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Abstract

The robustness in real-world complex systems with dependency connectivities differs from that in

isolated networks. Although most complex network research has focused on interdependent undi-

rected systems, many real-world networks—such as gene regulatory networks and traffic networks—

are directed. We thus develop an analytical framework for examining the robustness of networks

made up of directed networks of differing topologies. We use it to predict the phase transitions that

occur during node failures and to generate the phase diagrams of a number of different systems,

including tree-like and random regular (RR) networks of directed Erdős-Rényi (ER) networks and

scale-free (SF) networks. We find that the the phase transition and phase diagram of networks

of directed networks differ from those of networks of undirected networks. For example, the RR

networks of directed ER networks show a hybrid phase transition that does not occur in networks

of undirected ER networks. In addition, system robustness is affected by network topology in

networks of directed networks. As coupling strength q increases, tree-like networks of directed ER

networks change from a second-order phase transition to a first-order phase transition, and RR

networks of directed ER networks change from a second-order phase transition to a hybrid phase

transition, then to a first-order phase transition, and finally to a region of collapse. We also find

that heterogenous network systems are more robust than homogeneous network systems. We note

that there are multiple phase transitions and triple points in the phase diagram of RR networks of

directed networks, and this helps us understand how to increase network robustness when designing

interdependent infrastructure systems.
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I. INTRODUCTION

Complex networks have been widely used to model interconnected systems in fields ranging

from the power grid [1, 2] to the Internet [3–6], to social and biological systems [7–10]. In

these complex networks, node or link failures can occur. The ability of networks to retain

their connectivity under link or node failures is called network robustness [11–16]. The

robustness of a complex network can be determined either by the integral size of the gi-

ant component during the attacking process or by the percolation threshold [17–21]. The

percolation threshold pc is the minimal fraction of remaining nodes or links needed to main-

tain network connectivity and is usually predicted using percolation theory from statistical

physics [3]. Most studies on the robustness of complex networks have focused on single or

isolated networks [6].

Critical infrastructures in real-world interact with each other and form a network of inter-

dependent networks [13, 16, 19, 22–33]. In interdependent networks, the failure of a node in

one network causes the failure of dependent nodes in other networks, which in turn can cause

further damage to the first network, leading to cascading failures and possible catastrophic

consequences. For example, the breakdown of an interdependent communication network

and a power grid caused the electrical blackout that affected much of Italy on 28 September

2003 [34]. To study complex network interdependence, Buldyrev et al. [13] developed a

fundamental framework of two fully interdependent networks that can be theoretically an-

alyzed using a generating function formalism [35] and discovered a first-order discontinuous

phase transition that differs dramatically from the second-order continuous phase transition

found in isolated networks [36, 37]. Pashani et al. [23] studied a more realistic model of two

partially interdependent networks and found a change from a first-order phase transition to

a second-order phase transition when the coupling strength between the networks decreases.

In addition, a systematic series of mathematical frameworks have been proposed to analyze

the robustness of networks of more than two interdependent networks [15, 19, 38–42].

All of these studies focus on undirected networks, but many real-world networks are

directed, including metabolic networks and gene regulatory networks in biological systems

[9, 43], transportation networks and power grids in infrastructure systems [44, 45], and

citation networks and trust networks in social systems [46, 47]. Recently Azimi-Tafreshi et

al. [48] studied giant components in directed multiplex networks and found that a giant
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strongly connected component (GSCC) is more vulnerable that a giant weakly connected

component (GWCC). Although we have developed a theoretical framework for analyzing the

robustness of two interdependent directed networks with arbitrary degree distributions and

have applied it to real international trade networks [49], we still do not have a framework for

studying the robustness in networks of directed networks of more than two interdependent

networks.

We here build a model of networks of directed networks (NODNs) and develop a general

theoretical framework for analyzing NODNs with different topologies. We use it to calculate

the percolation thresholds—pIc for first order phase transitions and p
II
c for second order phase

transitions—that characterize system robustness and analyze the systemic phase diagrams

divided by the critical coupling strengths, qc2 that separates the second and hybrid phases,

qc1 that separates the hybrid and first phases, and qmax that separates the first and collapsed

regions. The following findings will enable us to understand system robustness and design

more robust infrastructures.

(i) The phase transitions in NODNs differ from those in networks of undirected networks.

For example, RR networks of directed ER networks show a hybrid phase transition

not present in networks of undirected ER networks.

(ii) System robustness in networks of directed networks is affected by network topology.

The tree-like structure of directed networks changes from a second-order phase transi-

tion to a first-order phase transition as coupling strength q increases. RR networks of

directed networks exhibit a second-order phase transition when the coupling strength

is q < qc2, a hybrid phase transition when qc2 < q < qc1, a first-order phase transition

when qc1 < q < qmax, and a complete collapse when q > qmax.

(iii) In RR networks of directed SF networks, systems of heterogeneous networks are more

robust than systems of homogenous networks.

(iv) We find triple points in the phase diagrams of both RR networks of ER and SF

networks, which indicate ways of pushing the interdependent system into a safe region

to prevent system collapse.
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II. MODEL

Our NODN model is a network of n interdependent directed networks, in which each node

i (i = 1, 2, ..., n) is a network containing Ni nodes connected by directed connectivity links,

and each link indicates a fully or partially dependent pair of networks. A NODN may have a

tree-like structure with no loops [see Figs. 1(a), 1(b), and 1(c)] or a random regular structure

with loops [see Figs. 1(d) and 1(e)]. Networks i and j are connected by a dependency link

when there is a qij > 0 fraction of nodes in network i that depend on nodes in network j, or

a qji > 0 fraction of nodes in network j that depend on nodes in network i [see Fig. 1(f)].

Nodes in one network stop functioning when nodes on which they are dependent in a second

network stop functioning. In addition, the nodes from two networks are coupled under the

“no-feedback” condition [19]. A node in one network can depend on only one node in a

second network. Thus when node a in network i depends on node b in network j, and node

b in network j depends on node c in network i, then a = c. We assume that a node remains

functional if it has not been removed and belongs to the giant strongly connected component

(GSCC). This assumption can cause cascading failures between networks. Nodes in network

i fail when they do not belong to the GSCC, and these failed nodes cause dependent nodes

in other networks to also fail. This may divide the networks into components and cause

more failures of nodes not in the GSCC, which can cause further failures back in the nodes

in network i. This process continues iteratively until failures are no longer possible, and the

surviving nodes in all networks form a final GSCC in the NODN.

III. ANALYTIC FRAMEWORK OF THE DYNAMIC PROCESS OF CASCAD-

ING FAILURES

The Ni nodes of network i are connected following a joint degree distribution Pi(kin, kout),

where kin and kout are the in-degree and out-degree of a given node, respectively. Each

network i can be characterized by a generating function [50, 51]

Φi(x, y) =

∞
∑

kin,kout

P (kin, kout)x
kinykout, (1)

5



where x and y are arbitrary complex variables. The generating functions for the branching

processes [50, 51] are

Φi1(x, 1) =
∂yΦi(x, y)|y=1

∂yΦi(1, 1)
, Φi1(1, y) =

∂xΦi(x, y)|x=1

∂xΦi(1, 1)
. (2)

To compute the size of the GSCC in network i, we define a generating function [49]

Φ
(s)
i (x, y) = Φi(x, 1) + Φi(1, y)− Φi(x, y). (3)

When a fraction 1− p of nodes is randomly removed from network i, the relative size of the

GSCC in the remaining network [50] is

gi(p) = 1− Φ
(s)
i (pxc(p) + 1− p, pyc(p) + 1− p), (4)

where xc(p) and yc(p) respectively satisfy

xc(p) = Φi1(pxc(p) + 1− p, 1) yc(p) = Φi1(1, pyc(p) + 1− p). (5)

To compute the size of the final GSCC we analyze the the cascading failure dynamics

step by step. At t = 1 we randomly remove a fraction 1− pi of nodes from each network i,

after which the remaining fraction of nodes of each network i is ψ′
i,1 ≡ pi, and the remaining

functional part is ψi,1 = ψ′
i,1gi(ψ

′
i,1). Since the dependency links between networks follow

the “no-feedback” condition, the damage spreading from network i to network j at step t−1

do not spread back from network j to network i at the step t. We define rij,t the fraction of

remaining nodes in network i after the damage from all networks connected to i, denoted Ni,

except network j (j ∈ Ni) at time step t. At time step t = 1 each network i receives damage

from initial failures 1 − pi but no damage from other networks. Thus rij,1 = pi for j ∈ Ni.

At time step t > 1 each network i receives damage from all of its neighboring networks. The

damage from a neighbor network j (j ∈ Ni) to network i is qji[1 − rji,t−1gj(ψ
′
j,t−1)]. Thus

the fraction of the remaining nodes in network i at step t is

ψ′
i,t = pi

∏

j∈Ni

{1− qji[1− rji,t−1gj(ψ
′
j,t−1)]}, (6)

and according to the definition of rij,t, it satisfies

rij,t =
ψ′
i,t

1− qji[1− rji,t−1gj(ψ′
j,t−1)]

. (7)
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At time step t, the fraction of the remaining functional part of network i is ψi,t = ψ′
i,tgi(ψ

′
i,t).

At the end of the cascading failure process the system is in a stationary state and no

more failures occur. If the system reaches a stationary state at step τ , then the fraction

of the remaining nodes ψ′
i,τ = ψ′

i,τ+1 for each network i. Thus the stationary state of the

system satisfies the n equations

ψ′
i,τ = pi

∏

j∈Ni

{1− qji[1− rji,τgj(ψ
′
j,τ)]}, (8)

where i = 1, 2, ..., n and

rij,τ =
ψ′
i,τ

1− qji[1− rji,τgj(ψ′
j,τ)]

. (9)

For each network i, the relative size of final GSCC in the full complex network is

p
(s)
∞,i = ψ′

i,τgi(ψ
′
i,τ ). (10)

Note that if n = 2, then r12,τ = p1, r21,τ = p2, and the n equations [Eq. (8)] can be simplified

into two equations: ψ′
1,τ = p1[p2q21g2(ψ

′
2,τ )− q21 + 1] and ψ′

2,τ = p2[p1q12g1(ψ
′
1,τ )− q12 + 1],

which is in accord with the result of two interdependent directed networks [49]. We next

calculate the stationary states of NODNs with differing topologies: tree-like NODNs and

random regular NODNs.

IV. TREE-LIKE NETWORKS OF INTERDEPENDENTDIRECTEDNETWORKS

Generally speaking, all NODNs with a topology without loops are tree-like. For example,

interdependent network systems with line-like [Fig. 1(a)], star-like [Fig. 1(b)], and tree-like

[Fig. 1(c)] structures are all tree-like NODNs. We examine a simplification that can be

solved analytically: a tree-like NODN in which each pair of connected networks is fully

interdependent, i.e., qij = 1 for i = 1, 2, ...n and j = 1, 2, ..., n. We simplify Eq. (9) to rji,τ =

ψ′
j,τ/rij,τgi(ψ

′
i,τ ). Similarly rij,τ = ψ′

i,τ/rji,τgj(ψ
′
j,τ ). These two equations yield ψ′

i,τgi(ψ
′
i,τ ) =

ψ′
j,τgj(ψ

′
j,τ) = p

(s)
∞ , where p

(s)
∞ is the size of the final GSCC, which is the same for every

network in the tree-like NODN.

Because the nodes of each pair of fully interdependent networks are connected following

the no-feedback condition, every node of one network can reach one node of any other

network via a path consisting of dependency links, and there is no crossing between the

dependency paths. When a node in one network fails, all the nodes on its dependency link
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path also fail. Thus initial attacks on the fraction of nodes 1 − pi in each network i are

equivalent to initial attacks on a fraction of nodes 1 −
∏n

i=1 pi in one network. In addition,

by calculating the values of rij,τ one by one, we get the size of the final GSCC,

p(s)∞ =

n
∏

i=1

pigi(ψ
′
i,τ ), (11)

where gi(ψ
′
i,τ ) = 1−Φ

(s)
i (pxi+1−p, pyi+1−p). Here we show the calculating process by us-

ing three networks (1, 2, and 3) with two connecting bi-directional dependency links: 1 ↔ 2

and 2 ↔ 3. According to Eq. (8), the fractions of the final remaining nodes in these three net-

works are ψ′
1,τ = p1r21,τg2(ψ

′
2,τ ), ψ

′
2,τ = p2r12,τg1(ψ

′
1,τ )r32,τg3(ψ

′
3,τ ) and ψ

′
3,τ = p3r23,τg2(ψ

′
2,τ ),

respectively. We compute the value of r21,τ = p2r32,τg3(ψ
′
3,τ ), and get r32,τ = p3 according

to Eq. (9). Thus the size of the final GSCC is p
(s)
∞ = ψ′

1,τg1(ψ
′
1,τ ) =

∏3
i=1 pigi(ψ

′
i,τ ).

For simplification, we introduce two new variables

ziin = ψ′
i,τxi + 1− ψ′

i,τ ziout = ψ′
i,τyi + 1− ψ′

i,τ . (12)

Substituting Eq. (12) in Eq. (5), we get

ψ′
i,τ =

1− ziin
1− Φi1(ziin, 1)

=
1− ziout

1− Φi1(1, ziout)
. (13)

Using Eq. (13) and p
(s)
∞ = ψ′

i,τgi(ψ
′
i,τ ) we obtain

p(s)∞ =
(1− ziin)(1− Φ

(s)
i (ziin, ziout))

1− Φi1(ziin, 1)
. (14)

When n coupled networks follow the same degree distribution, Φ
(s)
i = Φ(s) and Φ

(s)
i1 = Φ

(s)
1

for i = 1, 2, ...n. Without loss of generality, we set pi = p for i = 1, 2, ...n. We simplify

Eqs. (14) and (11) to be

p(s)∞ =
(1− zin)(1− Φ(s)(zin, zout))

1− Φ1(zin, 1)
, (15)

where zin and zout satisfy

1

pn
=

(1− Φ(s)(zin, zout))
n−1(1− Φ1(zin, 1))

1− zin
=

(1− Φ(s)(zin, zout))
n−1(1− Φ1(1, zout))

1− zout
. (16)

We denote a function R(zin, zout) ≡
1
p
. The behavior of the final GSCC size when the fraction

of the remaining nodes p after the initial failures varies from 0 to 1 can be solved numerically
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using the function R(zin, zout). When n > 2, the critical point pIc where the size of the final

GSCC jumps to zero as p decreasing is

pIc =
n

√

1− zcout
(1− Φ(s)(zcin, z

c
out))(1− Φ1(1, zcout))

, (17)

where zcin and zcout satisfy






∂zinR(z
c
in, z

c
out) = 0,

∂zoutR(z
c
in, z

c
out) = 0.

(18)

We next show the results when applying this analytic framework to tree-like networks of

directed ER, RR, and SF networks.

A. Tree-like network of n directed ER networks

We construct a tree-like network composed of n directed ER networks in which each network

i follows a Poisson degree distribution with average degree 〈ki〉 with the generating function

Φi(x, y) = e
〈ki〉

2
(x+y−2). (19)

Since the in-degree and out-degree of each ER network node are independent, Φi(x, y) is

equivalent to Φi(x, x). The generating functions for computing the size of GSCC of a single

ER network are






Φ
(s)
i (x) = 2e

〈ki〉

2
(x−1) − e〈ki〉(x−1),

Φ
(s)
i1 (x) = e

〈ki〉

2
(x−1).

(20)

Substituting the generating functions of ER networks Eq. (20) into Eq. (11), the size of the

final GSCC in the interdependent directed ER networks after removing a fraction of nodes

1− pi from each network i is

p(s)∞ =

n
∏

i=1

pi(1− e
〈ki〉

2
(zi−1))2, (21)

where zi satisfies
1− zi

1− e
〈ki〉

2
(zi−1))

= pi

n
∏

j=1,j 6=i

pj(1− e
〈kj〉

2
(zj−1))2. (22)

When the average degree of all the n networks is the same, i.e., ki = k, the size of the final

GSCC can be reduced to

p(s)∞ = (1− z)(1− e
〈k〉
2

(z−1)), (23)
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where z is determined by

R(z) ≡
1

p
=

n

√

(1− e
〈k〉
2

(z−1))2n−1

(1− z)
. (24)

Figures 2(a) and 3(a) show that the analytic solutions of Eq. (23) agree with the simulation

results. When n = 1, the final GSCC size shows a continuous second order phase transition,

which is the same as in single directed networks [50]. When n ≥ 2, the system shows a

discontinuous first order phase transition at a percolation threshold pIc . We next calculate

the percolation threshold pIc in tree-like networks of ER networks.

For simplicity, we define φ∞ = 1− z, then Eq. (23) can be rewritten

p(s)∞ =
[1− e−

〈k〉
2

φ∞ ]
2n−1

n

φ
1

n
∞

. (25)

According to Eq. (24) and because at the critical point R′(z) = 0, the final GSCC size

satisfies

e−
〈k〉
2

φc
∞ =

1

(2n− 1) 〈k〉
2
φc
∞ + 1

. (26)

When w = − 〈k〉
2
φc
∞ − 1

2n−1
, Eq. (26) can be simplified,

−1

2n− 1
e

−1

2n−1 = wew. (27)

The percolation threshold pIc in Eq. (17) can be simplified to be

pIc = n

√

−w
〈k〉
2
{1 + 1/[(2n− 1)w]}2n−2

. (28)

Figure 4(a) shows the percolation threshold pIc as a function of the number of networks n.

The percolation threshold pIc increases as n increases, indicating that the greater the number

of networks in the system, the more vulnerable the system.

In tree-like networks of ER networks there is a minimum average degree 〈k〉min, such that

when 〈k〉 < 〈k〉min the system collapses even if no node is removed (p = 1). The minimum

average degree is determined by the condition pIc = 1, i.e.,

〈k〉min =
−2w

{1 + 1/[(2n− 1)w]}2n−2
. (29)

Figure 5 shows that in isolated ER networks (n = 1) there is a GSCC when the average

degree 〈k〉 ≥ 〈k〉min = 2 that confirms the result in Ref. [50]. In interdependent networks
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(n = 2) we solve Eqs. (27) and (29), and obtain 〈k〉min = 6.1783, which is the same as the

result in Ref. [49]. When n→ ∞,

〈k〉min = 2ln(2n− 1) + 2O(ln(2n− 1)). (30)

B. Tree-like network of n directed RR networks and SF networks

We next apply the analytic framework to tree-like networks of directed RR networks [38]

and SF networks [52]. In a RR network, the in-degree and out-degree of each node are the

same, and the degree of all nodes is the same. The generating functions for computing the

GSCC of a RR network with degree k are






Φ(s)(x) = 2x
k
2 − xk,

Φ
(s)
1 (x) = x

k
2 .

(31)

In a network of n RR networks with the same degree k, we obtain the final GSCC of the

system after cascading failure by substituting Eq. (31) into Eq. (15)

p(s)∞ = (1− z)(1 − z
k
2 ), (32)

where z satisfies

R(z) ≡
1

p
=

n

√

(1− z
k
2 )2n−1

1− z
. (33)

Figures 2(b) and 3(b) show the final GSCC size of a network of n interdependent RR

networks. The theoretical results (solid lines) of Eq. (32) agree with the simulation results

(symbols). When the fraction of remaining nodes after initial failure p varies from one to

zero, the size of the final GSCC discontinuously jumps to zero at a critical value pIc , which

is determined by

pIc = n

√

1− zc

(1− z
k
2

c )2n−1
, (34)

where zc satisfies

R′(zc) =
1− z

k
2

c − (2n− 1)k
2
z

k
2
−1

c (1− zc)

n

n

√

√

√

√

(1− z
k
2

c )n−1

(1− zc)n+1
= 0. (35)

Figure 4(b) shows the critical value pIc as a function of network size n. As in ER networks,

when n increases, pIc increases, indicating that the greater the number of networks, the more

vulnerable the system.
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For a directed SF network with no correlation between the in-degree and out-degree of a

given node, the generating function of the degree distribution is

Φ(x, y) =

∑Min

min
[(kin + 1)1−λin − k1−λin

in ]xkin

[(Min + 1)1−λin −m1−λin

in ]

∑Mout

mout
[(kout + 1)1−λout − k1−λout

out ]ykout

[(Mout + 1)1−λout −m1−λout

out ]
, (36)

where min and Min are the minimum and maximum in-degrees, respectively, mout and Mout

the minimum and maximum out-degrees of the SF network, respectively, and λin and λout the

power-law exponents of the in-degree distribution and out-degree distribution, respectively.

The generating function for computing the GSCC of a SF network is



















Φ(s)(x) =
2
∑M

m [(k + 1)1−λ − k1−λ]xk

[(M + 1)1−λ −m1−λ]2
−

(
∑M

m [(k + 1)1−λ − k1−λ]xk)2

[(M + 1)1−λ −m1−λ]2
,

Φ1(x, 1) = Φ1(1, x) =

∑M

m [(k + 1)1−λ − k1−λ]xk

(M + 1)1−λ −m1−λ
.

(37)

By substituting Eq. (37) into Eq. (14) we numerically calculate the final GSCC sizes of the

tree-like networks of SF networks. Figures 2(c) and 3(c) show that the analytic results agree

with the simulation results. Figure 4 shows the percolation thresholds of the RR and SF

network systems, which again indicates that systems become more vulnerable when they

encompass a greater number of networks.

V. RANDOM REGULAR NETWORK OF INTERDEPENDENT DIRECTED

NETWORKS

We here apply the analytic framework to random regular (RR) networks of n interdepen-

dent networks that display loops. In a RR network of networks, each network node depends

on the same m of other networks. Figure 1(d) shows when each network depends on two

neighboring networks. Figure 1(e) shows when each network depends on three neighbor-

ing networks. For simplicity and without loss of generality, we assume that the coupling

strengths between each pair of networks are the same, qij = q, and we remove a fraction of

nodes 1 − p from each network. We here assume that all the networks in the system follow

the same degree distribution and the same generating function gi(ψ
′
τ ) = g(ψ′

τ ), and that

there are no correlations between the in-degree and out-degree distributions. Because of the

symmetry among all networks, the size of the final GSCC of all the networks is the same,

i.e., ψ′
i,τ = ψ′

τ and rij,τ = rτ . We simply the equations of the final GSCC size, Eqs. (8) and
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(9), to






ψ′
τ = p[qrτg(ψ

′
τ )− q + 1]m,

rτ = p[qrτg(ψ
′
τ )− q + 1]m−1.

(38)

When the in-degree and out-degree distributions are independent, Eq. (4) can be written

gi(p) = 1 − Φ
(s)
i (px(p) + 1 − p, px(p) + 1 − p) and Eq. (5) can be simplified to be x(p) =

Φi1(px(p) + 1− p, 1). We substitute z = px(p) + 1− p into Eq. (10) and the size of the final

GSCC becomes

p(s)∞ =
(1− z)(1− Φ(s)(z, z))

1− Φ1(z, 1)
, (39)

where z satisfies

R(z, q) ≡
1

p
=

1− Φ1(z, 1)

1− z

(1− q +
√

(1− q)2 + 4qp∞)m

2m
. (40)

For any parameters q and p, and using the generating function of the degree distribution of

each network layer, we obtain the value of z by solving Eq. (40). We then substitute z into

Eq. (39) to get the size of the final GSCC. Figure 6 shows the that theoretical solution of

the final GSCC in RR network of ER networks and the RR network of SF networks both

agree with the simulation results.

Under different coupling strengths q, the RR network of ER networks and the RR network

of SF networks exhibit different phase transitions. For example, when q = 0.4 for ER

networks and q = 0.2 for SF networks, the size of the final GSCC continuously decreases to

zero at a percolation threshold pIIc as p decreases, showing a second order phase transition

[Fig. 6 purple circle]. When q = 0.5 for ER networks and q = 0.4 for SF networks, the size

of the final GSCC jumps to zero at another percolation threshold pIc as p decreases, showing

a first order phase transition [Fig. 6 red triangle]. When q = 0.45 for ER networks and

q = 0.32 for SF networks, the size of the final GSCC first jumps to a very small non-zero

value at pIc and then continuously decreases to zero at pIIc , showing a hybrid phase transition.

The percolation thresholds pIc and pIIc are the physically meaningful extrema of R(z, q)

as a function of z, which can be either computed by dR(z, q)/dz = 0 or determined by

limz→1R(z, q).

(i) When the system exhibits a second order phase transition, R(z, q) is a monotonically

increasing function of z [Fig. 8 cyan solid line], and the maximum value of R(z, q) is

obtained when z → 1, which corresponds to the reciprocal of percolation threshold

13



pIIc . In addition, for the hybrid phase [Fig. 8 red dashed line], R(z, q) is a non-

monotonic increasing function of z, but the maximum value of R(z, q) is also obtained

when z → 1, corresponding to the reciprocal of percolation threshold pIIc . Thus the

percolation threshold pIIc becomes

pIIc =
1

limz→1R(z, q)
=

1

Φ′
1(1, 1)(1− q)m

. (41)

(ii) When the system displays a hybrid or a first order phase transition, R(z, q) as a

function of z has a peak at zc [Fig. 8 blue dashed-dot line], where zc is a root of

F (zc, q) = 0, and F (z, q) = ∂zR(z, q). The percolation threshold pIc is

pIc =
1

R(zc, q)
. (42)

We next calculate the critical coupling strengths qc1, qc2, and qmax.

(i) The critical coupling strength qc2 separates the second order and hybrid phase tran-

sitions. The cyan solid line in Fig. 8 indicates that R(z, q) monotonically increases

as z increases in the region of a second order phase transition, i.e., F (z, q) ≥ 0 for

any z ∈ [0, 1]. In the region of a hybrid phase transition, R(z, q) has a peak at zc,

i.e., F (zc, q) = 0, as shown in Fig. 8. Thus at the critical coupling strength qc2, the

function F (z, q) = 0 has only one solution z = zvc, which can be guaranteed only when

F (zvc, qc2) = ∂zF (z, q)|z=zvc,q=qc2 = 0. Thus the critical point qc2 is







F (zvc, qc2) = 0,

∂zF (z, q)|z=zvc,q=qc2 = 0.
(43)

(ii) The critical coupling strength qc1 separates the hybrid and first order phase transitions.

Figure 8 shows a peak at z = zfc, which is the smaller root of F (zfc, q) = 0, in both

the first order and hybrid phase transitions, but the two differ because in the region of

a first order phase transition R(zfc, q) is the maximum value of the function R(z, q) for

z ∈ [0, 1], while in the region of hybrid phase transition R(s)(zfc, q) < limz→1R(z, q).

Thus at the critical coupling strength qc1, the system satisfies










R(s)(zfc, qc1) = lim
z→1

R(s)(z, qc1).

F (zfc, qc1) = 0.
(44)
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(iii) Another critical point qmax appears, above which (q > qmax) the system collapses when

even a single node is removed from each network. In the collapsed regions, the function

R(s)(zmc, qmax) < 1 for z ∈ [0, 1], as with q = 0.52 in Fig. 8. The critical point qmax

separates the first order phase transition and the collapsed regions determined by






R(s)(zmc, qmax) = 1,

F (zmc, qmax) = 0.
(45)

Figure 8 shows that function R(z, q) equals 1 when z = 0 because the failure of even a

single node collapses the system. Thus the critical coupling strength qmax is

F (z, qmax)|z→0 = 0. (46)

We next calculate the sizes of the final GSCC p
(s)
∞ , the percolation thresholds pIc and p

II
c ,

the critical coupling strengths qc1 and qc2, and qmax in the RR networks of ER networks and

the RR networks of SF networks.

Substituting the generating functions for calculating the size of a single ER network of

Eq. (19) into Eqs. (39) and (40), we obtain the size of the final GSCC of the interdependent

directed ER networks,

p(s)∞ = (1− z)(1− e
〈k〉
2

(z−1)), (47)

where z satisfies

R(s)(z, q) =
1

p
=

(1− e
〈k〉
2

(z−1))[1− q +

√

(1− q)2 + 4q(1− z)(1 − e
〈k〉
2

(z−1))]m

2m(1− z)
. (48)

Substituting Eq. (48) into Eqs. (41) and (42), we obtain the percolation thresholds pIc and

pIIc of the RR network of ER networks. Figure 9(a) shows that the percolation threshold pIIc

(dash-dot line) increases as the coupling strength q increases and disappears at the critical

strength qc1 or qmax. Note that in ER networks with the same average degree 〈k〉 we have

pIIc =
2

〈k〉(1− q)3
. (49)

The percolation threshold pIc (solid line) appears at critical strength qc2 and then increases

as q increases. To calculate percolation thresholds pIc and p
II
c , critical coupling strengths qc1

and qc2, and qmax in the RR networks of ER networks, we determine the derivation function

F (z, q) of the function R(s)(z, q),

F (z, q) ≡
dR(s)(z, q)

dz
=
e

〈k〉
2

(1−z) − 〈k〉
2
(1− z)− 1

p(1− z)(e
〈k〉
2

(1−z) − 1)
−
2qm{e

〈k〉
2

(z−1)[ 〈k〉
2
(1− z)− 1] + 1}

p(1− q + a(s))a(s)
, (50)
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where a satisfies

a(s) =

√

(1− q)2 + 4q(1− z)(1 − e
〈k〉
2

(z−1)). (51)

By solving zc from F (zc, q) = 0 for each coupling strength q we get another percolation

threshold

pIc =
2m(1− zc)

(1− e
〈k〉
2

(zc−1))[1− q +

√

(1− q)2 + 4q(1− zc)(1− e
〈k〉
2

(zc−1))]m
. (52)

We obtain the critical coupling strengths qc1, qc2, and qmax by substituting Eqs. (50) and

(51) into Eqs. (43), (44), and (45), respectively. Figure 10(a) shows the phase diagram of the

RR network of ER networks where each network depends on three neighboring networks,

the curve separates the region of the second order phase transition (the green region la-

belled “Phase II”), and the region of the hybrid phase transition (the purple region labelled

“Hybrid”) is the critical strength qc2 under different average degree 〈k〉. The curve of the

critical strength qc1 separates the hybrid phase transition and the first order phase transition

(the blue region labelled “Phase I”), and the critical strength qmax separates the first order

phase transition and the region of collapse (the orange region labelled “Collapse”). These

three critical strengths increase as the average degree 〈k〉 increases, indicating that the more

dense the ER network, the more robust the system. A triple point intersected by regions

of “Phase I,” “Hybrid” and “Collapse” and another triple point intersected by regions of

“Phase II,” “Hybrid” and “Collapse” appear in the phase diagram, which is a quantitative

index that enables us to design robust systems far from the collapse region.

Computing the size of the final GSCC, the percolation thresholds, and the critical coupling

strengths in the RR networks of SF networks is similar to the procedure for RR networks

of ER networks. We substitute the generating function Eq. (37) for calculating the size

of a single SF network into Eqs. (39) and (40) and obtain the size of the final GSCC

in interdependent directed ER networks and the function R(s)(z, q). Using the function

R(s)(z, q) and its derivation, we calculate percolation thresholds pIc and pIIc in Fig. 9(b) and

the critical coupling strengths qc1, qc2, and qmax in Fig. 10(b). Note that when using Eqs. (39)

and (40) to calculate the critical coupling strength qmax we rewrite the function F (z, q) to

be

F (z, q) =
−Φ′

1(z, 1)R(z, q)

1− Φ1(z, 1)
+
R(z, q)

1− z
+

2mR(z, q)

1− q +

√

(1− q)2 + 4qp
(s)
∞

qp′∞
√

(1− q)2 + 4qp
(s)
∞

. (53)
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When q = qmax, p
(s)
∞ |z→0 = 1, and p

(s)
∞ |z→0 = −1. We solve Eq. (46) and obtain

qmax =
1

m− 1
. (54)

Note that the qmax for the RR network of directed SF networks is the same as that for the

RR network of undirected SF networks [53]. Figure 10(b) shows that for the RR network of

SF networks with m = 3, where each SF network depends on three neighboring networks,

qmax = 0.5. In the phase diagram of the RR network of SF networks there are triple points

intersected by regions labelled “Phase I,” “Hybrid” and “Collapse” that help us understand

the robustness mechanisms and suggest ways of pushing the system into a safe region. In

addition, the other critical coupling strengths qc1 and qc2 decrease as the degree distribution

exponent λ increases. Thus in RR networks of SF networks, the more heterogenous (smaller

λ) the networks, the more robust the system.

VI. CONCLUSION

We have developed a general theoretical framework for analyzing the robustness of networks

of directed networks with arbitrary degree distributions and have discovered that the phase

diagram of a network of directed networks differs from that of a network of undirected

networks. For example, the RR network of a directed ER networks shows a hybrid phase

transition that is absent in a network of undirected ER networks. We also find that system

robustness in directed networks is affected by network topology. The tree-like structure

of directed networks changes from a second order phase transition to a first order phase

transition as coupling strength q increases. An RR network of directed networks shows a

second order phase transition when the coupling strength q < qc2, a hybrid phase transition

when qc2 < q < qc1, a first order phase transition when qc1 < q < qmax, and collapses when

q > qmax. We also find triple points in the phase diagram of the RR network of both directed

ER and SF networks. These findings enable us to better understand system robustness and

to design more robust infrastructures.

The framework presented in our work suggests some questions for further study. (i)

How do in-degree and out-degree correlations in a network and degree correlations between

networks influence system robustness? (ii) The NODN model assumes that nodes in one

network are randomly dependent on nodes in other networks, but in real-world systems
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interdependent relations are not random. How do we study robustness in real-world networks

of networks? Answering these questions will expand our understanding of robustness in

interdependent complex systems.
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FIG. 1. Schematic diagram of networks of directed networks (NODN). (a), (b) and (c) are tree-like

NODNs without loops. (d) and (e) are random regular NODNs with loops. (f) A partially depen-

dent pair of two directed networks: network 3 and network 5 are coupled by directed dependency

links (dotted green lines) with a no-feedback condition [19]. A dotted directed line from node i in

one network to node j in the other network indicates that a failure of node i will cause node j to

fail. There is a fractions q35 = 5/11 of nodes in network 3 depend on the nodes of network 5 and

q53 = 6/12 fraction of nodes in network 5 depend on the nodes of network 3.

21



0 0.5 1
0

0.2

0.4

0.6

0.8

p

p
∞(s

)

(a) ER

 

 

n=1

n=2

n=4

0 0.5 1
0

0.2

0.4

0.6

0.8

p

p
∞(s

)

(b) RR

 

 

n=1

n=2

n=4

0 0.5 1
0

0.2

0.4

0.6

0.8

p

p
∞(s

)
(c) SF

 

 

n=1

n=2

n=4

FIG. 2. The percolation behaviours of tree-like networks of (a) ER networks (〈k〉 = 10), (b) RR

networks (k = 10) and (c) SF networks (λ = 2.5). For a single network (n = 1), the size of the final

GSCC continuously decreases to zero when the fraction of remaining nodes p decreases. When

the system composes more than two networks (n ≥ 2), the size of the final GSCC discontinuously

jump to zero at a critical point pIc . The symbols represent simulation results (each network layer

contains N = 106 nodes) and the solid lines are theoretic results, and they agree well with each

other.
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FIG. 3. The final GSCC sizes of the tree-like networks of (a) ER networks with different average

degrees, (b) RR networks with different degrees and (c) SF networks (λ = 2.5) with different

minimum in-degree/out-degree. The systems contains n = 4 networks. The theoretic results (solid

lines) agree well with the simulation results (symbols). When the fraction of remaining nodes p

changes, these systems all show first order phase transitions.
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FIG. 4. The critical point pIc of tree-like networks of n (a) ER networks with different average

degree 〈k〉, (b) RR networks with different degree k and (c) SF networks with different degree

distribution exponent λ. The results of ER networks and RR network are respectively computed

by Eq. (28) and Eq. (34). The results of SF networks are computed by substituting Eq. (37) to

Eq. (17). They are in good agreement with simulations. As more networks being added in, the

critical point pIc increase, indicating that the more vulnerable the system is.
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networks of ER networks with 〈k〉 < 〈k〉min completely collapse even when no node is removed

(p = 1).
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FIG. 6. Percolation behaviour of Random Regular (RR) networks of (a) ER networks (〈k〉 = 15)

and (b) SF network (λ = 2.5) with different coupling strengths q and m = 3. For both RR

networks of ER networks and RR networks of SF networks, systems show second order, hybrid and

first order phase transitions with different coupling strength q. The solid lines represent theoretic

results, and they are in perfect agreement with the simulation results (symbols). In simulations,

each layer network contains 106 nodes and each data point is averaged over 30 realizations.
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FIG. 7. The final GSCC size of RR networks of (a) ER networks with 〈k〉 = 15 and q = 0.45, and

(b) SF networks with λ = 2.5 and q = 0.32. When the degree of every network of RR network

equals to one, the system contains a single network and shows a second order phase transition. As

m increasing, the system becomes more vulnerable. The solid lines represent theoretic results, and

they are in perfect agreement with the simulation results (symbols, N = 106 and averaged over 30

realizations).
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FIG. 8. The solution of R(z, q) as a function of z in RR networks of ER networks with different

coupling strength q, where 〈k〉 = 15 and each network node has three neighbors. When q < qc2 =

0.4348, R(z, q) is a nondecreasing function of z and when z → 1, R(z, q) reaches its maximum value,

as the cyan solid line shows. When qc2 < q < qc1 = 0.4826, R(z, q) shows a peak in the region

z ∈ (0, 1) (red triangle) but the maximum value continues to be limz→1R(z, q), as the red dashed

line shows. When qc1 < q < qmax = 0.5136, R(z, q) shows a peak (blue triangle) and the peak value

is also its maximum value, as the blue dashed-dot line shows. When q ≥ qmax, R(z, q) ≤ 1 for all the

z ∈ [0, 1], as the black dot line shows. The magenta solid line shows the reference line of R(z, q) = 1.

The cyan circle and the red circle represent the percolation threshold pIIc = 1/limz→1R(z, q), and

the red triangle and blue triangle represent another percolation threshold pIc = 1/R(zc), where zc

is the critical point where the peak appears.
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FIG. 9. The percolation thresholds of RR networks of (a) ER networks with different 〈k〉 and

(b) SF networks with different λ. As the coupling strength q increasing, the system where each

network node has three neighbors shows different phase transitions: (a) The RR networks of ER

networks with small average degrees like 〈k〉 = 6 show second order phase transitions until qmax is

reached, where the system suffer from collapse; When the average degree is larger, such as 〈k〉 = 8,

the system shows a second order phase transition then changes into a hybrid phase transition

and collapse when qmax is reached; For even greater average degrees, like 〈k〉 = 12, the system

displays a second order phase transition through a hybrid and then changes into a first order phase

transition. (b) The RR networks of SF networks with small degree exponent, such as λ = 2.2, the

system shows a second order then a hybrid phase transition and collapse at last. For larger degree

exponent, systems undergoes a second order through a hybrid to a first order phase transitions. The

dashed-dot lines represent the percolation threshold pIIc , and the solid lines are another percolation

threshold pIc . These two thresholds both appear under the same q, meaning the system shows a

hybrid phase transition.
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FIG. 10. Phase diagrams of random regular networks of (a) ER networks and (b) SF networks

where each network node has three neighbors. The green region labelled “Phase II” is the region

of the second order phase transition. The purple region labelled “Hybrid” is the region of the

hybrid phase transition. The blue region labelled “Phase I” is the region of the first order phase

transition. The orange region labelled “Collapse” is the region where the system collapse even

without removing nodes. Triple points (red dots) appear in the phase diagram.
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