vein edges to bulk edges,
calculated to be 0.060 for the left leaf section and 0.064
for the right leaf section. For the parallel hierarchy we
found f to be 0.10, so for this single example the observed
occupation fraction is close to the one that would yield
optimal resilience.

f = 0.060 f = 0.064

(b)

FIG. 14. Leaf venation of F. sylvatica. (a) The network
of nodes and edges is extracted from a high-resolution scan.
(b) The occupation fraction is calculated for two rectangu-
lar sections of the leaf by computing the ratio of the number
of high conductance vein edges (red) to the number of bulk
edges (gray). For both sections, we find f = 0.06, which is
reasonably close to the value that satisfies optimal resilience
for a parallel vein hierarchy, f = 0.10.
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D. Witthaut, “Dual theory of transmission line outages,”
IEEE Transactions on Power Systems 32, 4060–4068
(2017).

[25] P. D. H. Hines, I. Dobson, and P. Rezaei, “Cascading
power outages propagate locally in an influence graph
that is not the actual grid topology,” IEEE Transactions
on Power Systems 32, 958–967 (2017).

[26] D. Witthaut and M. Timme, “Nonlocal failures in com-
plex supply networks by single link additions,” European
Physical Journal B 86 (2013).
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[41] A. Y. Shih, C. Rühlmann, P. Blinder, A. Devor, P. J.
Drew, B. Friedman, P. M. Knutsen, P. D. Lyden,
C. Matéo, L. Mellander, N. Nishimura, C. B. Schaffer,
P. S. Tsai, and D. Kleinfeld, “Robust and fragile as-
pects of cortical blood flow in relation to the underlying
angioarchitecture,” Microcirculation 22, 204–218 (2015).

[42] J. Lasser and E. Katifori, “Net: a new framework for the
vectorization and examination of network data,” Source
Code for Biology and Medicine 12, 4 (2017).


