

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Information transfer from causal history in complex system dynamics

Peishi Jiang and Praveen Kumar Phys. Rev. E **99**, 012306 — Published 3 January 2019 DOI: 10.1103/PhysRevE.99.012306 2

3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Information Transfer from Causal History in Complex System Dynamics

Peishi Jiang and Praveen Kumar*

Ven Te Chow Hydrosystem Laboratory, Department of Civil and Environmental Engineering,

University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

(Dated: December 17, 2018)

In a multivariate evolutionary system, the present state of a variable is a resultant outcome of all interacting variables through the temporal history of the system. How can we quantify the information transfer from the history of all variables to the outcome of a specific variable at a specific time? We develop information theoretic metrics to quantify the information transfer from the entire history, called causal history. Further, we partition this causal history into immediate causal history, as a function of lag τ from the recent time, to capture the influence of recent dynamics, and the complementary distant causal history. Further, each of these influences are decomposed into self and cross feedbacks. By employing a Markov property for directed acyclic time series graph, we reduce the dimensions of the proposed information-theoretic measure to facilitate an efficient estimation algorithm. This approach further reveals an information aggregation property, that is, the information from historical dynamics are accumulated at the preceding time directly influencing the present state of variable(s) of interest. These formulations allow us to analyze complex interdependencies in unprecedented ways. We illustrate our approach for: (1) characterizing memory dependency by analyzing a synthetic system with short memory; (2) distinguishing from traditional methods such as lagged mutual information using the Lorenz chaotic model; (3) comparing the memory dependencies of two long-memory processes with and without the strange attractor using the Lorenz model and a linear Ornstein-Uhlenbeck process; and (4) illustrating how dynamics in a complex system is sustained through the interactive contribution of self and cross dependencies in both immediate and distant causal histories, using the Lorenz model and observed stream chemistry data known to exhibit 1/f long-memory.

I. INTRODUCTION

The dynamics of natural systems, such as ecosys-27 tems and climate, arise as a result of spontaneous self-28 organization. Their dynamical characteristics, such as 29 existence of strange attractors or 1/f long-memory de-30 pendencies, arise as a result of feedback between all 31 interacting variables. Information theory offers com-32 pelling approaches for characterizing the complex non-33 linear inter-dependencies present in such systems [1]. For 34 example, a recent study has argued that the sponta-35 eous formation of a self-organized structure is reflected 36 decrease of joint entropy of the system as well as 37 as increase of contemporaneous inter-dependencies among 38 interacting components [2]. However, most of the ex-39 isting information-theoretic approaches are anchored on 40 characterizing either bivariate information transfer using 41 transfer entropy or momentary information transfer [3– 42 7], or the interactions among a specific set of variables 43 by using methods based on partial information decom-44 $_{45}$ position [8–12], which becomes difficult when more than ⁴⁶ three variables are involved. These approaches provide important and insightful views associated with specific 47 interactions within a system, but do not allow us to as-48 sess the entire range of information transfer among all 49 variables. For example, we may ask how the interactions 50 ⁵¹ of several or all variables in a system determine the state ⁵² of an individual variable at a specific time. Alternatively,

⁵³ we may ask how a finite time history of interactions re-⁵⁴ sults in an observed outcome of a specific variable at a ⁵⁵ specific time. To answer these questions, we require met-⁵⁶ rics that allow us to characterize full range of causal de-⁵⁷ pendency in the system (in the Granger sense [13]), which ⁵⁸ structures the transfer of information that progressively ⁵⁹ influences a target variable.

Consider a system composed of N variables, $\vec{X}_t =$ 60 61 $\{X_t, Y_t, Z_t, ...\}_N$, varying in time. The current state of ⁶² a variable, say $Z_t \in \vec{X_t}$, is a result of the evolution-⁶³ ary history of the system $\vec{X_t} = {\vec{X_{t-1}}, \vec{X_{t-2}}, \vec{X_{t-3}}, ...},$ ⁶⁴ which we call *causal history*. We partition this his- $_{65}$ tory, based on a partitioning time lag τ with respect ⁶⁶ to the present, into recent or *immediate causal history* $\vec{K}_{t-1}, \vec{X}_{t-2}, ..., \vec{X}_{t-\tau}$ and the complementary distant 68 causal history $\{\vec{X}_{t-\tau-1}, \vec{X}_{t-\tau-2}, ...\}$. Generally, while ⁶⁹ the information from the immediate causal history is ex-⁷⁰ pected to be nondecreasing with τ , the degree and con-⁷¹ vergence of information from the distant causal history 72 informs the influence from the remaining historical dy- $_{73}$ namics beyond the lag τ . Thus, quantification of the $_{74}$ information transfer to a target variable at time t, from 75 both its immediate and distant causal histories, would ⁷⁶ delineate the dependency of the variable on the prior 77 dynamics as well as the memory in the system, which 78 are keys for understanding various complex systems [14– ⁷⁹ 17]. Therefore, the objective of this study is to quan-⁸⁰ tify and characterize the influence of a immediate, dis-⁸¹ tant, and/or entire causal history on Z_t by using an ⁸² information-theoretic framework.

⁸³ We use a directed acyclic time series graph approach

^{*} kumar1@illinois.edu

85 86 87 88 89 90 ⁹¹ advantage over traditional methods such as lagged mu- ¹⁴⁶ dencies. ⁹² tual information: (3) Characterizing the changing inter-⁹³ action information jointly provided by a target variable's self and cross dependencies, as a function τ , from both ¹⁴⁷ 94 immediate and distant causal histories: and (4) Quantify-95 ing the change in memory dependency in a system when 148 96 97 the remaining variables. 98

This paper is organized as follows. First, in Section II, 99 we provide the definitions and the properties of the in-100 formation transfer in both immediate and distant causal 101 histories based on directed acyclic time series graph rep-102 resentation of the system. Then, in Section III we imple-103 ment this approach to delineate the temporal dynamics 104 of three different systems by quantifying the information 105 transfer from causal history. We first identify the mem-106 ory dependency of a trivariate logistic model – a short-107 memory system, in Section III A. Next in Section III B, we analyze the chaotic and long-memory Lorenz model 109 for comparing the proposed approach with lagged mu-110 tual information in delineating the memory dependency ¹¹² of the system. Then, we investigate the information ¹¹³ transfer in a linear trivariate Ornstein-Uhlenbeck pro-114 cess, whose dynamics also shows long memory property ¹¹⁵ but without the existence of a stranger attractor. While ¹⁶⁴ mentary distant causal history can be naturally expressed ¹¹⁶ the model-generated synthetic data are used for analy-¹⁶⁵ as the remaining part of the causal history, $\vec{X}_t \setminus C_{\vec{V} \to Z_t}$, ¹¹⁷ sis in the previous three example, in the third example ¹¹⁸ in Section IIID, we demonstrate an application using ob- ¹⁶⁷ in Fig. 1a). By using the chain rule of MI [20], the total $_{119}$ served stream chemistry time series data, obtained in the $_{168}$ information ${\cal T}$ can be decomposed into the information ¹²⁰ Upper Hafren catchment in Wales, United Kingdom [17]. ¹⁶⁹ from (1) the immediate causal history, \mathcal{J} , and (2) the Last, summary and conclusions are given in Section IV. $_{170}$ distant causal history, \mathcal{D} , such that: 121

INFORMATION TRANSFER FROM II. 122 CAUSAL HISTORY 123

We represent the temporal dependency in the mul-124 tivariate system \vec{X}_t as a time series directed acyclic 171 Eq.(2) expresses that the information from the distant 125 $_{126}$ graph [18, 19] as illustrated in Fig. 1, where each node $_{172}$ causal history, \mathcal{D} , is provided by all the lagged nodes not ¹²⁷ represents a variable at a specific time step t (e.g., Z_t) and ¹⁷³ in the immediate history, i.e., $\vec{X}_t^- \setminus C_{\vec{V} \Rightarrow Z_t}$, through their ¹²⁸ the parents of a target node or a set of nodes are denoted ¹⁷⁴ mutual information with Z_t ; while the information from ¹²⁹ as P_{\bullet} (e.g., P_{Z_t}). The directed edge linking two lagged ¹⁷⁵ the recent dynamics, \mathcal{J} , is accounted for by the condi-¹³⁰ nodes (e.g., $X_{t-\tau_X}$ and Z_t with $\tau_X > 0$) in the graph ¹⁷⁶ tional mutual information (CMI) between the target and is indicates the direct influence from $X_{t-\tau_X}$ to Z_t . The intermediate causal history conditioned on the distant ¹³² causal influence, assumed here in a Granger sense [13], ₁₇₈ history. ¹³³ from a lagged node $X_{t-\tau_X}$ to a target Z_t can be either ¹³⁴ through a directed edge or indirectly via a causal path $_{^{135}}C_{X_{t-\tau_X}\to Z_t},$ which is a set of nodes connected by a se- $_{^{179}}$ $_{^{136}}$ quence of directed edges from $X_{t-\tau_X}$ to $Z_t.$ That is, ¹³⁷ $C_{X_{t-\tau_X} \to Z_t} \equiv \{V_{t-\tau_V} : V_t \in \vec{X_t}, \tau_V > 0, X_{t-\tau_X} \to \cdot \to \cdot_{180}$ It is noted that the empirical computations of $\mathcal{T}, \mathcal{J},$ ¹³⁸ $V_{t-\tau_V} \to \cdot \to Z_{t-\tau_Z} \} \cup \{X_{t-\tau_X}\}.$ We consider the causal $_{181}$ and \mathcal{D} in Eq.(2) are infeasible due to the potentially in-

⁸⁴ to characterize the temporal dependencies of the system ¹³⁹ influence to a target node as arising only from a node as well as for simplifying the computation of the informa- 140 earlier in time, which results in a directed acyclic graph tion transfer. Specifically, we demonstrate the features 141 (DAG) of time series. In this section, based on this DAG of our approach in terms of: (1) Information aggregation 142 time series graph representation, we provide the matheproperty in the causal history, achieved through simpli-¹⁴³ matical definition of causal history, its simplification for fication from Markovian assumption in directed acyclic 144 computation, the associated properties, and further analtime series graph; (2) Discerning system memory, and its 145 yses of causal history in terms of self and cross depen-

Α. **Definitions of Causal History**

The causal history of a target node Z_t includes all the influence of any particular variable is isolated from $_{149}$ the nodes that influence Z_t through causal paths in the ¹⁵⁰ graph, and is represented by $\vec{X}_t^- = \{\vec{X}_{t-1}, \vec{X}_{t-2}, ...\}$. ¹⁵¹ Therefore, the total information, \mathcal{T} , to Z_t given by the ¹⁵² causal history, can be expressed as the mutual informa-¹⁵³ tion (MI) [20] between the two, which is given by:

$$\mathcal{T} = I(Z_t; X_t^-). \tag{1}$$

¹⁵⁴ Further, an immediate causal history of Z_t is considered ¹⁵⁵ as a finite length causal history immediately preceding ¹⁵⁶ time $t, \vec{X}_{t-\tau} = \{X_{t-\tau}, Y_{t-\tau}, ...\}_N$ starting from all the $_{157}$ contemporaneous source nodes at lag $\tau.$ It is represented ¹⁵⁸ by a multitude of causal paths, that is, $C_{\vec{X}_{t-\tau} \Rightarrow Z_t}$ = ¹⁵⁹ $\cup_{X_{t-\tau} \in \vec{X}_{t-\tau}} C_{X_{t-\tau} \to Z_t}$ (the blue dashed box in Fig. 1a). ¹⁶⁰ To generalize the following theory, we define the imme-¹⁶¹ diate causal history as a subgraph preceding Z_t arising ¹⁶² from a set of lagged sources $\vec{V} = \{X_{t-\tau_X}, Y_{t-\tau_Y}, ...\}$ to ¹⁶³ $Z_t, C_{\vec{V} \Rightarrow Z_t} = \bigcup_{V_{t-\tau_V} \in \vec{V}} C_{V_{t-\tau_V} \to Z_t}$. Then, the comple- $_{166}$ where \backslash is the subtraction operator (the red dashed box

$$\mathcal{T} = I(Z_t; C_{\vec{V} \Rightarrow Z_t}, \vec{X}_t^- \setminus C_{\vec{V} \Rightarrow Z_t})$$

= $\underbrace{I(Z_t; \vec{X}_t^- \setminus C_{\vec{V} \Rightarrow Z_t})}_{=\mathcal{D}} + \underbrace{I(Z_t; C_{\vec{V} \Rightarrow Z_t} | \vec{X}_t^- \setminus C_{\vec{V} \Rightarrow Z_t})}_{=\mathcal{J}}$
= $\mathcal{D} + \mathcal{J}.$ (2)

В. Simplifications of $\mathcal{T}, \mathcal{J}, \text{ and } \mathcal{D}$

FIG. 1. (color online) Illustration of the causal history $\vec{X}_t^$ of a target node Z_t . (a) The partition of \vec{X}_t^- into an immediate causal history, $C_{\vec{V} \Rightarrow Z_t}$ (the dashed blue box), and the complementary distant causal history, $\vec{X}_t^- \setminus C_{\vec{V} \Rightarrow Z_t}$ (the dashed red box). The parents of the target Z_t [Eq.(3)], P_{Z_t} , contemporaneous nodes \vec{X}_{t-i} (the dashed hollow box) at an early time step t - i in the causal history [Eq.(10)].

¹⁸² finite number of nodes in \vec{X}_t^- and $\vec{X}_t^- \setminus C_{\vec{V} \Rightarrow Z_t}$. There-¹⁸³ fore, to address this challenge and connect the time series ¹⁸⁴ graph with the underlying joint probability, we assume ¹⁸⁵ the Markov property for DAG ([21], theorem 1). This is ²²² in the immediate causal history, and (2) $C_{\vec{V}\Rightarrow Z_t} \setminus P_{Z_t}^{C_{\vec{V}\Rightarrow Z_t}}$ ¹⁸⁶ consistent with prior work [5], which states that any node ²²³ – the remaining intermediate nodes in $C_{\vec{V}\Rightarrow Z_t}$, enables a ¹⁸⁷ Z_t in the graph is independent of all its per detailed and the states in the states i $_{187}$ Z_t in the graph is independent of all its non-descendants $_{224}$ further simplification of \mathcal{J} , that is (see Appendix A for ¹⁸⁸ given the knowledge of its parents P_{Z_t} [22]. For the graph ²²⁵ derivations): 189 in Fig. 1, for example, this implies that given its parents ¹⁹⁰ P_{Z_t} (the cyan colored box), the target node Z_t is condi-¹⁹¹ tionally independent of the rest of its non-descendants, 192 $\vec{X}_t^- \setminus P_{Z_t}$.

¹⁹⁵ tional independence and the node separation in the graph ²²⁹ history given its parents. Also, by substituting Eqs.(4) ¹⁹⁶ based on the Markov property [5]. The simplification of ²³⁰ and (5) back to Eq.(2) and noticing $P_{Z_t} \subset P_{Z_t}^{C_{\vec{V}} \Rightarrow Z_t} \cup \vec{W_{\tau}}$, ¹⁹⁷ \mathcal{T} can be immediately achieved by using chain rule as ²³¹ we can again utilize the Markov property to get: ¹⁹⁸ follows (note that $P_{Z_t} \subset \vec{X}_t^-$):

$$\mathcal{T} = I(Z_t; P_{Z_t}, \vec{X}_t^- \backslash P_{Z_t})$$

= $I(Z_t; P_{Z_t}) + \underbrace{I(Z_t; \vec{X}_t^- \backslash P_{Z_t} \mid P_{Z_t})}_{=0}$
= $I(Z_t; P_{Z_t}),$ (3)

¹⁹⁹ which is the mutual information between Z_t and its par-²⁰⁰ ents P_{Z_t} (see Fig. 1a). The zero value for $I(Z_t; \vec{X}_t^- \setminus P_{Z_t} \mid$ $_{201} P_{Z_t}$) results from the Markov property that separates Z_t $_{237}$ C. Information Aggregation Property of \mathcal{T} and \mathcal{J} 202 from the remaining historical nodes given its parents.

Furthermore, the distant causal history, $\vec{X}_t^- \backslash C_{\vec{V} \Rightarrow Z_t}$, ²³⁸ 203 204 which serves in Eq.(2) as the condition set and infor- 239 property of information aggregation from intermediate

²⁰⁵ mation contributor in \mathcal{J} and \mathcal{D} , respectively, can be 206 partitioned into two parts: (1) the parents of both 207 Z_t and the immediate causal history $C_{\vec{V}\Rightarrow Z_t}$ exclud- $_{\rm 208}$ ing those in the immediate causal history, denoted as ²⁰⁹ $W_{\tau} = P_{C_{\vec{V} \Rightarrow Z_t} \cup Z_t} \setminus C_{\vec{V} \Rightarrow Z_t}$ (the grey nodes in Fig. 1a), ²¹⁰ and (2) the remaining nodes, $\vec{X}_t^- \setminus (C_{\vec{V} \Rightarrow Z_t} \cup \vec{W}_{\tau})$. Then, ²¹¹ in a similar manner as for \mathcal{T} , the Markov property and ²¹² the chain rule also facilitate the simplifications for \mathcal{D} :

$$\mathcal{D} = I(Z_t; \vec{W}_{\tau}, \vec{X}_t^- \setminus (C_{\vec{V} \Rightarrow Z_t} \cup \vec{W}_{\tau}))$$

$$= I(Z_t; \vec{W}_{\tau}) + \underbrace{I(Z_t; \vec{X}_t^- \setminus (C_{\vec{V} \Rightarrow Z_t} \cup \vec{W}_{\tau}) \mid \vec{W}_{\tau})}_{=0}$$

$$= I(Z_t; \vec{W}_{\tau}), \qquad (4)$$

²¹³ and for \mathcal{J} :

$$\mathcal{I} = I(Z_t; C_{\vec{V} \Rightarrow Z_t} | \vec{X}_t^- \backslash C_{\vec{V} \Rightarrow Z_t})$$

= $I(Z_t; C_{\vec{V} \Rightarrow Z_t} | \vec{W}_{\tau}).$ (5)

²¹⁴ Both, the zero value for $I(Z_t; \vec{X}_t^- \setminus (C_{\vec{V} \Rightarrow Z_t} \cup \vec{W}_\tau) \mid \vec{W}_\tau)$ are identified by the cyan colored box. (b) The aggregation $_{215}$ and the reduction of the condition set of \mathcal{J} into \overline{W}_{τ} in of contemporaneous momentary information from each set of 216 Eqs.(4) and (5), respectively, are due to the conditional ²¹⁷ independence between Z_t and $\vec{X}_t \setminus (C_{\vec{V} \Rightarrow Z_t} \cup \vec{W}_{\tau})$ given ²¹⁸ the knowledge of \vec{W}_{τ} , which separates the immediate fi-²¹⁹ nite history associated with Z_t and Z_t itself from the ²²⁰ remaining history. In fact, a decomposition of $C_{\vec{V}\Rightarrow Z_{t}}$, ²²¹ into (1) $P_{Z_t}^{C_{\vec{V} \Rightarrow Z_t}} \equiv P_{Z_t} \cap C_{\vec{V} \Rightarrow Z_t}$ – the direct causes of Z_t

$$\mathcal{J} = I(Z_t; P_{Z_t}^{C_{\vec{V} \Rightarrow Z_t}} \mid \vec{W_\tau}), \tag{6}$$

226 which is achieved by taking the chain rule expansion ¹⁹³ Now, the main idea of reducing the dimensions in \mathcal{T} , ²²⁷ based on $C_{\vec{V} \Rightarrow Z_t}$ and dropping off the other term because ¹⁹⁴ \mathcal{J} and \mathcal{D} originates from the connection between condi-²²⁸ of the conditional independence of Z_t with the remaining

$$\mathcal{T} = I(Z_t; P_{Z_t}^{C_{\vec{V} \Rightarrow Z_t}}, \vec{W}_{\tau}) = I(Z_t; P_{Z_t}),$$

 $_{232}$ which reduces to Eq.(3) as we should expect and is con-233 stant in terms of the time lag τ . We also note that the 234 quantities \mathcal{J} and \mathcal{D} are functions of τ , but this is not in-²³⁵ cluded in the notation for brevity as this does not cause 236 any ambiguity.

The simplifications in Eqs.(3)-(6) imply an important

²⁴⁰ nodes to the direct causes of the node(s) of interest. For ²⁴¹ all the three information transfer measures, the informa-242 tion accumulate at the nodes that are either the parents ²⁴³ of the target node Z_t [P_{Z_t} for \mathcal{T} in Eq.(3) and $P_{Z_t}^{C_{\vec{V}} \Rightarrow Z_t}$ ²⁴⁴ for \mathcal{J} in Eq.(6)] or the parents of the union of Z_t and ²⁴⁵ its immediate causal history $[\vec{W}_{\tau} \text{ for } \mathcal{D} \text{ in Eq.}(4)]$. This ²⁴⁶ property, derived from the Markov property for DAG, il-²⁴⁷ lustrates that the latest observations actually contain all ²⁴⁸ the information of the earlier dynamics in the system. ²⁴⁹ transferred via the causal paths, and influence the states of the variables at the next stage. 250

Further insights associated with such information ag-251 ²⁵² gregation property can be obtained by a decomposition ²⁵³ of both \mathcal{T} and \mathcal{J} . We separate $C_{\vec{V}\Rightarrow Z_t}$ into τ set of $_{254}$ nodes, where τ is the maximum time lag between the 255 target Z_t and the earliest node in the source nodes \vec{V} , ²⁵⁶ that is, $\tau = \arg \max_k \{X_{t-k} : X_{t-k} \in C_{\vec{V} \Rightarrow Z_t}\}$. Each set $_{\rm 257}$ of nodes \vec{V}_{t-i} represents all the contemporaneous nodes ²⁵⁸ in $C_{\vec{V} \Rightarrow Z_{i}}$ at the time step t - i $(1 \leq i \leq \tau)$, that is, 259 $\vec{V}_{t-i} = \{V_{t-\tau_V} : V_{t-\tau_V} \in C_{\vec{V}\Rightarrow Z_t} \mid \tau_V = i\}.$ It is clear ²⁶⁰ that $C_{\vec{V}\Rightarrow Z_t} = \bigcup_{i=1}^{\tau} \vec{V}_{t-i}$ and $\vec{V}_{t-i_1} \cap \vec{V}_{t-i_2} = \emptyset$ for $i_1 \neq i_2$. ²⁶¹ Therefore, we can express \mathcal{J} in Eq.(5) as:

$$\mathcal{J} = I(Z_t; \vec{V}_{t-1}, ..., \vec{V}_{t-\tau} \mid \vec{W}_{\tau}),$$

262 and by using the chain rule for conditional mutual infor- $_{263}$ mation [23], we get:

$$\mathcal{J} = \sum_{i=1}^{\tau} I(Z_t; \vec{V}_{t-i} \mid \vec{W}_{\tau}, \vec{V}_{t-i-1}, ..., \vec{V}_{t-\tau}).$$
(7)

Note that $\{\vec{V}_{t-i-1}, ..., \vec{V}_{t-\tau}\}$ are actually the remaining parents of both Z_t and the subgraph $C_{\vec{V}_{t-i} \Rightarrow Z_t}$ initiated \vec{V}_{t-i} , which are not in \vec{W}_{τ} . Therefore, the condition ²⁹¹ causal history itself, and thus $\mathcal{J} = \mathcal{T}$, which based on 267 set in Eq.(7), $\{\vec{W}_{\tau}, \vec{V}_{t-i-1}, ..., \vec{V}_{t-\tau}\}$, in fact contains the ²⁹² Eq.(9) gives: ²⁶⁸ parents of the union of Z_t and $C_{\vec{V}_{t-i}\Rightarrow Z_t}$, or $P_{C_{\vec{V}_{t-i}\Rightarrow Z_t}\cup Z_t}$. ²⁶⁹ Also, due to the Markov property of the time series DAG, ²⁷⁰ $P_{C_{\vec{V}_{t-i}\Rightarrow Z_t}\cup Z_t}$ separates $C_{\vec{V}_{t-i}\Rightarrow Z_t}\cup Z_t$ from their non-271 descendants, including the remaining nodes in the condi- $_{272}$ tions in Eq.(7), and thus gives:

$$\mathcal{G}_{i} \equiv I(Z_{t}; \vec{V}_{t-i} \mid \vec{W}_{\tau}, \vec{V}_{t-i-1}, ..., \vec{V}_{t-\tau})
= I(Z_{t}; \vec{V}_{t-i} \mid P_{C_{\vec{V}_{t-i} \Rightarrow Z_{t}} \cup Z_{t}} \setminus C_{\vec{V}_{t-i} \Rightarrow Z_{t}})$$
(8)

 \mathcal{G}_i is the generalized version of the momentary in-²⁷⁴ formation transfer along causal paths [12, 18] from mul-²⁷⁵ tiple source nodes \vec{V}_{t-i} to Z_t along the multiple causal ²⁹⁷ in Fig. 1b. Note that, a measure similar to Eqs.(7)-(10) is $_{^{276}}$ paths $C_{\vec{V}_{t-i}\Rightarrow Z_t}.$ It quantifies the uncertainty reduction $_{\it 277}$ in Z_t due to \vec{V}_{t-i} conditioned on the parents of both Z_t ²⁷⁸ and $C_{\vec{V}_{t-i}\Rightarrow Z_t} \cup Z_t$,

Correspondingly, Eq.(7) can thus be simplified as: 279

$$\mathcal{J} = \sum_{i=1}^{\tau} \mathcal{G}_i = \sum_{i=1}^{\tau} I(Z_t; \vec{V}_{t-i} \mid P_{C_{\vec{V}_{t-i}} \Rightarrow Z_t} \cup Z_t \setminus C_{\vec{V}_{t-i} \Rightarrow Z_t}).$$
(9)

FIG. 2. (color online) Illustration of the self and cross dependencies in both simplified immediate and distant causal histories for a target Z_t (the black node). The self-dependencies, $\vec{Z}_{\mathcal{J}}$, and the complementary part, $\vec{Z}'_{\mathcal{J}}$, in the simplified immediate causal history, $P_{Z_t}^{C_{\vec{V}} \Rightarrow Z_t}$, are identified in solid and dashed black boxes, respectively. The self-dependencies, $\vec{Z}_{\mathcal{D}}$, and the complementary part, $\vec{Z}_{\mathcal{D}}$, in the simplified distant causal history, \vec{W}_{τ} , are identified in solid and dashed grey boxes, respectively.

This equation elucidates that the information given by a sequence of dynamics preceding Z_t , i.e., its immediate 282 causal history, is an accumulation of the momentary information transfer from the contemporaneous dynamics 283 at each time step involved in this finite history. 284

Such accumulation of momentary information can be 285 286 generalized to the total information \mathcal{T} if the source 287 nodes \vec{V} of the immediate causal history are taken 288 as all the variables at an infinite past, $\vec{X}_{t-\tau}$ = 289 $\{V_{t-\tau}, X_{t-\tau}, Y_{t-\tau}, Z_{t-\tau}, ...\}$, with $\tau \to \infty$. In this case, 290 the immediate causal history is naturally the whole

$$\mathcal{T} = \lim_{\tau \to \infty} \sum_{i=1}^{\tau} I(Z_t; \vec{X}_{t-i} \mid P_{C_{\vec{X}_{t-i} \Rightarrow Z_t} \cup Z_t} \setminus C_{\vec{V}_{t-i} \Rightarrow Z_t}).$$
(10)

 $_{293}$ By relating the above equation with Eq.(2), again we see ²⁹⁴ that the momentary information from all the previous in-²⁹⁵ termediate nodes in the causal history are accumulated at ²⁹⁶ the nodes that directly influence the target Z_t , as shown ²⁹⁸ proposed in [5], called the decomposed transfer entropy. ²⁹⁹ It approximates the information coming from all the his-300 torical states of a source variable \vec{X}_t^- as the summation $_{301}$ of individual conditional mutual information from each $_{302}$ lagged $X_{t-\tau}$ in a finite set of \vec{X}_t^- . This is different from $_{303}$ the information aggregation of ${\cal J}$ and ${\cal T}$ proposed here in $_{304}$ that Eqs.(9) and (10) approximate the information from ³⁰⁵ the historical states of multiple source variables to the 306 target.

D. Interactions from Self-Feedbacks in \mathcal{J} and \mathcal{D} 307

To further dissect the information transfer we charac-308 ³⁰⁹ terize the interaction information arising from self and $_{310}$ cross dependencies of a target variable Z_t in both imme-311 diate and distant causal histories. Note that interaction $_{312}$ information between two sets of source nodes A and B $_{313}$ contributing information to Z_t is given as:

$$\mathcal{I} = I(Z_t; \vec{A} | \vec{B}) - I(Z_t; \vec{A}) = I(Z_t; \vec{A}, \vec{B}) - [I(Z_t; \vec{A}) + I(Z_t; \vec{B})].$$
(11)

³¹⁴ For distant causal history, represented by \vec{W}_{τ} , the two ³¹⁵ decomposed parts include: (1) a self-feedback component ³¹⁶ of $Z_t, \vec{Z}_{\mathcal{D}} \equiv \{V_{t-\tau} \in \vec{W}_{\tau} \mid V = Z\}$ (the grey box in Fig. 317 2); and (2) the complementary component, $\vec{Z}'_{\mathcal{D}} \equiv \vec{W}_{\tau} \setminus \vec{Z}_{\mathcal{D}}$ 318 (the dashed grey box in Fig. 2). The difference between $_{319}$ ${\cal D}$ and the summation of the mutual information between $_{320}$ Z_t and each of the two components in W_{τ} then accounts $_{321}$ for an interaction information, $\mathcal{I}_{\mathcal{D}}$, which is given by:

$$\mathcal{I}_{\mathcal{D}} = \mathcal{D} - [I(Z_t; \vec{Z}_{\mathcal{D}}) + I(Z_t; \vec{Z}_{\mathcal{D}})].$$
(12)

 $_{322} \mathcal{I}_{\mathcal{D}}$ quantifies the interaction information in Eq.(11) $_{323}$ transferred to the target Z_t from its self-dependency, $_{373}$ $_{324}$ \vec{Z}_{D} , as well as the complementary component, \vec{Z}'_{D} , in $_{374}$ ³²⁵ distant history. A negative $\mathcal{I}_{\mathcal{D}}$ [i.e., $\mathcal{D} < I(Z_t; \vec{Z}_{\mathcal{D}}) +$ $_{326} I(Z_t; \vec{Z}'_{\mathcal{D}})$ shows a net redundancy in the interaction $_{375}$ $_{327}$ between the two components, while a positive $\mathcal{I}_{\mathcal{D}}$ [i.e., $_{376}$ tion transfer in the causal history of a nonlinear model- $_{328} \mathcal{D} > I(Z_t; \vec{Z}_{\mathcal{D}}) + I(Z_t; \vec{Z}'_{\mathcal{D}})]$ illustrates a net synergistic $_{377}$ generated synthetic data. Consider a trivariate coupled 329 influence on the target.

Similarly, the simplified immediate causal history of Z_t , represented by $P_{Z_t}^{C_{\vec{V}} \Rightarrow Z_t}$, can be partitioned into (1) a component containing the self-dependence of the target, $\vec{Z}_{\mathcal{J}} \equiv \{V_{t-\tau} \in P_{Z_t}^{C_{\vec{V}} \Rightarrow Z_t} \mid V = Z\}$ (the black box in Fig. ³³⁴ 2); and (2) the complementary part, $\vec{Z}'_{\mathcal{J}} \equiv P_{Z_t}^{C_{\vec{V}} \Rightarrow Z_t} \setminus \vec{Z}_{\mathcal{J}}$ ³⁷⁹ where $\eta_t^{X_i} \in [0, 1]$ is a uniform noise term and $0 < \epsilon < 1$ ³⁵⁵ (the dashed black box in Fig. 2). The corresponding ³⁸⁰ is its coupling strength. To investigate the total in-336 interaction information from the two parts of immediate 381 formation and its two components to the target node 337 causal history, $\mathcal{I}_{\mathcal{J}}$, can be computed as:

$$\mathcal{I}_{\mathcal{J}} = \mathcal{J} - [I(Z_t; \vec{Z}_{\mathcal{J}} \mid \vec{W}_{\tau}) + I(Z_t; \vec{Z}_{\mathcal{J}}' \mid \vec{W}_{\tau})], \quad (13)$$

³³⁹ from its self and cross dependencies in the immediate ³⁸⁶ $\epsilon \in [0.1, 0.2, 0.3, 0.5, 0.8]$. For each pair of τ and ϵ , 10,000 causal history. 340

341 ³⁴² is used for investigating how the influence from a source ³⁸⁹ an average behavior. To avoid the infinite dimensions $_{343}$ node $X_{t-\tau}$ to Z_t is intervened by the immediate nodes $_{390}$ in Eq.(2) in the computation, we compute \mathcal{T}, \mathcal{D} and ³⁴⁴ in the causal path $C_{X_{t-\tau} \to Z_t}$. In this study, we evaluate ³⁹¹ \mathcal{J} based on Eqs.(3), (4), and (6), respectively. The k-³⁴⁵ the interaction effects on Z_t from immediate and distant ³⁹² nearest-neighbor (kNN) estimator [4, 24] is adopted for ³⁴⁶ causal histories in terms of: first, Z_t 's own history, and ³⁹³ the estimation of \mathcal{J} , \mathcal{T} and \mathcal{D} with k = 5 (low k facil-347 second, historical states of the other variables.

APPLICATIONS III.

348

349

³⁵¹ tem, we quantify the information transfer from the causal 352 history in three different systems. We first character-353 ize the temporal dependency of a short-memory sys-354 tem through a trivariate logistic model. Then, we illustrate how the proposed approach is different from lagged 355 mutual information in addressing system's memory de-356 357 pendency using an example of a chaotic system – the 358 Lorenz model. Further, we compare the Lorenz model ³⁵⁹ with a trivariate Ornstein-Uhlenbeck process to inves-³⁶⁰ tigate how the information transfer differs in processes ³⁶¹ with and without strange attractor. Finally, we quan-362 tify the memory dependency from time series observations, representing catchment chemistry, which is known 363 to have long-term dependency. Especially, by decompos-364 ing the distant history into the self-feedback of the target 365 and the complementary component characterizing infor-366 mation transfer from other interacting variables, we ob-367 $_{368}$ serve the redundancy-dominated \mathcal{J} , as well as consistent $_{369}$ nonzero and synergy-dominated \mathcal{D} in both the Lorenz ³⁷⁰ model and the stream chemistry system, which we con-³⁷¹ jecture as sustaining chaotic and fractal features of the 372 two systems.

Α. Trivariate Logistic System: a Short-memory System

In the following, we empirically analyze the informa-378 logistic system, mathematically expressed as:

$$X_{i,t} = \frac{1-\epsilon}{3} \sum_{j=1}^{3} 4X_{j,t-1}(1-X_{j,t-1}) + \epsilon \eta_t^{X_i}, i \in \{1,2,3\}$$
(14)

380 is its coupling strength. To investigate the total in- $_{382} X_{3,t}$, we consider the immediate causal history as the ³⁸³ causal subgraph $C_{\{X_{1,t-\tau},X_{2,t-\tau},X_{3,t-\tau}\}\Rightarrow X_{3,t}}$ starting at ³⁸⁴ an earlier time step $t-\tau$ ($\tau \geq 1$) (see Fig. 3a). \mathcal{J} , $_{338}$ quantifying the conditional interaction information to Z_t $_{385} \mathcal{D}$ and \mathcal{T} are calculated for τ ranging from 1 to 50 and ³⁸⁷ data points are generated to conduct the empirical es-We also note that in [18], the interaction information ₃₈₈ timations, with an ensemble of 10 runs for each to get ³⁹⁴ itates a low bias of the estimated MI and CMI [4]). In ³⁹⁵ the next two applications, the computation of \mathcal{T}, \mathcal{D} , and $_{396}$ \mathcal{J} are also conducted in the same manner.

The contribution of immediate causal history \mathcal{J} , and 397 ³⁹⁸ the proportion of distant causal history, \mathcal{D} , in the total To illustrate the capability of the approach described $_{399}$ information transfer $\mathcal{T}, \mathcal{D}/\mathcal{T}$, are shown in Fig. 3b. We $_{350}$ above for delineating the temporal dependency of a sys- $_{400}$ observe that for the range of noise coupling strengths ϵ ,

FIG. 3. (color online) Illustration of the trivariate coupled the same as in Fig. 1a). (b) Plots of $\mathcal{J}, \mathcal{D}/\mathcal{T}, \bar{\mathcal{S}}, \mathcal{I}_{\mathcal{D}}$ and $\mathcal{I}_{\mathcal{T}}$ for τ ranging from 1 to 50 with $\epsilon \in [0.1, 0.2, 0.3, 0.5, 0.8]$ (blue and red crosses, connected through a vertical line, represent the convergence points of $\mathcal{J}, \mathcal{D}/\mathcal{T}$, and \mathcal{S} for $\epsilon = 0.1$ and $\epsilon = 0.2$, respectively; note that results for $\epsilon = 0.8$ are not plotted (except \mathcal{J}) due to its high variability resulting from a near-zero total information \mathcal{T}).

402 403 404 405 coupled logistic model has a short memory for influenc- 450 Lorenz model is prototypical of its chaotic behavior [28]. $_{406}$ ing the target. Further, the decrease of \mathcal{J} with increasing $_{451}$ that is, its dynamics are contained in a strange attractor $_{407}$ coupling strength ϵ implies that a strong noise can reduce $_{452}$ with a fractal dimension between 2 and 3, and its gov-408 the information transfer from the preceding finite length 453 erning equation is given by a system of three variables

⁴⁰⁹ period and, thus, also reduce the total information in this 410 short-memory system.

Also, it is noted that the curves in \mathcal{D}/\mathcal{T} decrease with 411 $_{412}$ increasing τ but intersect for different values of ϵ . This is 413 because of different interactions and synchronization of 414 coupled logistic maps as a function of ϵ [25–27]. There-⁴¹⁵ fore, we compute the lag synchronization for each pair of ⁴¹⁶ lagged variables $X_{i,t-\tau}$ and $X_{j,t}$ $(i,j \in \{1,2,3\})$ with τ ⁴¹⁷ ranging from 1 to 50, which is given by:

$$S_{ij}(\tau) = \left\{ \frac{E[(X_{i,t-\tau} - X_{j,t})^2]}{[E(X_{i,t-\tau}^2)E(X_{j,t}^2)]^{1/2}} \right\}^{0.5}, \qquad (15)$$

 $_{418}$ where E is the expectation function. Since the dynam-⁴¹⁹ ics is highly symmetric in terms of $\{X_1, X_2, X_3\}$ for this ⁴²⁰ trivariate model, we compute the averaged lag synchro-⁴²¹ nization $\overline{S}(\tau)$ as:

$$\bar{\mathcal{S}}(\tau) = \frac{\sum_{i,j} \mathcal{S}_{ij}(\tau)}{9},\tag{16}$$

⁴²² which is sketched in the middle plot of Fig. 3b. It shows 423 that for each noise coupling strength ϵ , \bar{S} oscillates for $_{424}$ small τ , and then the amplitude decreases and \bar{S} even- $_{425}$ tually converges with increasing τ , implying a consistent ⁴²⁶ similarity structure between each pair of lagged variables ⁴²⁷ given an ϵ . The convergence of the averaged lag synchro-⁴²⁸ nization, $\bar{\mathcal{S}}$, implies that the similarity between a target ⁴²⁹ $X_{j,t}$ and a lagged history node $X_{i,t-\tau}$ gradually becomes $_{430}$ invariant with increasing τ . It is consistent with the convergences of both \mathcal{J} and \mathcal{D}/\mathcal{T} for each ϵ , which are il- $_{432}$ lustrated for $\epsilon = 0.1$ and $\epsilon = 0.2$ in blue and red crosses, respectively. 433

Further, the interaction information $\mathcal{I}_{\mathcal{D}}$ and $\mathcal{I}_{\mathcal{I}}$ in-434 creases and decreases with time lag τ , and then converges 435 ⁴³⁶ to zero and a negative value, respectively. The rapid con-⁴³⁷ vergence to the asymptotic values suggests no synergy or logistic model. (a) The times series graph of the system with 438 redundancy for this short-memory model. Meanwhile, the causal subgraph $C_{\{X_{1,t-\tau},X_{2,t-\tau},X_{3,t-\tau}\}\Rightarrow X_{3,t}}$ as the im- 439 the drop of $\mathcal{I}_{\mathcal{J}}$ with increasing τ means the contribumediate causal history (the representations of the nodes are 440 tions from self and cross dependencies in the immediate ⁴⁴¹ causal history share a higher redundancy.

The Lorenz Model: a Comparison with Lagged 442 в. 443 **Mutual Information**

Now, we perform the analysis of the Lorenz model to 444 ⁴⁴⁵ investigate the difference between the proposed measures $_{401}$ J and \mathcal{D}/\mathcal{T} increases and decreases, respectively, with $_{446}$ of causal history and traditional methods such as lagged lag τ , and \mathcal{D}/\mathcal{T} achieves asymptotic convergence to zero 447 mutual information in capturing the temporal depenwhen the lag is sufficiently large. In particular, the con- 448 dency of a system, as well as to understand the potential vergence to zero of \mathcal{D}/\mathcal{T} illustrates that this trivariate 449 interdependencies embedded in its chaotic behavior. The

FIG. 4. (color online) Illustration of the Lorenz model with parameters $\sigma = 10$, $\rho = 28$ and $\beta = 8/3$. (a) The times series graph of the system with the causal subgraph $C_{\{X_{t-\tau}, Y_{t-\tau}, Z_{t-\tau}\} \Rightarrow U_t}$ ($U \in \{X, Y, Z\}$) as the immediate causal history. (b) The corresponding plots of the lagged mutual information, \mathcal{J} , and \mathcal{D} for the time lag τ ranging from 1 to 1000. (c) The corresponding plots of $\mathcal{I}_{\mathcal{D}}, \mathcal{I}_{\mathcal{J}}$, and $\mathcal{J} - \mathcal{D}$ for the time lag τ ranging from 1 to 1000.

498

454 X_t, Y_t and Z_t as:

$$\frac{dX_t}{dt} = \sigma(Y_t - X_t) \tag{17a}$$

$$\frac{dY_t}{dt} = X_t(\rho - Z_t) - Y_t \tag{17b}$$

$$\frac{dZ_t}{dt} = X_t Y_t - \beta Z_t, \qquad (17c)$$

⁴⁵⁵ where the parameters σ , ρ and β in this study are set as ⁴⁵⁶ 10, 28, and 8/3, respectively.

To analyze the information dynamics in the system as 457 well as the resulting long-term dependence, we empiri-458 459 cally quantify the influence on a target $U_t \in \{X_t, Y_t, Z_t\}$ ⁴⁶⁰ based on (1) the lagged mutual information between each ⁴⁶¹ pair of variables $I(U_t; V_{t-\tau dt})$, where $V_t \in \{X_t, Y_t, Z_t\}$, $_{462}$ and τ and dt are the lag step and the time interval, ⁴⁶³ respectively; (2) the information transfer from the im-464 mediate and distant causal histories for each variable, 465 \mathcal{J} and \mathcal{D} , respectively; and (3) the interaction infor-466 mation contributed by a self-feedback and the corre-467 sponding complementary components in both distant 468 and immediate causal history, $\mathcal{I}_{\mathcal{D}}$ and $\mathcal{I}_{\mathcal{I}}$, as indicated $_{469}$ in Eqs.(12) and (13), respectively. The immediate causal 470 history is now the subgraph $C_{\{X_{t-\tau dt}, Y_{t-\tau dt}, Z_{t-\tau dt}\} \Rightarrow U_t}$ ⁴⁷¹ (see Fig. 4a), from which we can observe that given a $_{472}$ time lag τdt the representative distant causal history

⁴⁷³ $\vec{W}_{\tau} = \{X_{t-(\tau+1)dt}, Y_{t-(\tau+1)dt}, Z_{t-(\tau+1)dt}\}\)$. The mea-⁴⁷⁴ sures are calculated for τ ranging from 1 to 1000 with the ⁴⁷⁵ time interval dt = 0.01. 10,000 data points are generated ⁴⁷⁶ to conduct the empirical estimations, with an ensemble ⁴⁷⁷ of 10 runs to get an average behavior.

The results of the lagged mutual information, \mathcal{D} , and \mathcal{J} 478 $_{479}$ are shown in Fig. 4b. The quantities \mathcal{J} and \mathcal{D} increases 480 and decreases, respectively, with increasing τ , converg- $_{481}$ ing to some nonzero values when τ is around 500. The 482 consistent nonzero \mathcal{D} for large τ arises from the fact that ⁴⁸³ the Lorenz system is a long-memory process such that information provided from the distant history informs the 484 485 present dynamics. Meanwhile, the lagged mutual infor-486 mation, $I(U_t; V_{t-\tau dt})$, for all the three variables shows 487 strong oscillations and gradually decays to zero. The os-488 cillations are due to the chaotic behavior where the 'but-489 terfly' trajectory of the strange attractor in this phase ⁴⁹⁰ space determines the frequency of these oscillations, and ⁴⁹¹ the slow decay to zero reflects the long term dependency. ⁴⁹² However, the lagged mutual information does not show the consistent information contributed from the past as \mathcal{D} 493 does. Therefore, the proposed information transfer from 494 the causal history provides a view for analyzing the mem-495 $_{\tt 496}$ ory dependency of the system that is complementary to traditional methods such as lagged mutual information. 497

Furthermore, the difference between \mathcal{J} and \mathcal{D} as well

FIG. 5. (color online) Illustration of the Ornstein-Uhlenbeck process in Eq.(18). (a) The trajectories of the process (left) and the time series of each variable (right). (b) The corresponding plots of the lagged mutual information, \mathcal{J} , and \mathcal{D} for the time lag τ ranging from 1 to 1000. (c) The corresponding plots of $\mathcal{I}_{\mathcal{D}}, \mathcal{I}_{\mathcal{J}}, \text{ and } \mathcal{J} - \mathcal{D}$ for the time lag τ ranging from 1 to 1000.

522

499 as their interaction information $\mathcal{I}_{\mathcal{J}}$ and $\mathcal{I}_{\mathcal{D}},$ shown in 521 $_{500}$ Fig. 4(c), illustrate different roles of the immediate and distant causal histories in shaping the target. First, the 501 recent dynamics of the Lorenz model has a stronger influ-502 503 ence on the target than the remaining earlier dynamics as time lag τ becomes larger than around 200. This is 504 evidenced by the convergence of $\mathcal{J} - \mathcal{D}$ to a positive value 505 (the black thick line). Also, the convergence of $\mathcal{I}_{\mathcal{T}}$ to a 506 negative value (the blue thick line) implies a higher re-507 dundancy effect from the interaction information of cross 508 and self dependencies in the immediate causal history, as 509 ⁵¹⁰ observed in the trivariate chaotic map. Meanwhile, the convergence of $\mathcal{I}_{\mathcal{D}}$ to zero (the orange thick line) sug-511 ⁵¹² gests a balanced contribution from synergistic and redundant effects, each of which are not necessarily zero in 513 the Lorenz model due to the nonzero convergence of \mathcal{D} 514 plotted in Fig.4(b). In short, the Lorenz model with a 515 $_{516}$ strange attractor shows each variable is affected by (1) a ⁵¹⁷ strong influence given by immediate causal history with dominant redundant effects from the self and cross depen-518 ζ_{519} dencies, and (2) less influence from distant causal history ζ_{522} where ζ_X , ζ_Y and ζ_Z are independently and identically ⁵²⁰ with balanced redundancy and synergistic effects.

C. The Ornstein-Uhlenbeck process: a Long-Memory Process without Strange Attractor

523 To investigate the difference between processes with 524 and without strange attractors in terms of the informa-⁵²⁵ tion transfer from causal history, we now conduct the ⁵²⁶ analysis on a trivariate linear Ornstein-Uhlenbeck (OU) 527 process with long-term dependency. The OU process is ⁵²⁸ chosen such that the model has the same structure of the 529 directed acyclic time series graph as the Lorenz model $_{530}$ shown in Fig. 4(a) and it is stationary, which is given by: 531

$$\frac{dX_t}{dt} = -0.5X_t + 0.3Y_t + \zeta_X \tag{18a}$$

$$\frac{dY_t}{dt} = 0.4X_t - 0.4Y_t - 0.3Z_t + \zeta_Y$$
(18b)

$$\frac{dZ_t}{dt} = 0.4X_t + 0.6Y_t - 0.7Z_t + \zeta_Z, \qquad (18c)$$

533 distributed noise terms following standard normal dis-⁵³⁴ tribution. As in the analysis of the Lorenz model, we ⁵³⁵ quantify the influence on each variable in the OU process ⁵³⁶ in terms of lagged mutual information, the information from immediate and distant causal history \mathcal{J} and \mathcal{D} , and ⁵³⁸ their interaction information $\mathcal{I}_{\mathcal{J}}$ and $\mathcal{I}_{\mathcal{D}}$. The computation settings of the above information-theoretic measures 539 are the same as the Lorenz model. The trajectory and the 540 time series of each variable of the OU process are plot-541 ted in Fig. 5(a) with time interval dt = 0.01 and 10,000 542 simulated data points, visually showing that the dynam-543 ics are confined in a three-dimensional confined domain 544 which is not a strange attractor. 545

The long-memory property of the OU process in 546 Eq.(18) is evidenced in the non-zero convergence of \mathcal{D} 547 and a slow-decay of the auto mutual information of each variable in Fig. 5(b), as also observed in the Lorenz model 549 Nevertheless, different from the Lorenz (Fig. 4(b)). 550 model which shows a higher convergence value in \mathcal{J} , the 551 convergence value of \mathcal{D} in the OU process is larger. It 552 indicates that, for the OU process, the distant causal his-553 554 tory always provides more information to the target than the immediate causal history no matter how much of the 555 finite recent dynamics are considered. Further, while the 556 $_{557}$ interaction information $\mathcal{I}_{\mathcal{J}}$ and $\mathcal{I}_{\mathcal{D}}$ still decreases and in-558 creases with the time lag τ , respectively, similar to the

FIG. 6. Time series graph constructed by using the Tigramite algorithm from (a) observed logarithm of flow rate and six catchment chemistry time series data; and (b) the six catchment chemistry data with the variation of logarithmic flow rate corrected. The thickness of edges represents the coupling strength between two nodes computed by momentary information transfer shown in Fig. 9 (see the details of the graph construction in Appendix B).

9

FIG. 7. (color online) Plots of the information transfers \mathcal{D} (left) and the proportion \mathcal{D}/\mathcal{T} (right) over the time lag τ for the raw data and the flow rate-corrected data taking the immediate causal history initiated from all the variables with a same lag τ based on the estimated time series graph in Fig. 6.

⁵⁵⁹ Lorenz model, $\mathcal{I}_{\mathcal{D}}$ in the OU process converges a value ⁵⁶⁰ larger than zero. The convergence of $\mathcal{I}_{\mathcal{D}}$ to a positive ⁵⁶¹ value implies a net synergistic effect from the interaction ⁵⁶² contribution to the target. In summary, compared with ⁵⁶³ the Lorenz model, the evolutionary dynamics of the OU ⁵⁶⁴ process, which shows a similar long-term dependency but ⁵⁶⁵ without a strange attractor, contains a more dominant ⁵⁶⁶ influence from distant causal history with a net synergis-⁵⁶⁷ tic effect on each variable in the process.

D. Catchment Chemistry Data: an Observed Long-Memory System

We now employ our approach to analyze the water so-570 lutes in the Upper Hafren in Wales, where the stream ₅₇₂ chemistry records are found to have 1/f fractal signa-573 tures reflecting long-term dependencies due to the com- $_{574}$ plex interactions occurring in the catchment [17, 29]. In $_{575}$ this application, the logarithm of flow rate, $\ln Q$, and six ⁵⁷⁶ water chemistry variables, Na⁺, Cl⁻, Al³⁺, Ca²⁺, SO4²⁻ and pH, are chosen for analysis, which are sampled ev-577 ery 7-h from March 2007 to Jan 2009. The 1/f frac-578 tal signatures are found in the corrected chemistry data, 579 ⁵⁸⁰ where the trend of the logarithm of stream flow is ex-⁵⁸¹ cluded [17]. Both the raw and the flow rate-corrected $_{582}$ data are available from [17], which are used here. Here, ⁵⁸³ we construct the time series graph for both the raw data ⁵⁸⁴ and the flow rate-corrected data by using the Tigramite

FIG. 8. (color online) Plots of the interaction information from distant causal history, $\mathcal{I}_\mathcal{D}$ in Eq.(12) (black line), and $~^{635}$ graph in Fig. 6.

anchored on the conditional independence test to remove 644 persistence due to their lower dependencies on flow rate. 586 any spurious relationship between each pair of nodes. 587

588 589 6 590 591 592 593 594 596 597 ⁵⁹⁹ dency, contribute to the current state of each variable. ⁶⁵⁷ flow rate (the right column of Fig. 8), $\mathcal{I}_{\mathcal{I}}$ also converges 600 Furthermore, the comparison between the two graphs 658 to zero, indicating a balance of synergistic and redundant $_{\rm 601}$ shows that with the influence of flow rate excluded, the $_{\rm 659}$ contribution. ⁶⁰² graph constructed from the flow rate-corrected data (Fig. 603 6b) contains fewer cross-dependencies (Fig. 6a). It re- 661 information-theoretic measures shown in both Figs. 7 604 605 chemistry variables. 606

607 $_{606}$ transfer measures, \mathcal{T} and \mathcal{D} , and the interaction informa- $_{666}$ points, which are around 1000~2000 for the estimation of

610 immediate causal history is initiated by all the five vari-₆₁₁ ables with a same time lag τ ranging from 1 to 400 (117 $_{612}$ days for 7hr dataset). Again, \mathcal{T} and \mathcal{D} are first calculated based on Eqs.(3)-(4) with the number of nearest 613 neighbors k = 5 (in kNN method).

The plots of \mathcal{D} and the proportion \mathcal{D}/\mathcal{T} as a function 615 616 of τ shown in Fig. 7 are insightful. First, for all the variables in both graphs, the information from the distant causal history, \mathcal{D} (the left column of Fig. 7), drops 619 rapidly at small lags τ but starts to converge to a value 620 far from zero for larger time lags (except for pH). Such persistent non-zero \mathcal{D} reflects the long-term dependence 621 present in the water chemistry data, and illustrates that 622 623 the dynamics from a distant causal history in the stream 624 plays an important role in shaping the current states of the solutes [29]. Further, the right column of Fig. 7 shows 626 that, for each variable in both networks, the percentage ₆₂₇ of the convergence value of \mathcal{D} in the total information \mathcal{T} ₆₂₈ is less than 50%, illustrating a more dominant influence from the immediate causal history. Also, by comparing the dynamics with and without flow rate, both \mathcal{D} and $_{631}$ its percentage in the total information, \mathcal{D}/\mathcal{T} , decrease ⁶³² when the influence of flow rate is excluded. It illustrates ⁶³³ that flow rate is an important driving variable that con-634 nects various water stream variables, and contributes to maintaining the long-memory dependence. However, this immediate causal history, $\mathcal{I}_{\mathcal{J}}$ in Eq.(13) (blue line), over the $_{636}$ dependence varies for different variables. Specifically, for time lag τ for the raw data and the flow rate-corrected data 637 variables that are highly dependent on flow rate, such taking the immediate causal history initiated from all the vari- $_{638}$ as Ca²⁺ and pH, \mathcal{D} declines significantly when the inables with a same lag τ based on the estimated time series ₆₃₉ fluence of flow rate is excluded. For other variables, es-⁶⁴⁰ pecially Na⁺ and Cl⁻ the majority of which originates ⁶⁴¹ from the oceanic sources through atmospheric pathways ₆₄₂ in this close-to-coast location [33], \mathcal{D} drops to a lesser ses algorithm [5, 18, 30, 31] – a modified PC algorithm [22] 643 degree and thus still holds a relatively strong memory

645 Further, the interaction information $\mathcal{I}_{\mathcal{I}}$ and $\mathcal{I}_{\mathcal{D}}$ of the The two resulting time series graphs are shown in Fig. ⁶⁴⁶ immediate and distant causal histories, respectively, as a (see the details of the graph construction in Appendix $_{647}$ function of lag τ are plotted in Fig. 8. First, we see that B), where coupling strengths in each directed edge, rep- 648 when the influence of the flow rate is included (the left resented as the thickness of the edge, is computed as the $_{649}$ column of Fig. 8), $\mathcal{I}_{\mathcal{J}}$ decreases with increasing τ and momentary information transfer (MIT) [32] between the 650 converges to a negative value, suggesting the prevalence two nodes. We can observe strong self-feedback depen- 651 of strong redundant influence in the immediate causal dencies (shown as thick edges) for most variables in both $_{652}$ history. Meanwhile, $\mathcal{I}_{\mathcal{D}}$ flattens out to zero as τ becomes graphs. Meanwhile, the remaining "hairy" causal influ- $_{653}$ larger than around 20. The convergence of $\mathcal{I}_{\mathcal{D}}$ to zero imences, in a Granger sense, illustrate the relatively weaker ⁶⁵⁴ plies a balanced synergistic and redundant effects from lagged interdependencies (shown as thin edges) among 655 the self and cross dependencies in the distant causal histhe variables, which, along with the self-feedback depen- 656 tory. Moreover, in the network without the influence of

660 Also, notice that there exist oscillations in different flects the fact that flow rate (based mixing) plays a key $_{662}$ and 8 even when the values converge for large τ . This role in establishing the connectivities among the stream 663 is possibly due to the bias induced by the estimation ⁶⁶⁴ of the proposed high-dimensional information-theoretic Based on the graphs, we now compute the information 665 measures [12, 18, 32] with a limited amount of data $\mathcal{I}_{\mathcal{J}}$ and $\mathcal{I}_{\mathcal{D}}$ in Eqs.(12) and (13), respectively. The $\mathcal{I}_{\mathcal{T}}$ for different time lags. A shuffle test is also conducted ⁶⁶⁸ for the computation of \mathcal{D} , to ensure that most of the val- ⁷²² is given by: 669 ues are statistically significant at $\alpha = 0.05$ significance 670 level (see Appendix B for details).

671

CONCLUSION IV.

We have developed information-theoretic measures to 672 partition the influence of total causal history (\mathcal{T}) into two 673 components, immediate (\mathcal{J}) and distant (\mathcal{D}) causal his-674 tory. While the information from the immediate causal 675 history quantifies the impact on the state of a specific 676 variable from trajectories of recent dynamics, its comple-677 ment, the distant causal history, illustrates such impact 678 stemming from the remaining older history. 679

By employing the Markov property for directed acyclic 680 ₆₈₁ graph, we reduce the dimensions of \mathcal{T}, \mathcal{D} and \mathcal{J} to make the computations of the three measures feasible. The 682 Markov property based simplification further results in 683 the information aggregation property of the time series 684 directed acyclic graph, that is, the information trans-685 ferred from earlier dynamics in the causal history ac-686 cumulate at the nodes directly influencing the target 687 node(s). Moreover, the dimension reduction also en-688 ables further partitions of both the immediate and dis-689 tant causal histories into self and cross dependencies, and 690 allows us to quantify their interaction information con-691 tribution to a target. 692

It is noted that while the dimension of \mathcal{T} is now re-693 duced to only the parents of the target, the cardinalities 694 of \mathcal{D} and \mathcal{J} can still be high due to the inclusion of the 695 ⁶⁹⁶ parents of the immediate causal history. For instance, in $_{697}$ the stream chemistry example, the dimensions of $\mathcal D$ and \mathcal{J} are around 30 and 40, respectively, as shown in Fig. 11. 698 Such high dimensions might result in biased information-699 theoretic estimation based on limited datasets. Future 700 research is required to further reduce the dimensionality. 701

We take the opportunity to distinguish the causal his-702 tory formulation presented here with some relevant prior 703 work. These include transfer entropy [3], momentary in-704 formation transfer [5], causation entropy [7], and directed 705 information [6, 34]. These existing information-theoretic 706 measures quantify the coupling strength between two 707 (lagged) variables with or without the knowledge of other 708 variable(s), while the proposed causal history analysis in-709 710 vestigates how the entire evolutionary dynamics involv-711 ing all variables in a system influences a target variable. This uniqueness of considering contribution from multi-712 713 ple variables enables analyses that are not possible otherwise. The followings is a brief summary of the differences 714 with these different information-theoretic approaches. 715

Transfer entropy (TE) [3] quantifies the informa-716 717 tion transferred to a target, Z_t , from a sequence 718 of previous states of another variable, $X_{t-1:t-\tau} = 756$ which is the conditional mutual information between Z_t ⁷¹⁹ { $X_{t-1}, X_{t-2}, ..., X_{t-\tau}$ }, given the knowledge of the past ⁷⁵⁷ and its earlier dynamics, $\vec{Z}_t \setminus Z_{t-1:t-\tau}$, given the imme-⁷²⁰ states of itself, $Z_{t-1:t-\tau} = \{Z_{t-1}, Z_{t-2}, ..., Z_{t-\tau}\}$. It is ⁷⁵⁸ diate dynamics $Z_{t-1:t-\tau}$. The calculation of I^{TCE} in

$$I_{X \to Z}^{TE}(\tau) = I(Z_t; X_{t-1:t-\tau} \mid Z_{t-1:t-\tau}).$$
(19)

⁷²³ Momentary information transfer (MIT) [5], on the other $_{724}$ hand, considers the information transfer to Z_t from a ⁷²⁵ specific lagged variable $X_{t-\tau}$ given the knowledge of the 726 entire historical states, and is obtained as the conditional 727 mutual information given as:

$$I_{X \to Z}^{MIT}(\tau) = I(Z_t; X_{t-\tau} \mid P_{C_{X_{t-\tau} \to Z_t}} \setminus P_{Z_t}).$$
(20)

728 The condition set $P_{C_{X_{t-\tau} \to Z_t}} \setminus P_{Z_t}$, anchored on the 729 Markov property, is a simplified set of all the dynamics 730 preceding the time $t, \vec{X}_t^- = \{\vec{X}_{t-1}, \vec{X}_{t-2}, ...\}.$

The idea of conditioning, which prevents the influence 732 from the nodes in the condition set in influencing the 733 quantification of coupling strength, is also used in cau-⁷³⁴ sation entropy (CE) [7]. CE from a source variable with ⁷³⁵ lag 1, X_{t-1} , to the a target, Z_t , conditioned on a third ⁷³⁶ variable, Y_t , with lag 1, and is given by:

$$I_{X \to Z|Y}^{CE} = I(Z_t; X_{t-1} \mid Y_{t-1}).$$
(21)

737 Notice that causation entropy is a generalization of trans-738 fer entropy in Eq.(19) with $\tau = 1$, that is $I_{X \to Z|Z}^{CE} =$ 739 $I_{X \to Z}^{TE}(1).$

Further, another measure called Directed Information 740 ⁷⁴¹ (DI) [6] quantifies how a limited historical dynamics of a ⁷⁴² source variable, $X_{t-\tau:t}$, affects the dynamical trajectory ⁷⁴³ of the target variables, $Z_{t-\tau:t}$. This is given as:

$$I_{X \to Z}^{DI}(\tau) = \sum_{i=1}^{\tau} I(Z_{t-i}; X_{t-1:t-i} \mid Z_{t-1:t-i+1}).$$
(22)

⁷⁴⁴ When the knowledge of the dynamical trajectory of the ⁷⁴⁵ third variables, $Y_{t-\tau:t}$ is given, it is converted into a con-⁷⁴⁶ ditional directed information (CDI) [6], given by:

$$I_{X \to Z|Y}^{CDI}(\tau) = \sum_{i=1}^{\tau} I(Z_{t-i}; X_{t-1:t-i} \mid Z_{t-1:t-i+1}, Y_{t-1:t-i}).$$
(23)

₇₄₇ Different from I^{TE} , I^{MIT} and I^{CE} , which quantify the ⁷⁴⁸ influence to a target from a lagged source variable, I^{DI} ₇₄₉ and I^{CDI} consider the influence from the past dynamics $_{750}$ preceding time t as well as the instantaneous dynamics 751 at time t.

In addition to pairwise interactions, a variation of 752 ⁷⁵³ Eq.(21), temporal causation entropy (TCE) [35] is used ⁷⁵⁴ for inferring the Markov order of a process, which is given 755 by:

$$I^{TCE}(\tau) = I(Z_t; \vec{Z}_t^- \setminus Z_{t-1:t-\tau} \mid Z_{t-1:t-\tau}).$$
(24)

⁷²¹ computed through a conditional mutual information, and ⁷⁵⁹ Eq.(24) involves the division of the entire history of a

761 similar to the partition of immediate and distant causal 819 influence of flow rate shows that the existence of the flow 762 the purposes and the technical details. While I^{TCE} is $_{221}$ and cross dependencies in immediate causal history. 763 used to infer the Markov order of a process based on 822 By involving multiple components as well as the causal 765 768 ent orientation in the causal history analysis, along with 826 tionary dynamics of the entire system. It is different from 769 770 771 such studies.

All these existing information-theoretic measures (i.e., 772 I^{TE} , I^{MIT} , I^{CE} , I^{DI} and I^{CDI}), except I^{TCE} , quan-773 774 tify the coupling strengths between two (lagged) vari-775 ables from different perspectives. On the other hand, the proposed approach for causal history analysis pre-776 sented in our work is initiated from a different perspec-777 tive. It aims at analyzing how the target is driven by the 778 entire evolutionary dynamics, which involves multivari-779 ate interactions in a complex system. By analyzing the 780 whole history of the system, it allows the partition of the 781 causal history into an immediate and distant components 782 as well as quantification of these quantities. Furthermore, 783 the instantaneous influence, which is explored in I^{DI} and I^{CDI} , is not considered as cause-effect relationship in this 785 786 study. This is because the directionality of such causal 840 ⁷⁸⁷ influence between two contemporaneous nodes is unclear ⁸⁴¹ separate the immediate causal history $C_{\vec{V}\Rightarrow Z_t}$ into real and the contemporaneous dynamics is not considered as $_{842}$ two sets: (1) those belonging to the parents of Z_t , causal 'history'. 789

The quantification of the information from the immedi-790 ate and distant causal histories sketches the memory de-791 pendency of the system, which are illustrated with four 345 in Eq.(5) can be written as: 792 examples with varying memories. Further, in addition 793 to characterizing the memory dependency of a complex 794 system, the proposed approach also delineates some key 795 features of the complexity associated with its dynam-796 ics, which are not captured by other traditional method 797 such as lagged mutual information. First, for the Lorenz 798 model and the OU process, while lagged mutual informa-799 tion slowly goes to zero with increasing time lag τ , the 800 information from distant causal history \mathcal{D} converges to ⁸⁰² a nonzero value with large lags. It implies a persistent ⁸⁰³ information influence over long time scale in the system's evolutionary dynamics. Second, we observe that the ana-⁸⁴⁵ Lyzed models have different characteristics of information ⁸⁴⁶ transfer. For instance, while the interaction information ⁸⁴⁷ Eq.(A2), $I(Z_t; C_{\vec{V} \Rightarrow Z_t} \setminus P_{Z_t}^{C_{\vec{V}} \Rightarrow Z_t} | \vec{W_{\tau}}, P_{Z_t}^{C_{\vec{V}} \Rightarrow Z_t})$, the par-⁸⁴⁹ Eq.(A2), $I(Z_t; C_{\vec{V} \Rightarrow Z_t} \setminus P_{Z_t}^{C_{\vec{V}} \Rightarrow Z_t} | \vec{W_{\tau}}, P_{Z_t}^{C_{\vec{V}} \Rightarrow Z_t})$, the par-⁸⁴⁹ Lorenz model and the logistic map, the convergence of ⁸⁵¹ is the union of $P_{Z_t}^{C_{\vec{V}} \Rightarrow Z_t}$ and $\vec{W_{\tau}}$, including the par-⁸⁵² \mathcal{I}_D to zero in the Lorenz model suggests that there is ⁸⁵³ a balanced synergy and redundancy jointly contributed ⁸⁵³ in the subgraph, respectively. Therefore, due to the ⁸⁵⁴ by the cell and areas dependencies. However, in the OU ⁸⁰⁵ lyzed models have different characteristics of information ⁸¹¹ by the self and cross dependencies. However, in the OU ⁸¹² process, which also has long memory but no strange at-

 $_{760}$ process into two parts based on a time lag τ , which looks $_{818}$ tween the stream chemistry system with and without the histories at a first glance. However, they differ in both #20 rate is able to enhance the redundnant effect from self

the smallest τ when I^{TCE} equals to zero in Eq.(24), the second state among them, the proposed measures address causal history analysis investigates the contribution from 824 an unresolved problem, that of quantifying the causal inboth immediate and distant causal histories. The differ- ⁸²⁵ fluence on the current state of a variable from the evoluits multivariate nature of the analysis, indicate that this ⁸²⁷ what has been addressed so far by existing informationwork adds significantly to the discourse associated with #28 theoretic measures, which is usually anchored on pairwise 829 interactions or multivariate analysis associated with spe- $_{830}$ cific parts of the system [3, 5, 7, 12]. This uniqueness, ⁸³¹ therefore, facilitates addressing the questions of how the 832 complexity of a system is sustained over time, which is ⁸³³ reflected in varying memory dependency. With the in-⁸³⁴ creasing availability of observations in various domains, 835 this work can open up avenues for new data-driven ap-⁸³⁶ proaches for the study of complex system dynamics.

APPENDIX

837

838

839

Appendix A: Derivations for Information from Immdeidate Causal History, \mathcal{J}

This section provides the derivations of Eqs.(6). We ⁸⁴³ $P_{Z_t}^{C_{\vec{V}} \Rightarrow Z_t} = P_{Z_t} \cap C_{\vec{V} \Rightarrow Z_t}$, and (2) the remaining nodes, ⁸⁴⁴ $C_{\vec{V} \Rightarrow Z_t} \setminus P_{Z_t}^{C_{\vec{V}} \Rightarrow Z_t}$. Then, using the chain rule, \mathcal{J} defined

$$\mathcal{J} = I(Z_t; P_{Z_t}^{C_{\vec{V} \Rightarrow Z_t}}, C_{\vec{V} \Rightarrow Z_t} \setminus P_{Z_t}^{C_{\vec{V} \Rightarrow Z_t}} \mid \vec{W}_{\tau})$$
(A1)

$$=I(Z_t; P_{Z_t}^{C_{\vec{V}} \Rightarrow Z_t} \mid \vec{W}_{\tau}) \tag{A2}$$

$$+\underbrace{I(Z_t;C_{\vec{V}\Rightarrow Z_t}\setminus P_{Z_t}^{C_{\vec{V}\Rightarrow Z_t}}\mid \vec{W}_{\tau},P_{Z_t}^{C_{\vec{V}\Rightarrow Z_t}})}_{-0}$$
(A3)

$$=I(Z_t; P_{Z_t}^{C_{\vec{V}\Rightarrow Z_t}} \mid \vec{W_\tau}), \tag{A4}$$

 $_{846}$ yielding Eq.(6). The chain rule of the conditional mu-⁸⁴⁷ tual information (CMI) facilitates the transition from ⁸⁴⁸ Eq.(A1) to Eq.(A2). Moreover, in the 2nd term of ⁸⁵⁴ Markov property, given P_{Z_t} (included in the union of \vec{W}_{τ} and $P_{Z_t}^{C_{\vec{V} \Rightarrow Z_t}}$, Z_t is independent of its non-descendants, and distant causal history as $\mathcal{I}_{\mathcal{D}}$ converges to a positive value. ⁸¹⁴ distant causal history as $\mathcal{I}_{\mathcal{D}}$ converges to a positive value. ⁸¹⁵ Further, the differences in the interaction information of ⁸¹⁶ the immediate causal history, $\mathcal{I}_{\mathcal{J}}$, also illustrate the var-⁸¹⁷ ious dynamics in different systems. The comparison be-⁸¹⁸ $I(Z_t; C_{\vec{V} \Rightarrow Z_t} \setminus P_{Z_t}^{C_{\vec{V} \Rightarrow Z_t}} | \vec{W}_{\tau}, P_{Z_t}^{C_{\vec{V} \Rightarrow Z_t}}) = 0.$

FIG. 9. (color online) Illustration of the estimated lag functions (y-axis: the coupling strength [nats] computed based on momentary information transfer (MIT) [32]; x-axis: the time lag τ) of the catchment chemistry data by using Tigramite algorithm for: (a) the logarithm of flow rate and six chemistry variable; and (b) the six chemistry variables with the variation of the logarithm of flow rate excluded.

FIG. 10. Number of data points for computing \mathcal{D} in Eq.(4) in terms of the time lag τ for each variable in the two time series graphs constructed in Fig. 9.

Appendix B: Construction of the Time Series Graph for Water Chemistry Data

The catchment chemistry data in the Upper Hafren in 861 862 Wales, sampled and analyzed every 7-h from March 2007 863 to Jan 2009, are available as the supporting information 864 of [17]. In this study we use, the logarithmic flow rate $(\ln Q)$ and six water quality variables (i.e., Na⁺, Cl⁻, 865 Al^{3+} , Ca^{2+} , $SO4^{2-}$ and pH), as well as the data with 866 flow-dependent variations corrected [17], are used. We 867 construct two time series graphs for the raw data and 868 the flow rate-corrected one, separately, with the total number 2375 data points including gaps for each graph. 870 ⁸⁷¹ The existence of the gaps in the data would reduce the ⁸⁷² lengths of samples in computing conditional mutual in-⁸⁷³ formation (CMI) or mutual information (MI), thus potentially worsening the estimation. To minimize this ef-874 fect, we use the whole dataset to get the sample data points for estimating MI or CMI and then remove the 876 data points containing gaps in the samples [9]. 877

The time series graph is constructed by using 878 Tigramite algorithm [5, 18, 30, 31], which is a modi-879 fied PC algorithm [22] and anchored on the conditional 880 881 independence test to remove any spurious relationship between two nodes. We employ the k-nearest-neighbor 882 (kNN) CMI-based conditional independence test, with 883 the number of nearest-neighbor k = 100 (high k facili-884 tates a low variance of the estimated CMI [4]). Each test 885 is conducted based on 100 samples with a significance ⁸⁸⁷ level $\alpha = 95\%$. The graphs are constructed with a maxi-*** mum time lag $\tau_{max} = 5$. The resulting dependencies for

FIG. 11. The cardinality of the estimated \mathcal{T} , \mathcal{D} and \mathcal{J} in Eq.(3), Eq.(4) and Eq.(6), respectively, in terms of the time lag τ for each variable in the two time series graphs constructed in Fig. 9.

889 the two networks are shown in Fig. 9, sketching the lag 890 function in terms of the momentary information transfer [32] between each pair of lagged components. Based 891 on the two time series graphs, \mathcal{D} and \mathcal{T} for each variable 892 are computed based on Eqs.(4) and (3), respectively, by 893 using kNN approach with k = 5. The dimensions of \mathcal{T} , 894 \mathcal{D} , and \mathcal{J} are shown in Fig. 11. As the computation of \mathcal{D} 895 ⁸⁹⁶ requires higher dimensions, the numbers of data points ⁸⁹⁷ used for computing \mathcal{D} are shown in Fig. 10, where in each case more than 1000 are used. Further, to check the 898 significance of \mathcal{D} , shuffle test is conducted for \mathcal{D} with a ⁹⁰⁰ significance level of 95% based on 100 shuffles. The result $_{901}$ of shuffle tests in Fig. 12 shows most \mathcal{D} are statistically 902 significant.

ACKNOWLEDGMENTS

FIG. 12. The estimated \mathcal{D} in Eq.(4) from the two networks constructed in Fig. 9 as well as the corresponding threshold for shuffle test with significance level $\alpha = 0.05$.

⁹⁰⁴ Funding support from the following NSF grants are ⁹⁰⁵ acknowledged: ICER 1440315, EAR 1331906, ACI ⁹⁰⁶ 1261582, and EAR 1417444.

- ⁹⁰⁷ [1] H. Haken, *Information and Self-Organization* (Springer-Verlag Berlin Heidelberg, 2006).
- ⁹⁰⁶ [2] F. Rosas, P. A. Mediano, M. Ugarte, and H. J. Jensen, arXiv preprint arXiv:1808.05602 (2018).
- 909 [3] T. Schreiber, Phys. Rev. Lett. 85, 461 (2000).
- 910 [4] S. Frenzel and B. Pompe, Phys. Rev. Lett. 99, 204101 (2007).
- ⁹¹¹ [5] J. Runge, J. Heitzig, V. Petoukhov, and J. Kurths, Phys. Rev. Lett. **108**, 258701 (2012).
- 912 [6] P.-O. Amblard and O. J. J. Michel, Entropy 15, 113 (2013).
- 913 [7] J. Sun and E. M. Bollt, Physica D: Nonlinear Phenomena 267, 49 (2014).
- ⁹¹⁴ [8] P. L. Williams and R. D. Beer, CoRR abs/1004.2515 (2010).
- 915 [9] A. E. Goodwell and P. Kumar, Water Resources Research 53, 5920 (2017).
- 916 [10] A. E. Goodwell and P. Kumar, Water Resources Research 53, 5899 (2017).
- ⁹¹⁷ [11] A. E. Goodwell, P. Kumar, A. W. Fellows, and G. N. Flerchinger, Proceedings of the National Academy of Sciences ⁹¹⁸ (2018), 10.1073/pnas.1800236115.
- 919 [12] P. Jiang and P. Kumar, Phys. Rev. E 97, 042310 (2018).
- ⁹²⁰ [13] C. W. J. Granger, Econometrica **37**, 424 (1969).
- ⁹²¹ [14] P. Kumar and B. L. Ruddell, Entropy **12**, 2085 (2010).
- ⁹²² [15] J. T. Lizier, J. Heinzle, A. Horstmann, J.-D. Haynes, and M. Prokopenko, Journal of Computational Neuroscience **30**, 85 (2011).
- ⁹²⁴ [16] P. Jizba, H. Kleinert, and M. Shefaat, Physica A: Statistical Mechanics and its Applications **391**, 2971 (2012).
- 925 [17] J. W. Kirchner and C. Neal, Proceedings of the National Academy of Sciences 110, 12213 (2013).
- ⁹²⁶ [18] J. Runge, Phys. Rev. E **92**, 062829 (2015).
- 927 [19] M. Eichler, Probability Theory and Related Fields 153, 233 (2012).
- ⁹²⁸ [20] T. M. Cover and J. A. Thomas, *Elements of Information Theory (Wiley Series in Telecommunications and Signal Pro-*⁹²⁹ *cessing)* (Wiley-Interscience, 2006).
- ⁹³⁰ [21] S. L. Lauritzen, A. P. Dawid, B. N. Larsen, and H. Leimer, Networks **20**, 491 (1990).
- 931 [22] P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and Search., Vol. 81 (MIT Press, Cambridge, 2000).
- 932 [23] C. E. Shannon and W. Weaver, A Mathematical Theory of Communication (University of Illinois Press, Urbana, IL, 1949).
- ⁹³³ [24] A. Kraskov, H. Stögbauer, and P. Grassberger, Phys. Rev. E **69**, 066138 (2004).
- ⁹³⁴ [25] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev. Lett. 78, 4193 (1997).
- 935 [26] F. M. Atay, J. Jost, and A. Wende, Phys. Rev. Lett. 92, 144101 (2004).
- 936 [27] G. Paredes, O. Alvarez-Llamoza, and M. G. Cosenza, Phys. Rev. E 88, 042920 (2013).
- 937 [28] E. N. Lorenz, Journal of the Atmospheric Sciences 20, 130 (1963).
- 938 [29] J. W. Kirchner, X. Feng, and C. Neal, Nature 403, 524 (2000).
- J. Runge, V. Petoukhov, J. F. Donges, J. Hlinka, N. Jajcay, M. Vejmelka, D. Hartman, N. Marwan, M. Paluš, and
 J. Kurths, Nature communications 6, 8502 (2015).
- 941 [31] J. Runge, D. Sejdinovic, and S. Flaxman, arXiv preprint arXiv:1702.07007 (2017).
- ⁹⁴² [32] J. Runge, J. Heitzig, N. Marwan, and J. Kurths, Phys. Rev. E 86, 061121 (2012).
- ⁹⁴³ [33] X. Feng, J. W. Kirchner, and C. Neal, Journal of Hydrology **292**, 296 (2004).
- ⁹⁴⁴ [34] G. Kramer, *Directed information for channels with feedback*, Ph.D. thesis, Swiss Federal Institute of Technology Zurich ⁹⁴⁵ (1998).
- ⁹⁴⁶ [35] C. Cafaro, W. M. Lord, J. Sun, and E. M. Bollt, Chaos: An Interdisciplinary Journal of Nonlinear Science **25**, 043106 ⁹⁴⁷ (2015).