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We consider signed networks in which connections or edges can be either positive (friendship, trust,
alliance) or negative (dislike, distrust, conflict). Early literature in graph theory theorized that such
networks should display “structural balance,” meaning that certain configurations of positive and
negative edges are favored and others are disfavored. Here we propose two measures of balance
in signed networks based on the established notions of weak and strong balance, and compare
their performance on a range of tasks with each other and with previously proposed measures. In
particular, we ask whether real-world signed networks are significantly balanced by these measures
compared to an appropriate null model, finding that indeed they are, by all the measures studied.
We also test our ability to predict unknown signs in otherwise known networks by maximizing
balance. In a series of cross-validation tests we find that our measures are able to predict signs
substantially better than chance.

I. INTRODUCTION

Networks are used as an abstract representation of the
topology of complex systems in many branches of sci-
ence. Examples include social networks of friendship or
acquaintance between individuals, communication net-
works such as the Internet or telephone networks, infras-
tructure networks such as transportation routes, power
grids, or pipelines, and information networks such as the
World Wide Web or citation networks [1].

In its simplest form, a network consists of a collection
of nodes joined together in pairs by edges, but many net-
works have additional features as well. The edges may
be directed or weighted; either the nodes or edges may
have types, categories, or labels of some kind; nodes may
have positions in space; edges may have lengths or ca-
pacities, and so forth. In this paper we consider one case
of particular interest, that of signed networks, meaning
networks in which the edges are either positive or neg-
ative [1–3]. The most common example is a social net-
work that represents patterns of both amity and enmity
among a group of individuals: positive edges represent
friendship, negative ones animosity.

Studies of signed networks go back at least to the clas-
sic work of Harary in the 1950s, who argued, largely on
formal rather than empirical grounds, that certain pat-
terns of signs should be more common than others—the
enemy of my enemy should be my friend, for example [2].
Networks that display such regularities are said to be
structurally balanced, or just balanced for short. A nat-
ural question to ask is whether real signed networks are
in fact balanced. Despite a considerable amount of re-
search on this issue, however, the jury is still out. Some
researchers have claimed that real networks are balanced,
at least partially, while others have claimed that they are
not [5–7].

There are two primary reasons for the disagreement.
First, there is more than one proposed definition of struc-
tural balance in networks. Cartwright and Harary [8]
proposed that a network is balanced if all closed loops in

the network contain an even number of negative edges.
This condition, which we will refer to as strong balance, is
a stringent one that is rarely if ever completely satisfied
in real networks. As we will see, however, one can de-
fine measures of partial balance that quantify how close
a network comes to Cartwright and Harary’s ideal.

Strong balance is an attractive formulation in part be-
cause of a theorem due to Harary [2], which says that any
network displaying perfect strong balance is clusterable,
meaning its nodes can be divided into some number of
disjoint sets such that all edges within sets are positive
and all edges between sets are negative. Thus strong bal-
ance provides a possible theoretical basis for insularity or
cliquishness in social networks: if networks naturally dis-
play strong balance, then they also naturally divide into
communities such that people like members of their own
community and dislike members of other communities.

While strong balance is a sufficient condition for clus-
terability, however, it turns out that it is not a necessary
one, as shown by Davis [9], who demonstrated that for
a network to be clusterable in the sense above, one re-
quires only a lesser form of structural balance, namely
that there be no closed loops in the network with ex-
actly one negative edge. We will refer to this condition
as weak balance. Weakly balanced networks are a super-
set of strongly balanced ones—every strongly balanced
network is necessarily also weakly balanced—but weak
balance alone is enough to explain insularity in networks
and division into antagonistic communities.

Alternatively, causality might run in the opposite di-
rection: if a population is intrinsically divided into two
or more antagonistic factions—Montagues and Capulets,
Roundheads and Cavaliers, Hatfields and McCoys—then
by definition the resulting network will be balanced. In-
deed, if there are exactly two factions then the network
will be strongly balanced, since every closed loop must
traverse negative edges between the factions an even
number of times. If there are three or more factions then
the network will, in general, be only weakly balanced.

Thus we have two competing notions of what it means
for a network to be balanced. It is in part the lack of
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consensus about which of the two to adopt that makes
it hard to say whether real networks are in fact balanced
or not.

The second reason for the lack of agreement is that in
order to say whether a network is balanced we need to
specify the scale on which balance is to be assessed. Even
if we can agree on a measure of balance, how do we know
whether the observed level is high or low? A natural
approach is to compare the level to what we would expect
on the basis of chance, i.e., to the level in some kind of
null model, but it is by no means universally agreed what
form such a null model should take.

In this paper we do several things. First, we consider
a number of possible measures of both strong and weak
balance. Some of the measures we discuss have been pro-
posed previously; some we propose here for the first time.
Second, we consider possible null models against which to
compare levels of balance, choosing one we believe to be
appropriate for the questions we are interested in. Third,
we use our measures and our null model to quantify struc-
tural balance in real-world signed networks, finding that
the networks we consider are indeed significantly more
balanced, at least according to our measures, than we
would expect on the basis of chance.

The presence of structural balance in networks is inter-
esting in its own right, for the hints it gives us about the
growth and function of social networks. But we can also
use our knowledge of balance to perform other tasks. As
an example, we demonstrate how it can be used to make
predictions of the signs of unobserved edges. By simply
assigning edges the choice of sign that makes the over-
all network most balanced, we show that we can predict
the correct value of missing edge signs in test networks
substantially better than chance. As a corollary, this
also gives us some insight about which are the best mea-
sures of balance: all of the measures we consider perform
well in the sign prediction task, but the measure based
the weak notion of balance appears to perform somewhat
better, perhaps indicating that weak balance is a better
description of the behavior of real-world networks than
strong balance.

There has been a significant amount of previous work
to define and study structural balance in signed net-
works [4], including methods and metrics motivated by
spin glasses [5, 10–12] and dynamical systems [13, 14],
spectral methods [15–17], and Harary’s “line index” of
imbalance [18], as well as walk-based approaches [7, 19–
22], of which our own proposed methods can be consid-
ered an example. Rather than giving a comprehensive
review of all of these approaches, we focus here primar-
ily on the walk-based approaches, several of which share
features with our methods [7, 20–22], although there are
some crucial differences as well. Perhaps the approach
most similar to ours is that of Singh and Adhikari [22],
who propose a measure of balance motivated by the no-
tion of strong balance that accounts for the lesser effect
of long loops on social tension. We propose two simi-
lar measures, one for strong balance and one for weak,

though with a different choice of weighting for short and
long loops. Another important difference between our
work and that of Singh and Adhikari lies in the choice
of null model, for which they use ensembles of networks
where positive, negative, and non-edges are placed ran-
domly. By contrast, in our work we randomize only the
signs of the edges and not their positions, which we ar-
gue is essential for proper quantification of statistically
significant balance in networks.

II. QUANTIFYING BALANCE

Real-world signed networks are rarely, if ever, perfectly
balanced, so to study balance in such networks we need a
way to quantify exactly how balanced they are. Follow-
ing previous authors, we consider measures that quantify
the number of closed loops in a network that violate ei-
ther the strong or the weak notion of balance, meaning
respectively that they have either an odd number of neg-
ative edges (strong balance) or exactly one negative edge
(weak balance).

This alone, however, is not enough to define a practical
measure because of another feature of networks, that the
number of closed loops of a given length increases rapidly
with length. If one were simply to count closed loops,
the count would be dominated by the longest loops in
the network solely because they are more numerous. It
seems unlikely, however, that long loops play much of a
role in real-world issues of balance. Few people really
care if a friend of a friend of a friend is an enemy or not.
Realistically, we expect that it is the short loops, not the
long ones, that dominate network balance. The second
defining feature of the measures we consider, therefore,
is that they weight short loops more heavily than long
ones.

A. Balance measures

Consider an undirected signed graph or network G.
A closed walk in a such network is any path that be-
gins and ends at the same node, and a simple cycle is
a closed walk that does not visit any node twice, other
than the start/end node, which is visited exactly twice.
The strong definition of balance then says that G is a bal-
anced network if, and only if, every simple cycle in G has
an even number of negative signs. The weak definition of
balance, by contrast, says that a network is balanced if,
and only if, it contains no simple cycles with exactly one
negative edge (meaning that any other number is fine).
We can also say that individual cycles are strongly or
weakly balanced by the same criteria.

We can use these ideas to define a measure B(z) of the
level of imbalance in a network thus:

B(z) =

∞∑
k=1

Ik
zk
, (1)
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where Ik is the number of imbalanced simple cycles of
length k and z > 1 is a free parameter. This measure
takes the form of a weighted count of imbalanced cycles
in which longer cycles get downweighted by a geometric
factor zk. Note that the sum in (1) could in principle
start at k = 2 without changing the value of B(z), since
there are no cycles of length one, but it will be convenient
for subsequent developments to start at k = 1.

We can define a measure of this type for either the weak
or strong notion of balance. Let us look first at the weak
version, meaning that Ik will be the number of simple
cycles of length k that contain exactly one negative edge.
An immediate problem we encounter with applying this
measure is the difficulty of making practical estimates
of the number of simple cycles of a given length in an
arbitrary network. There is no elementary analytic ap-
proach for counting cycles, and numerical methods are
hampered by the very rapid increase of Ik with k, which
makes exhaustive enumeration of cycles possible only for
small k and small networks. Instead, therefore, we ap-
proximate the number of simple cycles by the number of
closed walks, which is relatively straightforward to com-
pute. To count the number of weakly imbalanced closed
walks of length k, we remove all the negatives edges from
the network and then look at the number of walks of
length k − 1 between the (former) endpoints of those
edges. Reinserting the negative edges again then closes
the walks, creating loops of length exactly k, each with
exactly one negative edge.

Substituting closed walks for simple cycles is a good
approximation when the cycles are short. Indeed, for
cycles of length three it is exact: closed walks and sim-
ple cycles are the same thing for length three. As the
length increases the approximation gets worse [23], but
in practice this may not matter very much. The imbal-
ance metric of Eq. (1) discounts long loops, so the fact
that our count is only approximate may not make much
difference.

To put the developments in mathematical terms, let
us denote the structure of our network by two adjacency
matrices P and N, for the positive and negative edges
respectively. Thus, matrix P has elements Pij = 1 if
nodes i and j are connected by a positive edge and 0
otherwise, and similarly Nij = 1 if i and j are connected
by a negative edge and 0 otherwise. Then our imbalance
measure, which we will denote BW (z) with subscript W
to indicate weak balance, is given by

BW (z) = 1
2

∑
ij

Nij

∞∑
k=1

1

zk
[
Pk−1

]
ji

= 1
2 Tr

[
N(zI−P)−1],

(2)
the factor of 1

2 compensating for the fact that the sum
counts each loop twice, once in each direction.

In fact, it will be convenient to introduce a rescaled
parameter α = z/λP , where λP is the leading (most pos-
itive) eigenvalue of P. For α > 1 this ensures that the
sum in (2) will converge, and we can write

BW (α) = 1
2 Tr

[
N(αλP I−P)−1

]
. (3)

Another way to interpret the parameter α is to write
α−k = e−k/k0 , where k0 = 1/ lnα is a “decay length” that
determines the length scale on which the contributions
from longer walks are discounted. Thus, for example, if
we choose α = 2, we have k0 = 1/ ln 2 ' 1.44 . . ., and
three such decay lengths give us a 95% decay at distance
a little greater than 4.

An analogous measure BS(α) can be defined for the
strong notion of balance. Again we approximate the
number of imbalanced simple cycles by the number of
closed walks, which we can calculate as follows. Consider
the matrix P − N, which has elements +1 for positive
edges, −1 for negative edges, and 0 otherwise. The kth
power of this matrix counts walks of length k, times +1
if they contain an even number of minus signs and −1 if
odd. Thus the diagonal term [(P−N)k]ii is equal to the
number of balanced closed walks starting and ending at
node i minus the number of imbalanced ones. Summing
over all i, we then have [23]

Bk − Ik =
1

2k
Tr
[
(P−N)k

]
, (4)

where Bk and Ik are the total number of balanced and
imbalanced closed walks. The initial factor of 1

2 again
compensates for the fact that we count each loop in both
directions, and the factor of 1/k compensates for the fact
that each loop is counted repeatedly starting from each
of the k points along its length.

Conversely, consider the matrix P+N, which is simply
the adjacency matrix of the complete network, ignoring
signs—every edge, positive or negative, is represent by a
+1 in this matrix. The total number of closed walks of
length k, both balanced and imbalanced, is given by

Bk + Ik =
1

2k
Tr
[
(P + N)k

]
. (5)

Subtracting (4) from (5) and dividing by 2, we get an
expression for the number of imbalanced loops:

Ik =
1

4k
Tr
[
(P + N)k

]
− 1

4k
Tr
[
(P−N)k

]
. (6)

Substituting this into Eq. (1) then gives us our measure
of strong imbalance:

BS(z) = 1
4

∞∑
k=1

1

kzk
Tr
[
(P+N)k

]
− 1

4

∞∑
k=1

1

kzk
Tr
[
(P−N)k

]
.

(7)
Making use of the matrix identity

∞∑
k=1

TrMk

k
= log det(I−M), (8)

this can also be written as

BS(z) = 1
4 log

det[zI− (P−N)]

det[zI− (P + N)]
, (9)
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which is valid whenever the sums in (7) converge. As with
BW (z) it is convenient to reparametrize this expression
in terms of α = z/λ∗, where λ∗ is the larger of the leading
eigenvalues of P + N and P−N, so that

BS(z) = 1
4 log

det[αλ∗I− (P−N)]

det[αλ∗I− (P + N)]
, (10)

which ensures convergence of the sums when α > 1.

B. Previous measures of network balance

A number of previous researchers have also proposed
measures of structural balance in networks. Estrada and
Benzi [7] (henceforth EB) define a measure

BEB =
1−K
1 +K

, (11)

where

K =

∑
k Tr

[
(P−N)k

]
/k!∑

k Tr
[
(P + N)k

]
/k!

. (12)

The quantity K is in some ways analogous to our measure
of strong imbalance, Eq. (9), but it downweights longer
loops by a larger factor 1/k!, compared to the geometric
factor 1/zk that we employ. This results in some elegant
mathematical expressions but has the disadvantage that
there is no way to set the length scale on which loops
are discounted. EB also define their measure not by K
itself but by the formula (11), which can be interpreted
as a ratio of weighted counts of unbalanced and balanced
loops.

Singh and Adhikari [22] (henceforth SA), in consider-
ing the measure of EB, object to the weight factor 1/k!
and propose instead to use a geometric factor as we do,
defining a measure

BSA(z) =

∑
k Tr

[
(P−N)k

]
/zk∑

k Tr
[
(P + N)k

]
/zk

. (13)

This is again somewhat analogous to Eq. (9), though it
is not directly based on the actual number of imbalanced
loops, and moreover appears to neglect the factor of 1/k
that accounts for the k possible starting points around a
loop of length k.

In this paper we compare the performance of the four
measures discussed here, our own measures BW and BS
and the measures of EB and SA, on a number of problems
concerning balance in networks.

C. Null models

As discussed in the introduction, measures of imbal-
ance are difficult to employ on their own because we lack
a scale on which to calibrate their values. If we calcu-
late a value of, say, BW = 0.5 for a particular network

how do we know if that value is large or small? One way
to answer this question is to compare our numbers with
values calculated in an appropriate null model.

The broader question we are addressing in calculat-
ing measures of balance is whether the arrangement of
positive and negative edges within a network is somehow
special, different from what we would expect on the basis
of chance. Since our focus is on the arrangement of signs
within the larger network, and not on the arrangement
of edges per se, the natural null model to consider is one
in which the signs in a network are randomized while
keeping the locations of the edges fixed. In the particu-
lar null model we consider here, we also keep the overall
number of positive and negative signs fixed, to make the
randomized networks more directly comparable with the
original.

This null model or ones similar to it have been used in
a number of previous works [24–26], but it is not the only
possible choice [22, 27]. Singh and Adhikari [22], for ex-
ample, employ a null model in which both the signs and
the positions of the edges are randomized. This results
in networks whose structure, in terms of edge placement,
is very different from that of the original network, which
makes it difficult to know how much of any observed dif-
ference in balance is due to the pattern of signs and how
much to the edge positions. One could also consider a
model in which the edge positions are randomized but
the signs on the edges are fixed, although this suffers
from the same problems as the model of Singh and Ad-
hikari. The null model we employ avoids these difficulties
by randomizing the signs only.

Arguably, in many real-world situations—coworkers in
an office, for instance, or children in a school class—one
indeed has no choice about who one interacts with, so
that the positions of the network edges are fixed. The
only degree of freedom is the nature of the interactions,
whether they will be friendly or antagonistic. A model
that fixes the edge positions but varies their signs is thus
a natural choice in such cases.

III. EXAMPLE APPLICATIONS

As examples of the techniques introduced here, we con-
sider their application to two data sets, one from the field
of international relations, representing positive and neg-
ative ties between countries [28], and the other from so-
ciology, representing ties between a group of university
freshmen [29]. For both data sets we use our measures
to quantify structural balance, and for the international
relations data we also test our ability to make predictions
of the signs of unobserved edges.

The international relations data set contains many de-
tails of inter-country interactions over a period of several
decades, but here we focus on two aspects in particular:
alliances and wars. We construct a set of signed networks,
one for each year in the 70-year period from 1938–2008,
in which nodes represent countries and two countries are
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connected by a positive tie if they have a formal alliance
in that year and a negative tie if there is a militarized
dispute between them. In the rare cases in which coun-
tries have both an alliance and a war in the same year
we take the corresponding edge to be negative. (The
same methodology was used previously in [30].) Only
countries for which we have data are included in our net-
works. The number of nodes ranges from 25 to 155 with
a median of 105, and the number of edges ranges from 46
to 1230 with a median of 615. The signs of the edges are
predominantly positive—most countries have good rela-
tions. The fraction of negative edges ranges from 1.8%
to 45.1% with a median of 5.5%. (The outliers with the
largest number of negative edges all fall during the Sec-
ond World War. The median fraction of negative edges
between 1940 and 1945 was 44%.)

The university freshman data set describes relation-
ships between a group of first-year students, all at the
same university, and consists of networks collected at
seven different time points. At each time point the
students were asked to rate their relationships with all
other students in the group on a five-point scale of
(1) “best friend”, (2) “friendship”, (3) “friendly relation-
ship”, (4) “neutral relationship”, or (5) “troubled rela-
tionship”. Students could also say they did not know the
person in question. Further discussion of the scale can be
found in [29]. We construct a set of signed networks, one
for each time point, in which two students are connected
by a positive tie if each rates the other as a 3 or lower,
and a negative tie if one or both rates the other as a 5.
Neutral relationships are not represented in the network,
which means that there is no difference in our representa-
tion between having a neutral relationship and having no
relationship at all. While this is not ideal, it seems like
the best strategy given that there is no principled way
to decide whether a neutral edge should be considered
positive or negative. Of the seven networks constructed
in this way, we discard three because of sparse or missing
data, leaving four that we analyze here. The number of
nodes in the networks is 34 at all time points and the
number of edges ranges from 174 to 227 with a median
of 225.5. The fraction of negative edges ranges from 12%
to 14% with a median of 13%.

A. Balance relative to the null model

To quantify the level of balance in a network, we com-
pute the ratio between the value B of each metric and
the average value 〈B〉 of the same metric on a selection
of randomized networks drawn from the null model de-
scribed in Section II C:

η =
B

〈B〉
. (14)

Figure 1 shows the values of this ratio as a function of
time for the international relations networks for the four
balance metrics considered in this paper, along with the

mean for the null model and an indication of the fluctua-
tion of the results about that mean (the bands shown are
two standard deviations). As the figure shows, in each
case actual imbalance values, for all measures, are far
below what would be expected for the null model. (An
alternative way to represent the same results would be
to compute a z-score, but we prefer the representation
of Fig. 1 since it shows explicitly the size of the fluctu-
ations in the null-model values.) Figure 2 shows results
from the same experiment performed on the university
freshman networks.

For this calculation the metrics BW and BS are both
computed with a parameter value α = 2, as discussed on
Section II A, and we use the corresponding value for the
parameter in the metric of Singh and Adhikari (SA) [22]
as well. (The metric of Estrada and Benzi (EB) [7] has
no free parameters.) We have also experimented with a
range of alternative parameter values, but find that the
results do not depend strongly on our choice.

Our goals here are two-fold. First, we wish to see if real
networks are indeed unusually balanced relative to an
appropriate null model. Second, if they are balanced in
this sense, we wish to see which of our notions of balance
most clearly distinguishes real networks from their null
model counterparts. As Fig. 1 shows, all four metrics
give extremely low η values relative to the null model,
all of which would be statistically significant at the p <
0.05 level in all years if we assume a normal distribution
within the null model. The most significant values occur
during the World War II period, specifically between 1940
and 1945, and this effect is especially pronounced for the
three metrics based on the strong notion of balance. As
mentioned in the introduction, strong balance is expected
in cases where a network is divided into just two main
factions, which was the case during World War II. Note
that, during this period, η is actually greater than in
other periods, but that the values for the null model have
a much lower standard deviation than in other years,
making the results for the real networks more statistically
significant relative to the null model.

Figure 2 for the university networks shows similar be-
havior, although the η values are less extreme than those
for the international relations networks. This might be
due to a lower level of factionalism for the students than
for international relations, or to measurement error, or a
combination of both.

The university data set also lends itself to being rep-
resented as a weighted, directed network, and one could
consider generalizations of the methods presented here to
such networks, although this is outside the scope of the
present paper.

B. Sign prediction

Consider a situation in which we know the positions of
the edges in a signed network, but we know the signs of
only some of the edges. The signs of the remaining edges
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FIG. 1: Level of imbalance in the international relations net-
works for 1938–2008, as measured by the ratio η defined in
Eq. (14), for each of the four balance measures studied here.
The dotted lines indicate the null model mean, which falls at
η = 1 by definition, and the surrounding bands denote two
standard deviations of the fluctuations around this mean. The
solid lines represent the values for the observed networks. All
networks are significantly less imbalanced than the null model
by all four measures.

are missing from our data, perhaps because they were
not measured or recorded, or because our measurements
are unreliable. Guha et al. [24], in studies of trust in
online communities, suggested that it should be possible,
using the patterns of known signs, to make predictions
about the unknown ones, and in recent years a number

0.0

0.5

1.0

1.5

BW

0.0

0.5

1.0

1.5

BS

0.0

0.5

1.0

1.5

EB

1 2 3 4
Time period in study

0.0

0.5

1.0

1.5

SA

FIG. 2: Levels of imbalance in the university freshman net-
works. The dotted lines indicate the null model mean and
the surrounding bands denote two standard deviations of the
fluctuations around this mean. The solid lines represent the
values for the observed networks.

of authors have developed algorithms to do this [17, 20–
22, 31, 32]. (Looking for correlations between signs is not
the only way to perform prediction—there are a whole
range of network reconstruction algorithms that could be
adapted for signed networks [33]—but our focus here is
specifically on the use of known signs to predict unknown
ones.)

A natural approach is to start from the assumption
that the network is balanced [22, 31]. Consider the sim-
ple case where a sign is missing from just a single edge
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in the network and our goal is to guess the value of that
sign given all the others. We assume that the best guess
for the missing sign is the one that will make the network
most balanced. This leaves open the question of which
metric we should use to quantify balance, which we ad-
dress by performing a cross-validation study in which we
artificially remove one sign from an otherwise complete
network, then attempt to predict its value using each of
our metrics in turn. Repeating this process for every
edge in the network, we measure the average success of
our predictions for each metric.

This “single edge” prediction test is arguably
unrealistic—in most real-world scenarios there will be
more than one sign missing from any incomplete data
set, a point that we discuss further in Section III C. It
is, nonetheless, a good starting point by virtue of being
relatively computationally tractable for networks of the
size considered here, which typically have a few hundred
edges. We can just calculate directly the value of each of
our balance metrics for the two possible choices of each
sign and take the choice that gives the higher balance.

For larger network sizes this brute-force approach be-
comes more computationally demanding, but with a little
ingenuity the calculation can still be done. The calcula-
tion of our metrics BW and BS relies on the computation
of either a matrix inverse (for BW ) or a matrix determi-
nant (for BS), and there exist formulas that allow one to
quickly recalculate inverses and determinants when only
a few elements of a matrix are altered, as in this case.
Consider, for instance, the weak balance measure BW
defined in Eq. (2). The primary computational task in
evaluating this measure is the calculation of the resolvent
matrix R = (zI−P)−1. We can speed up this calculation
as follows. First, we directly compute R for the original
network and use it to evaluate BW . This is a relatively
slow operation: computing the inverse of an n×n matrix
takes O(n3) time in a naive implementation, and mod-
estly better in more complex schemes. Then we consider
in turn each edge in the network and compute the value
of BW when the sign of that edge is reversed. Reversing
the sign of an edge between nodes i and j alters the val-
ues of Pij and Pji by ±1, a change that we can write in
the low-rank form

P′ = P±UV, (15)

where U is an n × 2 matrix with all elements zero ex-
cept Ui1 = Uj2 = 1, and V is a 2 × n matrix with all
elements zero except V1j = V2i = 1. Then the Woodbury
matrix identity [34] tells us that the new value of the
resolvent R′ = (zI−P′)−1 is given by

R′ = R±RU(I∓VRU)−1VR, (16)

which requires only the trivial inversion of the 2× 2 ma-
trix inside the brackets. Evaluation of the matrix prod-
ucts RU and VR and evaluation of the n2 elements of
R′ all take O(n2) time, so the running time to calculate
the new value of BW is also O(n2), a substantial im-

provement on the O(n3) time needed to calculate it from
scratch.

Similarly for the strong balance measure BS it is pos-
sible to evaluate the measure rapidly upon the change
of single sign. This measure, defined in Eq. (9), in-
volves the calculation of the determinant of the ma-
trix A = zI − (P −N), whose value changes upon the
flip of a sign to

A′ = A± 2UV, (17)

where U and V are as previously defined. (The deter-
minant in the denominator of Eq. (9) does not change
when a sign is flipped, so there is no need to recalculate
it.) Then the matrix determinant lemma [35] states that
the new value of the determinant is related to the old
one by

det(A± 2UV) = det(A) det(I± 2VA−1U). (18)

Once one has the inverse A−1 this computation can be
performed quickly. The 2 × 2 matrix I ± 2VA−1U can
be calculated in time O(n2) and its determinant in con-
stant time, so again the overall calculation takes O(n2)
time. By contrast, calculating the determinant directly
from scratch takes O(n3) time (or slightly better using
the fastest algorithms), so again we have a substantial
improvement in speed over the direct calculation. For
the other balance metrics considered here (EB and SA)
there are similar shortcuts that can speed up calculations
for larger networks, although we will not use them here.

Figure 3 shows the results of single-sign prediction cal-
culations for our international relations networks as a
function of time, for each of our four measures of bal-
ance. The vertical axis in the figure measures the frac-
tion of all signs predicted correctly, also known as the
accuracy. By contrast with the results shown in Figs. 1
and 2, performance on this task clearly varies between
the different balance metrics, and in particular the mea-
sure BW based on the weak notion of balance performs
significantly better than any of the strong balance mea-
sures.

One must be a little careful about these results, how-
ever, because, as mentioned previously, positive edges
outnumber negative ones by a wide margin in most cases.
This means that one can achieve quite high prediction
accuracy simply by guessing that every edge is positive.
The magenta curve in Fig. 3 represents this baseline level
of accuracy and it is against this curve that the others
should be judged. Thus, for example, the measure of
EB, which gave generally good performance in Fig. 1,
performs least well in terms of sign prediction accuracy
and in some cases is actually below the baseline estimate,
particularly in the latter half of the data set. Meanwhile,
the weak balance measure BW substantially outperforms
the other measures and the baseline, and appears to give
the best sign prediction performance of the measures con-
sidered.

Figure 4 shows an alternative measure of prediction
performance, the normalized mutual information [36].
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FIG. 3: Fraction of signs predicted correctly for each of the
international relations networks in the single sign prediction
task of Section III B, using each of the four balance measures
studied here.

Often used to quantify the success of community detec-
tion algorithms on networks, normalized mutual infor-
mation (NMI) is an information theoretic measure that
reflects the amount of information about the true signs
of edges that is contained in the predicted signs. If the
predicted signs match the true signs exactly, the NMI
is 1; if there is no correlation between true and predicted
signs it is zero.

The (unnormalized) mutual information between true
signs st and predicted signs sp is defined as

I(st; sp) =
∑
st=±1
sp=±1

P (st, sp) log
P (st, sp)

P (st)P (sp)
. (19)

The joint probabilities P (st = ±1, sp = ±1) can be cal-
culated straightforwardly by simply counting the fraction
of times in our tests that each of the four possible con-
figurations of the true and predicted signs occurs, and
similarly for the marginal probabilities P (st = ±1) and
P (sp = ±1). The normalized mutual information is then
calculated by dividing the unnormalized value by the av-
erage of the entropy H(s) = −

∑
s P (s) logP (s) of the

two variables st and sp [36]:

NMI =
I(st; sp)

1
2 [H(st) +H(sp)]

. (20)

This ensures that the normalized value falls between zero
and one.

As shown in Fig. 4, the normalized mutual informa-
tion for sign prediction using all four of our balance mea-
sures is better than the baseline estimate made by simply
guessing that all edges have the majority positive sign—
the latter automatically gets an NMI of zero, since it is
completely uncorrelated with the true signs of the edges.
Again the weak balance measure BW does best in most
years, in some cases by a wide margin.
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FIG. 4: Success in the single sign prediction task, as measured
using normalized mutual information, for each of the four
balance measures studied here.

Comparing our results from this section with those on
overall balance from Section III A, we see something of
a mixed picture. Overall balance appears to be similar
for all metrics, except during the Second World War era,
when there were two primary factions and the strong no-
tion of balance seems to be favored. Our sign prediction
results, on the other hand, seem to give a clear edge to the
weak notion of balance, even during the war years. What
we can say with some clarity, however, is that these net-
works are more balanced than one would expect on the
basis of chance, and one can use this fact to predict the
signs of edges with good accuracy.

C. Prediction of multiple edge signs

In the calculations of the previous section, we tested
our ability to predict a single unknown sign in an oth-
erwise known network. This single sign prediction chal-
lenge has the advantage of being relatively computation-
ally tractable, but, as we have argued, it is not entirely re-
alistic. In real-world data sets it is likely that many signs
will be missing from our network simultaneously, not just
one, and hence we need a way to predict multiple signs
simultaneously. We can approach the latter problem in a
similar manner to single edge prediction, by selecting the
combination of signs that gives the lowest imbalance, but
the calculation rapidly becomes intractable as the num-
ber k of signs to be predicted becomes large, since there
are 2k different combinations of signs to test.

To get around this issue, we employ simulated anneal-
ing to optimize balance over sign configurations. We per-
form a Markov chain Monte Carlo simulation in which we
initially give random values to all of the unknown signs,
then we repeatedly select one of them at random and
consider flipping its value, from positive to negative or
vice versa. We can use any one of our imbalance metrics
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as an energy function and accept or reject sign flips us-
ing a standard Metropolis–Hastings acceptance probabil-
ity with temperature T . We then lower the temperature
from a high initial value T0 according to the exponential
cooling schedule T = T0 e−t/τ , where t is the number of
Monte Carlo steps performed so far and τ is the anneal-
ing time-scale. The calculation ends when the state of
the system stops changing and we take the final state to
be our prediction of the unknown signs.

For the calculations presented here we use parameter
values T0 = 0.1 and τ = 104 and run our calculations
for 106 Monte Carlo steps. For each network studied, we
remove varying fractions of the signs and then attempt
to predict those removed, repeating the entire calculation
100 times for each fraction. For the imbalance measures
used in this paper the calculation can be sped up signifi-
cantly by rapidly computing the new energy value upon
the flip of a sign using the Woodbury or matrix deter-
minant formulas again. Here we focus specifically on the
measures BW and BS . Since these measures are con-
structed in an identical manner apart from the criteria
they use for balanced loops, they give us an opportu-
nity to perform an apples-to-apples comparison of strong
and weak notions of balance, to see which gives better
sign prediction. Similar calculations would, however, cer-
tainly be possible for the EB and SA metrics considered
in previous sections.

Figures 5, 6, 7, and 8 show accuracy and NMI results
from calculations for three of our international relations
networks, corresponding to the years 1944 (during the
Second World War, where 43% of signs are negative),
1950 (a few years afterward, where 13% of signs are neg-
ative), and 1980 (relative peace, where 5% of signs are
negative). Each plot shows three separate curves for the
three networks, as a function of the fraction of signs re-
moved from the network. For the accuracy plots we also
show the baselines set by assuming that all unknown
signs are positive. (For the NMI plots the equivalent
baselines are by definition at zero.)

As the fraction of signs removed gets larger (and hence
the amount of information remaining to learn from gets
smaller) we naturally expect the performance of the algo-
rithm to fall off. Figures 5 and 6 show results for the weak
balance measure BW and reveal that predictions are rea-
sonably accurate for all three years studied for fractions
of predicted signs up to about 50%, although the baseline
accuracy for 1980 is so high that it is comparable with the
predictions. (This is simply because a very large fraction
of signs are positive in this network.) Normalized mutual
information is also well above the baseline level of zero
for fractions of predicted signs up to about 50%. Beyond
th 50% mark, however, prediction accuracy rapidly falls
to close to zero.

Figures 7 and 8 show the corresponding results for the
strong balance measure BS , and comparing the results
for the two measures reveals an interesting overall pic-
ture. The weak measure does better when predicting
smaller numbers of signs, but suddenly fails around the
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FIG. 5: Fraction of signs predicted correctly in the multiple
sign prediction task using the weak balance measure BW , as a
function of the fraction of unknown signs for the international
relations networks in the years 1944, 1950, and 1980, along
with baseline levels derived by simply assuming all signs to
be positive. Bands indicate 1σ errors calculated from the
distribution of values over 100 randomized repetitions of the
calculation.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of unknown signs

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

1944 BW

1950 BW

1980 BW

FIG. 6: Normalized mutual information for the multiple sign
prediction task using the weak balance measure BW , as a
function of the fraction of unknown signs for the international
relations networks in the years 1944, 1950, and 1980. The
baseline level of normalized mutual information if we guess
all signs to be positive is zero by definition. Bands indicate
1σ errors calculated from the distribution of NMI values over
100 randomized repetitions of the calculation.

50% mark, beyond which it does no better (in fact worse)
than chance. The strong measure, by contrast, does less
well when fewer than 50% of signs are removed, but man-
ages at least modestly good performance well beyond the
50% point, thereby outperforming the weak measure in
this regime (although it is still not very good). These
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FIG. 7: Fraction of signs predicted correctly in the multiple
sign prediction task using the strong balance measure BS , as a
function of the fraction of unknown signs for the international
relations networks in the years 1944, 1950, and 1980.

trends are especially clear in the 1944 network, for which
arguably the strong measure makes more sense since, as
discussed earlier, international relations were dominated
by two main factions during that era.

The failure of the weak balance metric to predict un-
known signs beyond about the 50% mark is particularly
interesting. It arises through a competition between two
different minima of the metric. One minimum approxi-
mately corresponds to the true assignment of signs, and if
the algorithm finds this minimum it will succeed, at least
partially, in the sign prediction task. The other mini-
mum is a trivial one in which all, or almost all, unknown
signs are negative. If the fraction of unknown signs is
large enough, the latter state will contribute at least two
negative signs to most closed loops in the network, mean-
ing that most loops are balanced (according to the weak
definition) and hence our imbalance score will approach
its lowest possible value of zero. As the fraction of un-
known signs grows, there comes a point at which this
trivial minimum outcompetes the nontrivial one and the
algorithm no longer predicts signs with success any bet-
ter than chance. This point—the discontinuity we see in
Fig. 6—is in effect a zero-temperature first-order phase
transition between competing ground states. No simi-
lar argument applies to the strong balance measure, and
hence we see no sharp phase transition in that case.

Overall, we conclude that successful prediction of mul-
tiple edge signs is possible using our balance measures,
with the weak notion of balance again giving better per-
formance than the strong notion, at least up to the phase
transition mentioned above, beyond which the strong
balance measure is a better choice. In the particular
networks examined here, performance is stronger for the
years 1944 and 1950 than for 1980, perhaps because of
the starker conflicts and alliances during and immedi-
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FIG. 8: Normalized mutual information for the multiple sign
prediction task using the strong balance measure BS , as a
function of the fraction of unknown signs for the international
relations networks in the years 1944, 1950, and 1980.

ately after the war, compared with the relative peace of
the early 1980s.

IV. CONCLUSIONS

We have studied the phenomenon of structural bal-
ance in signed networks, whereby some configurations of
signed edges are more common than others. We have
proposed two measures of structural balance based on
previously hypothesized notions of “weak” and “strong”
balance and compared their performance against each
other and previously proposed measures in a number of
tasks. Specifically, we have examined the behavior of the
various measures on two distinct sets of networks repre-
senting alliances and conflicts between countries during
the 20th and 21st centuries, as well as university fresh-
man cohort relationships, testing in the first instance to
see simply by which measures these networks are most
balanced. We find that all measures show a significant
level of balance in all of the networks we study.

We further test our measures on the international rela-
tions data by comparing their ability to predict unknown
edge signs in a set of cross-validation experiments, in
which we remove either a single sign or multiple signs
from the network and attempt to predict the missing
sign(s) by choosing those values that maximize balance
by each of our metrics. We find that prediction of un-
known signs is possible, with accuracy substantially bet-
ter than a random guess, and in particular that our mea-
sure based on the weak notion of balance performs well
in practice.

Many extensions and generalizations of the work pre-
sented here would be possible. Good data on signed net-
works are currently relatively scarce, but it would be in-
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teresting to see how our results generalize when similar
calculations are performed on other networks. As dis-
cussed in Section III A, many data sets are more natu-
rally represented as weighted and/or directed signed net-
works, and so extending the measures proposed here to
these classes of networks would provide a more flexible
framework for analysis of a wide variety of data. One
could also employ balance metrics to perform anomaly
detection in networks, looking for edges that participate
in a large number of imbalanced loops. A further inter-
esting question is how to determine the optimal value of
the parameter we called α, which controls the amount by
which longer loops are discounted in our calculations. In
this paper we simply choose a value that seems reason-

able, noting that our results are not strongly dependent
on the choice, but it would be an improvement if one were
able to find a first-principles method of fixing the value
of α. These possibilities, however, we leave for future
work.
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