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In a multivariate evolutionary system, the present state of a variable is a resultant outcome of6

all interacting variables through the temporal history of the system. How can we quantify the7

information transfer from the history of all variables to the outcome of a specific variable at a8

specific time? We develop information theoretic metrics to quantify the information transfer from9

the entire history, called causal history. Further, we partition this causal history into immediate10

causal history, as a function of lag τ from the recent time, to capture the influence of recent dynamics,11

and the complementary distant causal history. Further, each of these influences are decomposed into12

self and cross feedbacks. By employing a Markov property for directed acyclic time series graph,13

we reduce the dimensions of the proposed information-theoretic measure to facilitate an efficient14

estimation algorithm. This approach further reveals an information aggregation property, that is,15

the information from historical dynamics are accumulated at the preceding time directly influencing16

the present state of variable(s) of interest. These formulations allow us to analyze complex inter-17

dependencies in unprecedented ways. We illustrate our approach for: (1) characterizing memory18

dependency by analyzing a synthetic system with short memory; (2) distinguishing from traditional19

methods such as lagged mutual information using the Lorenz chaotic model; (3) comparing the20

memory dependencies of two long-memory processes with and without the strange attractor using21

the Lorenz model and a linear Ornstein-Uhlenbeck process; and (4) illustrating how dynamics in a22

complex system is sustained through the interactive contribution of self and cross dependencies in23

both immediate and distant causal histories, using the Lorenz model and observed stream chemistry24

data known to exhibit 1/f long-memory.25

I. INTRODUCTION26

The dynamics of natural systems, such as ecosys-27

tems and climate, arise as a result of spontaneous self-28

organization. Their dynamical characteristics, such as29

existence of strange attractors or 1/f long-memory de-30

pendencies, arise as a result of feedback between all31

interacting variables. Information theory offers com-32

pelling approaches for characterizing the complex non-33

linear inter-dependencies present in such systems [1]. For34

example, a recent study has argued that the sponta-35

neous formation of a self-organized structure is reflected36

as decrease of joint entropy of the system as well as37

increase of contemporaneous inter-dependencies among38

interacting components [2]. However, most of the ex-39

isting information-theoretic approaches are anchored on40

characterizing either bivariate information transfer using41

transfer entropy or momentary information transfer [3–42

7], or the interactions among a specific set of variables43

by using methods based on partial information decom-44

position [8–12], which becomes difficult when more than45

three variables are involved. These approaches provide46

important and insightful views associated with specific47

interactions within a system, but do not allow us to as-48

sess the entire range of information transfer among all49

variables. For example, we may ask how the interactions50

of several or all variables in a system determine the state51

of an individual variable at a specific time. Alternatively,52
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we may ask how a finite time history of interactions re-53

sults in an observed outcome of a specific variable at a54

specific time. To answer these questions, we require met-55

rics that allow us to characterize full range of causal de-56

pendency in the system (in the Granger sense [13]), which57

structures the transfer of information that progressively58

influences a target variable.59

Consider a system composed of N variables, ~Xt =60

{Xt, Yt, Zt, ...}N , varying in time. The current state of61

a variable, say Zt ∈ ~Xt, is a result of the evolution-62

ary history of the system ~X−t = { ~Xt−1, ~Xt−2, ~Xt−3, ...},63

which we call causal history. We partition this his-64

tory, based on a partitioning time lag τ with respect65

to the present, into recent or immediate causal history66

{ ~Xt−1, ~Xt−2, ..., ~Xt−τ} and the complementary distant67

causal history { ~Xt−τ−1, ~Xt−τ−2, ...}. Generally, while68

the information from the immediate causal history is ex-69

pected to be nondecreasing with τ , the degree and con-70

vergence of information from the distant causal history71

informs the influence from the remaining historical dy-72

namics beyond the lag τ . Thus, quantification of the73

information transfer to a target variable at time t, from74

both its immediate and distant causal histories, would75

delineate the dependency of the variable on the prior76

dynamics as well as the memory in the system, which77

are keys for understanding various complex systems [14–78

17]. Therefore, the objective of this study is to quan-79

tify and characterize the influence of a immediate, dis-80

tant, and/or entire causal history on Zt by using an81

information-theoretic framework.82

We use a directed acyclic time series graph approach83

mailto:kumar1@illinois.edu


2

to characterize the temporal dependencies of the system84

as well as for simplifying the computation of the informa-85

tion transfer. Specifically, we demonstrate the features86

of our approach in terms of: (1) Information aggregation87

property in the causal history, achieved through simpli-88

fication from Markovian assumption in directed acyclic89

time series graph; (2) Discerning system memory, and its90

advantage over traditional methods such as lagged mu-91

tual information; (3) Characterizing the changing inter-92

action information jointly provided by a target variable’s93

self and cross dependencies, as a function τ , from both94

immediate and distant causal histories; and (4) Quantify-95

ing the change in memory dependency in a system when96

the influence of any particular variable is isolated from97

the remaining variables.98

This paper is organized as follows. First, in Section II,99

we provide the definitions and the properties of the in-100

formation transfer in both immediate and distant causal101

histories based on directed acyclic time series graph rep-102

resentation of the system. Then, in Section III we imple-103

ment this approach to delineate the temporal dynamics104

of three different systems by quantifying the information105

transfer from causal history. We first identify the mem-106

ory dependency of a trivariate logistic model – a short-107

memory system, in Section III A. Next in Section III B,108

we analyze the chaotic and long-memory Lorenz model109

for comparing the proposed approach with lagged mu-110

tual information in delineating the memory dependency111

of the system. Then, we investigate the information112

transfer in a linear trivariate Ornstein-Uhlenbeck pro-113

cess, whose dynamics also shows long memory property114

but without the existence of a stranger attractor. While115

the model-generated synthetic data are used for analy-116

sis in the previous three example, in the third example117

in Section III D, we demonstrate an application using ob-118

served stream chemistry time series data, obtained in the119

Upper Hafren catchment in Wales, United Kingdom [17].120

Last, summary and conclusions are given in Section IV.121

II. INFORMATION TRANSFER FROM122

CAUSAL HISTORY123

We represent the temporal dependency in the mul-124

tivariate system ~Xt as a time series directed acyclic125

graph [18, 19] as illustrated in Fig. 1, where each node126

represents a variable at a specific time step t (e.g., Zt) and127

the parents of a target node or a set of nodes are denoted128

as P (e.g., PZt). The directed edge linking two lagged129

nodes (e.g., Xt−τX and Zt with τX > 0) in the graph130

indicates the direct influence from Xt−τX to Zt. The131

causal influence, assumed here in a Granger sense [13],132

from a lagged node Xt−τX to a target Zt can be either133

through a directed edge or indirectly via a causal path134

CXt−τX→Zt , which is a set of nodes connected by a se-135

quence of directed edges from Xt−τX to Zt. That is,136

CXt−τX→Zt ≡ {Vt−τV : Vt ∈ ~Xt, τV > 0, Xt−τX → · →137

Vt−τV → · → Zt−τZ} ∪ {Xt−τX}. We consider the causal138

influence to a target node as arising only from a node139

earlier in time, which results in a directed acyclic graph140

(DAG) of time series. In this section, based on this DAG141

time series graph representation, we provide the mathe-142

matical definition of causal history, its simplification for143

computation, the associated properties, and further anal-144

yses of causal history in terms of self and cross depen-145

dencies.146

A. Definitions of Causal History147

The causal history of a target node Zt includes all148

the nodes that influence Zt through causal paths in the149

graph, and is represented by ~X−t = { ~Xt−1, ~Xt−2, ...}.150

Therefore, the total information, T , to Zt given by the151

causal history, can be expressed as the mutual informa-152

tion (MI) [20] between the two, which is given by:153

T = I(Zt; ~X
−
t ). (1)

Further, an immediate causal history of Zt is considered154

as a finite length causal history immediately preceding155

time t, ~Xt−τ = {Xt−τ , Yt−τ , ...}N starting from all the156

contemporaneous source nodes at lag τ . It is represented157

by a multitude of causal paths, that is, C ~Xt−τ⇒Zt =158

∪Xt−τ∈ ~Xt−τCXt−τ→Zt (the blue dashed box in Fig. 1a).159

To generalize the following theory, we define the imme-160

diate causal history as a subgraph preceding Zt arising161

from a set of lagged sources ~V = {Xt−τX , Yt−τY , ...} to162

Zt, C~V⇒Zt = ∪Vt−τV ∈~V CVt−τV→Zt . Then, the comple-163

mentary distant causal history can be naturally expressed164

as the remaining part of the causal history, ~X−t \C~V⇒Zt ,165

where \ is the subtraction operator (the red dashed box166

in Fig. 1a). By using the chain rule of MI [20], the total167

information T can be decomposed into the information168

from (1) the immediate causal history, J , and (2) the169

distant causal history, D, such that:170

T = I(Zt;C~V⇒Zt ,
~X−t \C~V⇒Zt)

= I(Zt; ~X
−
t \C~V⇒Zt)︸ ︷︷ ︸
=D

+ I(Zt;C~V⇒Zt | ~X
−
t \C~V⇒Zt)︸ ︷︷ ︸

=J

= D + J . (2)

Eq.(2) expresses that the information from the distant171

causal history, D, is provided by all the lagged nodes not172

in the immediate history, i.e., ~X−t \C~V⇒Zt , through their173

mutual information with Zt; while the information from174

the recent dynamics, J , is accounted for by the condi-175

tional mutual information (CMI) between the target and176

the immediate causal history conditioned on the distant177

history.178

B. Simplifications of T , J , and D179

It is noted that the empirical computations of T , J ,180

and D in Eq.(2) are infeasible due to the potentially in-181
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FIG. 1. (color online) Illustration of the causal history ~X−t
of a target node Zt. (a) The partition of ~X−t into an im-
mediate causal history, C~V⇒Zt (the dashed blue box), and

the complementary distant causal history, ~X−t \C~V⇒Zt (the
dashed red box). The parents of the target Zt [Eq.(3)], PZt ,
are identified by the cyan colored box. (b) The aggregation
of contemporaneous momentary information from each set of
contemporaneous nodes ~Xt−i (the dashed hollow box) at an
early time step t− i in the causal history [Eq.(10)].

finite number of nodes in ~X−t and ~X−t \C~V⇒Zt . There-182

fore, to address this challenge and connect the time series183

graph with the underlying joint probability, we assume184

the Markov property for DAG ([21], theorem 1). This is185

consistent with prior work [5], which states that any node186

Zt in the graph is independent of all its non-descendants187

given the knowledge of its parents PZt [22]. For the graph188

in Fig. 1, for example, this implies that given its parents189

PZt (the cyan colored box), the target node Zt is condi-190

tionally independent of the rest of its non-descendants,191

~X−t \PZt .192

Now, the main idea of reducing the dimensions in T ,193

J and D originates from the connection between condi-194

tional independence and the node separation in the graph195

based on the Markov property [5]. The simplification of196

T can be immediately achieved by using chain rule as197

follows (note that PZt ⊂ ~X−t ):198

T = I(Zt;PZt ,
~X−t \PZt)

= I(Zt;PZt) + I(Zt; ~X
−
t \PZt | PZt)︸ ︷︷ ︸
=0

= I(Zt;PZt), (3)

which is the mutual information between Zt and its par-199

ents PZt (see Fig. 1a). The zero value for I(Zt; ~X
−
t \PZt |200

PZt) results from the Markov property that separates Zt201

from the remaining historical nodes given its parents.202

Furthermore, the distant causal history, ~X−t \C~V⇒Zt ,203

which serves in Eq.(2) as the condition set and infor-204

mation contributor in J and D, respectively, can be205

partitioned into two parts: (1) the parents of both206

Zt and the immediate causal history C~V⇒Zt exclud-207

ing those in the immediate causal history, denoted as208

~Wτ = PC~V⇒Zt∪Zt\C~V⇒Zt (the grey nodes in Fig. 1a),209

and (2) the remaining nodes, ~X−t \(C~V⇒Zt ∪ ~Wτ ). Then,210

in a similar manner as for T , the Markov property and211

the chain rule also facilitate the simplifications for D:212

D = I(Zt; ~Wτ , ~X
−
t \(C~V⇒Zt ∪ ~Wτ ))

= I(Zt; ~Wτ ) + I(Zt; ~X
−
t \(C~V⇒Zt ∪ ~Wτ ) | ~Wτ )︸ ︷︷ ︸

=0

= I(Zt; ~Wτ ), (4)

and for J :213

J = I(Zt;C~V⇒Zt | ~X
−
t \C~V⇒Zt)

= I(Zt;C~V⇒Zt | ~Wτ ). (5)

Both, the zero value for I(Zt; ~X
−
t \(C~V⇒Zt ∪ ~Wτ ) | ~Wτ )214

and the reduction of the condition set of J into ~Wτ in215

Eqs.(4) and (5), respectively, are due to the conditional216

independence between Zt and ~X−t \(C~V⇒Zt ∪ ~Wτ ) given217

the knowledge of ~Wτ , which separates the immediate fi-218

nite history associated with Zt and Zt itself from the219

remaining history. In fact, a decomposition of C~V⇒Zt ,220

into (1) P
C~V⇒Zt
Zt

≡ PZt ∩C~V⇒Zt – the direct causes of Zt221

in the immediate causal history, and (2) C~V⇒Zt\P
C~V⇒Zt
Zt

222

– the remaining intermediate nodes in C~V⇒Zt , enables a223

further simplification of J , that is (see Appendix A for224

derivations):225

J =I(Zt;P
C~V⇒Zt
Zt

| ~Wτ ), (6)

which is achieved by taking the chain rule expansion226

based on C~V⇒Zt and dropping off the other term because227

of the conditional independence of Zt with the remaining228

history given its parents. Also, by substituting Eqs.(4)229

and (5) back to Eq.(2) and noticing PZt ⊂ P
C~V⇒Zt
Zt

∪ ~Wτ ,230

we can again utilize the Markov property to get:231

T = I(Zt;P
C~V⇒Zt
Zt

, ~Wτ ) = I(Zt;PZt),

which reduces to Eq.(3) as we should expect and is con-232

stant in terms of the time lag τ . We also note that the233

quantities J and D are functions of τ , but this is not in-234

cluded in the notation for brevity as this does not cause235

any ambiguity.236

C. Information Aggregation Property of T and J237

The simplifications in Eqs.(3)-(6) imply an important238

property of information aggregation from intermediate239
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nodes to the direct causes of the node(s) of interest. For240

all the three information transfer measures, the informa-241

tion accumulate at the nodes that are either the parents242

of the target node Zt [PZt for T in Eq.(3) and P
C~V⇒Zt
Zt

243

for J in Eq.(6)] or the parents of the union of Zt and244

its immediate causal history [ ~Wτ for D in Eq.(4)]. This245

property, derived from the Markov property for DAG, il-246

lustrates that the latest observations actually contain all247

the information of the earlier dynamics in the system,248

transferred via the causal paths, and influence the states249

of the variables at the next stage.250

Further insights associated with such information ag-251

gregation property can be obtained by a decomposition252

of both T and J . We separate C~V⇒Zt into τ set of253

nodes, where τ is the maximum time lag between the254

target Zt and the earliest node in the source nodes ~V ,255

that is, τ = arg maxk{Xt−k : Xt−k ∈ C~V⇒Zt}. Each set256

of nodes ~Vt−i represents all the contemporaneous nodes257

in C~V⇒Zt at the time step t − i (1 ≤ i ≤ τ), that is,258

~Vt−i = {Vt−τV : Vt−τV ∈ C~V⇒Zt | τV = i}. It is clear259

that C~V⇒Zt = ∪τi=1
~Vt−i and ~Vt−i1∩ ~Vt−i2 = ∅ for i1 6= i2.260

Therefore, we can express J in Eq.(5) as:261

J =I(Zt; ~Vt−1, ..., ~Vt−τ | ~Wτ ),

and by using the chain rule for conditional mutual infor-262

mation [23], we get:263

J =

τ∑
i=1

I(Zt; ~Vt−i | ~Wτ , ~Vt−i−1, ..., ~Vt−τ ). (7)

Note that {~Vt−i−1, ..., ~Vt−τ} are actually the remaining264

parents of both Zt and the subgraph C~Vt−i⇒Zt initiated265

by ~Vt−i, which are not in ~Wτ . Therefore, the condition266

set in Eq.(7), { ~Wτ , ~Vt−i−1, ..., ~Vt−τ}, in fact contains the267

parents of the union of Zt and C~Vt−i⇒Zt , or PC~Vt−i⇒Zt∪Zt
.268

Also, due to the Markov property of the time series DAG,269

PC~Vt−i⇒Zt∪Zt
separates C~Vt−i⇒Zt ∪ Zt from their non-270

descendants, including the remaining nodes in the condi-271

tions in Eq.(7), and thus gives:272

Gi ≡ I(Zt; ~Vt−i | ~Wτ , ~Vt−i−1, ..., ~Vt−τ )

= I(Zt; ~Vt−i | PC~Vt−i⇒Zt∪Zt\C~Vt−i⇒Zt) (8)

where Gi is the generalized version of the momentary in-273

formation transfer along causal paths [12, 18] from mul-274

tiple source nodes ~Vt−i to Zt along the multiple causal275

paths C~Vt−i⇒Zt . It quantifies the uncertainty reduction276

in Zt due to ~Vt−i conditioned on the parents of both Zt277

and C~Vt−i⇒Zt ∪ Zt,278

Correspondingly, Eq.(7) can thus be simplified as:279

J =

τ∑
i=1

Gi =

τ∑
i=1

I(Zt; ~Vt−i | PC~Vt−i⇒Zt∪Zt\C~Vt−i⇒Zt).

(9)
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FIG. 2. (color online) Illustration of the self and cross depen-
dencies in both simplified immediate and distant causal his-
tories for a target Zt (the black node). The self-dependencies,
~ZJ , and the complementary part, ~Z

′
J , in the simplified im-

mediate causal history, P
C~V⇒Zt
Zt

, are identified in solid and

dashed black boxes, respectively. The self-dependencies, ~ZD,

and the complementary part, ~Z
′
D, in the simplified distant

causal history, ~Wτ , are identified in solid and dashed grey
boxes, respectively.

This equation elucidates that the information given by280

a sequence of dynamics preceding Zt, i.e., its immediate281

causal history, is an accumulation of the momentary in-282

formation transfer from the contemporaneous dynamics283

at each time step involved in this finite history.284

Such accumulation of momentary information can be285

generalized to the total information T if the source286

nodes ~V of the immediate causal history are taken287

as all the variables at an infinite past, ~Xt−τ =288

{Vt−τ , Xt−τ , Yt−τ , Zt−τ , ...}, with τ → ∞. In this case,289

the immediate causal history is naturally the whole290

causal history itself, and thus J = T , which based on291

Eq.(9) gives:292

T = lim
τ→∞

τ∑
i=1

I(Zt; ~Xt−i | PC ~Xt−i⇒Zt∪Zt\C~Vt−i⇒Zt).

(10)

By relating the above equation with Eq.(2), again we see293

that the momentary information from all the previous in-294

termediate nodes in the causal history are accumulated at295

the nodes that directly influence the target Zt, as shown296

in Fig. 1b. Note that, a measure similar to Eqs.(7)-(10) is297

proposed in [5], called the decomposed transfer entropy.298

It approximates the information coming from all the his-299

torical states of a source variable ~X−t as the summation300

of individual conditional mutual information from each301

lagged Xt−τ in a finite set of ~X−t . This is different from302

the information aggregation of J and T proposed here in303

that Eqs.(9) and (10) approximate the information from304

the historical states of multiple source variables to the305

target.306
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D. Interactions from Self-Feedbacks in J and D307

To further dissect the information transfer we charac-308

terize the interaction information arising from self and309

cross dependencies of a target variable Zt in both imme-310

diate and distant causal histories. Note that interaction311

information between two sets of source nodes ~A and ~B312

contributing information to Zt is given as:313

I = I(Zt; ~A| ~B)− I(Zt; ~A)

= I(Zt; ~A, ~B)− [I(Zt; ~A) + I(Zt; ~B)]. (11)

For distant causal history, represented by ~Wτ , the two314

decomposed parts include: (1) a self-feedback component315

of Zt, ~ZD ≡ {Vt−τ ∈ ~Wτ | V = Z} (the grey box in Fig.316

2); and (2) the complementary component, ~Z
′
D ≡ ~Wτ\~ZD317

(the dashed grey box in Fig. 2). The difference between318

D and the summation of the mutual information between319

Zt and each of the two components in ~Wτ then accounts320

for an interaction information, ID, which is given by:321

ID = D − [I(Zt; ~ZD) + I(Zt; ~Z
′
D)]. (12)

ID quantifies the interaction information in Eq.(11)322

transferred to the target Zt from its self-dependency,323

~ZD, as well as the complementary component, ~Z
′
D,in324

distant history. A negative ID [i.e., D < I(Zt; ~ZD) +325

I(Zt; ~Z
′
D)] shows a net redundancy in the interaction326

between the two components, while a positive ID [i.e.,327

D > I(Zt; ~ZD) + I(Zt; ~Z
′
D)] illustrates a net synergistic328

influence on the target.329

Similarly, the simplified immediate causal history of330

Zt, represented by P
C~V⇒Zt
Zt

, can be partitioned into (1) a331

component containing the self-dependence of the target,332

~ZJ ≡ {Vt−τ ∈ P
C~V⇒Zt
Zt

| V = Z} (the black box in Fig.333

2); and (2) the complementary part, ~Z
′
J ≡ P

C~V⇒Zt
Zt

\~ZJ334

(the dashed black box in Fig. 2). The corresponding335

interaction information from the two parts of immediate336

causal history, IJ , can be computed as:337

IJ = J − [I(Zt; ~ZJ | ~Wτ ) + I(Zt; ~Z
′
J | ~Wτ )], (13)

quantifying the conditional interaction information to Zt338

from its self and cross dependencies in the immediate339

causal history.340

We also note that in [18], the interaction information341

is used for investigating how the influence from a source342

node Xt−τ to Zt is intervened by the immediate nodes343

in the causal path CXt−τ→Zt . In this study, we evaluate344

the interaction effects on Zt from immediate and distant345

causal histories in terms of: first, Zt’s own history, and346

second, historical states of the other variables.347

III. APPLICATIONS348

To illustrate the capability of the approach described349

above for delineating the temporal dependency of a sys-350

tem, we quantify the information transfer from the causal351

history in three different systems. We first character-352

ize the temporal dependency of a short-memory sys-353

tem through a trivariate logistic model. Then, we illus-354

trate how the proposed approach is different from lagged355

mutual information in addressing system’s memory de-356

pendency using an example of a chaotic system – the357

Lorenz model. Further, we compare the Lorenz model358

with a trivariate Ornstein-Uhlenbeck process to inves-359

tigate how the information transfer differs in processes360

with and without strange attractor. Finally, we quan-361

tify the memory dependency from time series observa-362

tions, representing catchment chemistry, which is known363

to have long-term dependency. Especially, by decompos-364

ing the distant history into the self-feedback of the target365

and the complementary component characterizing infor-366

mation transfer from other interacting variables, we ob-367

serve the redundancy-dominated J , as well as consistent368

nonzero and synergy-dominated D in both the Lorenz369

model and the stream chemistry system, which we con-370

jecture as sustaining chaotic and fractal features of the371

two systems.372

A. Trivariate Logistic System: a Short-memory373

System374

In the following, we empirically analyze the informa-375

tion transfer in the causal history of a nonlinear model-376

generated synthetic data. Consider a trivariate coupled377

logistic system, mathematically expressed as:378

Xi,t =
1− ε

3

3∑
j=1

4Xj,t−1(1−Xj,t−1) + εηXit , i ∈ {1, 2, 3}

(14)

where ηXit ∈ [0, 1] is a uniform noise term and 0 < ε < 1379

is its coupling strength. To investigate the total in-380

formation and its two components to the target node381

X3,t, we consider the immediate causal history as the382

causal subgraph C{X1,t−τ ,X2,t−τ ,X3,t−τ}⇒X3,t
starting at383

an earlier time step t − τ (τ ≥ 1) (see Fig. 3a). J ,384

D and T are calculated for τ ranging from 1 to 50 and385

ε ∈ [0.1, 0.2, 0.3, 0.5, 0.8]. For each pair of τ and ε, 10,000386

data points are generated to conduct the empirical es-387

timations, with an ensemble of 10 runs for each to get388

an average behavior. To avoid the infinite dimensions389

in Eq.(2) in the computation, we compute T , D and390

J based on Eqs.(3), (4), and (6), respectively. The k-391

nearest-neighbor (kNN) estimator [4, 24] is adopted for392

the estimation of J , T and D with k = 5 (low k facil-393

itates a low bias of the estimated MI and CMI [4]). In394

the next two applications, the computation of T , D, and395

J are also conducted in the same manner.396

The contribution of immediate causal history J , and397

the proportion of distant causal history, D, in the total398

information transfer T , D/T , are shown in Fig. 3b. We399

observe that for the range of noise coupling strengths ε,400
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FIG. 3. (color online) Illustration of the trivariate coupled
logistic model. (a) The times series graph of the system with
the causal subgraph C{X1,t−τ ,X2,t−τ ,X3,t−τ}⇒X3,t

as the im-
mediate causal history (the representations of the nodes are
the same as in Fig. 1a). (b) Plots of J , D/T , S̄, ID and IJ
for τ ranging from 1 to 50 with ε ∈ [0.1, 0.2, 0.3, 0.5, 0.8] (blue
and red crosses, connected through a vertical line, represent
the convergence points of J , D/T , and S̄ for ε = 0.1 and
ε = 0.2, respectively; note that results for ε = 0.8 are not
plotted (except J ) due to its high variability resulting from
a near-zero total information T ).

J and D/T increases and decreases, respectively, with401

lag τ , and D/T achieves asymptotic convergence to zero402

when the lag is sufficiently large. In particular, the con-403

vergence to zero of D/T illustrates that this trivariate404

coupled logistic model has a short memory for influenc-405

ing the target. Further, the decrease of J with increasing406

coupling strength ε implies that a strong noise can reduce407

the information transfer from the preceding finite length408

period and, thus, also reduce the total information in this409

short-memory system.410

Also, it is noted that the curves in D/T decrease with411

increasing τ but intersect for different values of ε. This is412

because of different interactions and synchronization of413

coupled logistic maps as a function of ε [25–27]. There-414

fore, we compute the lag synchronization for each pair of415

lagged variables Xi,t−τ and Xj,t (i, j ∈ {1, 2, 3}) with τ416

ranging from 1 to 50, which is given by:417

Sij(τ) =
{ E[(Xi,t−τ −Xj,t)

2]

[E(X2
i,t−τ )E(X2

j,t)]
1/2

}0.5

, (15)

where E is the expectation function. Since the dynam-418

ics is highly symmetric in terms of {X1, X2, X3} for this419

trivariate model, we compute the averaged lag synchro-420

nization S̄(τ) as:421

S̄(τ) =

∑
i,j Sij(τ)

9
, (16)

which is sketched in the middle plot of Fig. 3b. It shows422

that for each noise coupling strength ε, S̄ oscillates for423

small τ , and then the amplitude decreases and S̄ even-424

tually converges with increasing τ , implying a consistent425

similarity structure between each pair of lagged variables426

given an ε. The convergence of the averaged lag synchro-427

nization, S̄, implies that the similarity between a target428

Xj,t and a lagged history node Xi,t−τ gradually becomes429

invariant with increasing τ . It is consistent with the con-430

vergences of both J and D/T for each ε, which are il-431

lustrated for ε = 0.1 and ε = 0.2 in blue and red crosses,432

respectively.433

Further, the interaction information ID and IJ in-434

creases and decreases with time lag τ , and then converges435

to zero and a negative value, respectively. The rapid con-436

vergence to the asymptotic values suggests no synergy or437

redundancy for this short-memory model. Meanwhile,438

the drop of IJ with increasing τ means the contribu-439

tions from self and cross dependencies in the immediate440

causal history share a higher redundancy.441

B. The Lorenz Model: a Comparison with Lagged442

Mutual Information443

Now, we perform the analysis of the Lorenz model to444

investigate the difference between the proposed measures445

of causal history and traditional methods such as lagged446

mutual information in capturing the temporal depen-447

dency of a system, as well as to understand the potential448

interdependencies embedded in its chaotic behavior. The449

Lorenz model is prototypical of its chaotic behavior [28],450

that is, its dynamics are contained in a strange attractor451

with a fractal dimension between 2 and 3, and its gov-452

erning equation is given by a system of three variables453
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FIG. 4. (color online) Illustration of the Lorenz model with parameters σ = 10, ρ = 28 and β = 8/3. (a) The times series
graph of the system with the causal subgraph C{Xt−τ ,Yt−τ ,Zt−τ}⇒Ut (U ∈ {X,Y, Z}) as the immediate causal history. (b)
The corresponding plots of the lagged mutual information, J , and D for the time lag τ ranging from 1 to 1000. (c) The
corresponding plots of ID, IJ , and J −D for the time lag τ ranging from 1 to 1000.

Xt, Yt and Zt as:454

dXt

dt
= σ(Yt −Xt) (17a)

dYt
dt

= Xt(ρ− Zt)− Yt (17b)

dZt
dt

= XtYt − βZt, (17c)

where the parameters σ, ρ and β in this study are set as455

10, 28, and 8/3, respectively.456

To analyze the information dynamics in the system as457

well as the resulting long-term dependence, we empiri-458

cally quantify the influence on a target Ut ∈ {Xt, Yt, Zt}459

based on (1) the lagged mutual information between each460

pair of variables I(Ut;Vt−τdt), where Vt ∈ {Xt, Yt, Zt},461

and τ and dt are the lag step and the time interval,462

respectively; (2) the information transfer from the im-463

mediate and distant causal histories for each variable,464

J and D, respectively; and (3) the interaction infor-465

mation contributed by a self-feedback and the corre-466

sponding complementary components in both distant467

and immediate causal history, ID and IJ , as indicated468

in Eqs.(12) and (13), respectively. The immediate causal469

history is now the subgraph C{Xt−τdt,Yt−τdt,Zt−τdt}⇒Ut470

(see Fig. 4a), from which we can observe that given a471

time lag τdt the representative distant causal history472

~Wτ = {Xt−(τ+1)dt, Yt−(τ+1)dt, Zt−(τ+1)dt}. The mea-473

sures are calculated for τ ranging from 1 to 1000 with the474

time interval dt = 0.01. 10,000 data points are generated475

to conduct the empirical estimations, with an ensemble476

of 10 runs to get an average behavior.477

The results of the lagged mutual information, D, and J478

are shown in Fig. 4b. The quantities J and D increases479

and decreases, respectively, with increasing τ , converg-480

ing to some nonzero values when τ is around 500. The481

consistent nonzero D for large τ arises from the fact that482

the Lorenz system is a long-memory process such that in-483

formation provided from the distant history informs the484

present dynamics. Meanwhile, the lagged mutual infor-485

mation, I(Ut;Vt−τdt), for all the three variables shows486

strong oscillations and gradually decays to zero. The os-487

cillations are due to the chaotic behavior where the ‘but-488

terfly’ trajectory of the strange attractor in this phase489

space determines the frequency of these oscillations, and490

the slow decay to zero reflects the long term dependency.491

However, the lagged mutual information does not show492

the consistent information contributed from the past asD493

does. Therefore, the proposed information transfer from494

the causal history provides a view for analyzing the mem-495

ory dependency of the system that is complementary to496

traditional methods such as lagged mutual information.497

Furthermore, the difference between J and D as well498
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FIG. 5. (color online) Illustration of the Ornstein-Uhlenbeck process in Eq.(18). (a) The trajectories of the process (left) and
the time series of each variable (right). (b) The corresponding plots of the lagged mutual information, J , and D for the time
lag τ ranging from 1 to 1000. (c) The corresponding plots of ID, IJ , and J −D for the time lag τ ranging from 1 to 1000.

as their interaction information IJ and ID, shown in499

Fig. 4(c), illustrate different roles of the immediate and500

distant causal histories in shaping the target. First, the501

recent dynamics of the Lorenz model has a stronger influ-502

ence on the target than the remaining earlier dynamics503

as time lag τ becomes larger than around 200. This is504

evidenced by the convergence of J −D to a positive value505

(the black thick line). Also, the convergence of IJ to a506

negative value (the blue thick line) implies a higher re-507

dundancy effect from the interaction information of cross508

and self dependencies in the immediate causal history, as509

observed in the trivariate chaotic map. Meanwhile, the510

convergence of ID to zero (the orange thick line) sug-511

gests a balanced contribution from synergistic and re-512

dundant effects, each of which are not necessarily zero in513

the Lorenz model due to the nonzero convergence of D514

plotted in Fig.4(b). In short, the Lorenz model with a515

strange attractor shows each variable is affected by (1) a516

strong influence given by immediate causal history with517

dominant redundant effects from the self and cross depen-518

dencies, and (2) less influence from distant causal history519

with balanced redundancy and synergistic effects.520

C. The Ornstein-Uhlenbeck process: a521

Long-Memory Process without Strange Attractor522

To investigate the difference between processes with523

and without strange attractors in terms of the informa-524

tion transfer from causal history, we now conduct the525

analysis on a trivariate linear Ornstein-Uhlenbeck (OU)526

process with long-term dependency. The OU process is527

chosen such that the model has the same structure of the528

directed acyclic time series graph as the Lorenz model529

shown in Fig. 4(a) and it is stationary, which is given by:530

531

dXt

dt
= −0.5Xt + 0.3Yt + ζX (18a)

dYt
dt

= 0.4Xt − 0.4Yt − 0.3Zt + ζY (18b)

dZt
dt

= 0.4Xt + 0.6Yt − 0.7Zt + ζZ , (18c)

where ζX , ζY and ζZ are independently and identically532

distributed noise terms following standard normal dis-533

tribution. As in the analysis of the Lorenz model, we534

quantify the influence on each variable in the OU process535
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in terms of lagged mutual information, the information536

from immediate and distant causal history J and D, and537

their interaction information IJ and ID. The computa-538

tion settings of the above information-theoretic measures539

are the same as the Lorenz model. The trajectory and the540

time series of each variable of the OU process are plot-541

ted in Fig. 5(a) with time interval dt = 0.01 and 10,000542

simulated data points, visually showing that the dynam-543

ics are confined in a three-dimensional confined domain544

which is not a strange attractor.545

The long-memory property of the OU process in546

Eq.(18) is evidenced in the non-zero convergence of D547

and a slow-decay of the auto mutual information of each548

variable in Fig. 5(b), as also observed in the Lorenz model549

(Fig. 4(b)). Nevertheless, different from the Lorenz550

model which shows a higher convergence value in J , the551

convergence value of D in the OU process is larger. It552

indicates that, for the OU process, the distant causal his-553

tory always provides more information to the target than554

the immediate causal history no matter how much of the555

finite recent dynamics are considered. Further, while the556

interaction information IJ and ID still decreases and in-557

creases with the time lag τ , respectively, similar to the558

(a)

(b)

FIG. 6. Time series graph constructed by using the Tigramite
algorithm from (a) observed logarithm of flow rate and six
catchment chemistry time series data; and (b) the six catch-
ment chemistry data with the variation of logarithmic flow
rate corrected. The thickness of edges represents the cou-
pling strength between two nodes computed by momentary
information transfer shown in Fig. 9 (see the details of the
graph construction in Appendix B).

FIG. 7. (color online) Plots of the information transfers D
(left) and the proportion D/T (right) over the time lag τ
for the raw data and the flow rate-corrected data taking the
immediate causal history initiated from all the variables with
a same lag τ based on the estimated time series graph in Fig.
6.

Lorenz model, ID in the OU process converges a value559

larger than zero. The convergence of ID to a positive560

value implies a net synergistic effect from the interaction561

contribution to the target. In summary, compared with562

the Lorenz model, the evolutionary dynamics of the OU563

process, which shows a similar long-term dependency but564

without a strange attractor, contains a more dominant565

influence from distant causal history with a net synergis-566

tic effect on each variable in the process.567

D. Catchment Chemistry Data: an Observed568

Long-Memory System569

We now employ our approach to analyze the water so-570

lutes in the Upper Hafren in Wales, where the stream571

chemistry records are found to have 1/f fractal signa-572

tures reflecting long-term dependencies due to the com-573

plex interactions occurring in the catchment [17, 29]. In574

this application, the logarithm of flow rate, lnQ, and six575

water chemistry variables, Na+, Cl-, Al3+, Ca2+, SO42-576

and pH, are chosen for analysis, which are sampled ev-577

ery 7-h from March 2007 to Jan 2009. The 1/f frac-578

tal signatures are found in the corrected chemistry data,579

where the trend of the logarithm of stream flow is ex-580

cluded [17]. Both the raw and the flow rate-corrected581

data are available from [17], which are used here. Here,582

we construct the time series graph for both the raw data583

and the flow rate-corrected data by using the Tigramite584
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self-dependent

FIG. 8. (color online) Plots of the interaction information
from distant causal history, ID in Eq.(12) (black line), and
immediate causal history, IJ in Eq.(13) (blue line), over the
time lag τ for the raw data and the flow rate-corrected data
taking the immediate causal history initiated from all the vari-
ables with a same lag τ based on the estimated time series
graph in Fig. 6.

algorithm [5, 18, 30, 31] – a modified PC algorithm [22]585

anchored on the conditional independence test to remove586

any spurious relationship between each pair of nodes.587

The two resulting time series graphs are shown in Fig.588

6 (see the details of the graph construction in Appendix589

B), where coupling strengths in each directed edge, rep-590

resented as the thickness of the edge, is computed as the591

momentary information transfer (MIT) [32] between the592

two nodes. We can observe strong self-feedback depen-593

dencies (shown as thick edges) for most variables in both594

graphs. Meanwhile, the remaining “hairy” causal influ-595

ences, in a Granger sense, illustrate the relatively weaker596

lagged interdependencies (shown as thin edges) among597

the variables, which, along with the self-feedback depen-598

dency, contribute to the current state of each variable.599

Furthermore, the comparison between the two graphs600

shows that with the influence of flow rate excluded, the601

graph constructed from the flow rate-corrected data (Fig.602

6b) contains fewer cross-dependencies (Fig. 6a). It re-603

flects the fact that flow rate (based mixing) plays a key604

role in establishing the connectivities among the stream605

chemistry variables.606

Based on the graphs, we now compute the information607

transfer measures, T and D, and the interaction informa-608

tion IJ and ID in Eqs.(12) and (13), respectively. The609

immediate causal history is initiated by all the five vari-610

ables with a same time lag τ ranging from 1 to 400 ( 117611

days for 7hr dataset). Again, T and D are first calcu-612

lated based on Eqs.(3)-(4) with the number of nearest613

neighbors k = 5 (in kNN method).614

The plots of D and the proportion D/T as a function615

of τ shown in Fig. 7 are insightful. First, for all the616

variables in both graphs, the information from the dis-617

tant causal history, D (the left column of Fig. 7), drops618

rapidly at small lags τ but starts to converge to a value619

far from zero for larger time lags (except for pH). Such620

persistent non-zero D reflects the long-term dependence621

present in the water chemistry data, and illustrates that622

the dynamics from a distant causal history in the stream623

plays an important role in shaping the current states of624

the solutes [29]. Further, the right column of Fig. 7 shows625

that, for each variable in both networks, the percentage626

of the convergence value of D in the total information T627

is less than 50%, illustrating a more dominant influence628

from the immediate causal history. Also, by comparing629

the dynamics with and without flow rate, both D and630

its percentage in the total information, D/T , decrease631

when the influence of flow rate is excluded. It illustrates632

that flow rate is an important driving variable that con-633

nects various water stream variables, and contributes to634

maintaining the long-memory dependence. However, this635

dependence varies for different variables. Specifically, for636

variables that are highly dependent on flow rate, such637

as Ca2+ and pH, D declines significantly when the in-638

fluence of flow rate is excluded. For other variables, es-639

pecially Na+ and Cl- the majority of which originates640

from the oceanic sources through atmospheric pathways641

in this close-to-coast location [33], D drops to a lesser642

degree and thus still holds a relatively strong memory643

persistence due to their lower dependencies on flow rate.644

Further, the interaction information IJ and ID of the645

immediate and distant causal histories, respectively, as a646

function of lag τ are plotted in Fig. 8. First, we see that647

when the influence of the flow rate is included (the left648

column of Fig. 8), IJ decreases with increasing τ and649

converges to a negative value, suggesting the prevalence650

of strong redundant influence in the immediate causal651

history. Meanwhile, ID flattens out to zero as τ becomes652

larger than around 20. The convergence of ID to zero im-653

plies a balanced synergistic and redundant effects from654

the self and cross dependencies in the distant causal his-655

tory. Moreover, in the network without the influence of656

flow rate (the right column of Fig. 8), IJ also converges657

to zero, indicating a balance of synergistic and redundant658

contribution.659

Also, notice that there exist oscillations in different660

information-theoretic measures shown in both Figs. 7661

and 8 even when the values converge for large τ . This662

is possibly due to the bias induced by the estimation663

of the proposed high-dimensional information-theoretic664

measures [12, 18, 32] with a limited amount of data665

points, which are around 1000∼2000 for the estimation of666

D for different time lags. A shuffle test is also conducted667



11

for the computation of D, to ensure that most of the val-668

ues are statistically significant at α = 0.05 significance669

level (see Appendix B for details).670

IV. CONCLUSION671

We have developed information-theoretic measures to672

partition the influence of total causal history (T ) into two673

components, immediate (J ) and distant (D) causal his-674

tory. While the information from the immediate causal675

history quantifies the impact on the state of a specific676

variable from trajectories of recent dynamics, its comple-677

ment, the distant causal history, illustrates such impact678

stemming from the remaining older history.679

By employing the Markov property for directed acyclic680

graph, we reduce the dimensions of T , D and J to make681

the computations of the three measures feasible. The682

Markov property based simplification further results in683

the information aggregation property of the time series684

directed acyclic graph, that is, the information trans-685

ferred from earlier dynamics in the causal history ac-686

cumulate at the nodes directly influencing the target687

node(s). Moreover, the dimension reduction also en-688

ables further partitions of both the immediate and dis-689

tant causal histories into self and cross dependencies, and690

allows us to quantify their interaction information con-691

tribution to a target.692

It is noted that while the dimension of T is now re-693

duced to only the parents of the target, the cardinalities694

of D and J can still be high due to the inclusion of the695

parents of the immediate causal history. For instance, in696

the stream chemistry example, the dimensions of D and697

J are around 30 and 40, respectively, as shown in Fig. 11.698

Such high dimensions might result in biased information-699

theoretic estimation based on limited datasets. Future700

research is required to further reduce the dimensionality.701

We take the opportunity to distinguish the causal his-702

tory formulation presented here with some relevant prior703

work. These include transfer entropy [3], momentary in-704

formation transfer [5], causation entropy [7], and directed705

information [6, 34]. These existing information-theoretic706

measures quantify the coupling strength between two707

(lagged) variables with or without the knowledge of other708

variable(s), while the proposed causal history analysis in-709

vestigates how the entire evolutionary dynamics involv-710

ing all variables in a system influences a target variable.711

This uniqueness of considering contribution from multi-712

ple variables enables analyses that are not possible other-713

wise. The followings is a brief summary of the differences714

with these different information-theoretic approaches.715

Transfer entropy (TE) [3] quantifies the informa-716

tion transfered to a target, Zt, from a sequence717

of previous states of another variable, Xt−1:t−τ =718

{Xt−1, Xt−2, ..., Xt−τ}, given the knowledge of the past719

states of itself, Zt−1:t−τ = {Zt−1, Zt−2, ..., Zt−τ}. It is720

computed through a conditional mutual information, and721

is given by:722

ITEX→Z(τ) = I(Zt;Xt−1:t−τ | Zt−1:t−τ ). (19)

Momentary information transfer (MIT) [5], on the other723

hand, considers the information transfer to Zt from a724

specific lagged variable Xt−τ given the knowledge of the725

entire historical states, and is obtained as the conditional726

mutual information given as:727

IMIT
X→Z(τ) = I(Zt;Xt−τ | PCXt−τ→Zt\PZt). (20)

The condition set PCXt−τ→Zt\PZt , anchored on the728

Markov property, is a simplified set of all the dynamics729

preceding the time t, ~X−t = { ~Xt−1, ~Xt−2, ...}.730

The idea of conditioning, which prevents the influence731

from the nodes in the condition set in influencing the732

quantification of coupling strength, is also used in cau-733

sation entropy (CE) [7]. CE from a source variable with734

lag 1, Xt−1, to the a target, Zt, conditioned on a third735

variable, Yt, with lag 1, and is given by:736

ICEX→Z|Y = I(Zt;Xt−1 | Yt−1). (21)

Notice that causation entropy is a generalization of trans-737

fer entropy in Eq.(19) with τ = 1, that is ICEX→Z|Z =738

ITEX→Z(1).739

Further, another measure called Directed Information740

(DI) [6] quantifies how a limited historical dynamics of a741

source variable, Xt−τ :t, affects the dynamical trajectory742

of the target variables, Zt−τ :t. This is given as:743

IDIX→Z(τ) =

τ∑
i=1

I(Zt−i;Xt−1:t−i | Zt−1:t−i+1). (22)

When the knowledge of the dynamical trajectory of the744

third variables, Yt−τ :t is given, it is converted into a con-745

ditional directed information (CDI) [6], given by:746

ICDIX→Z|Y (τ) =

τ∑
i=1

I(Zt−i;Xt−1:t−i | Zt−1:t−i+1, Yt−1:t−i).

(23)

Different from ITE , IMIT and ICE , which quantify the747

influence to a target from a lagged source variable, IDI748

and ICDI consider the influence from the past dynamics749

preceding time t as well as the instantaneous dynamics750

at time t.751

In addition to pairwise interactions, a variation of752

Eq.(21), temporal causation entropy (TCE) [35] is used753

for inferring the Markov order of a process, which is given754

by:755

ITCE(τ) = I(Zt; ~Z
−
t \Zt−1:t−τ | Zt−1:t−τ ). (24)

which is the conditional mutual information between Zt756

and its earlier dynamics, ~Z−t \Zt−1:t−τ , given the imme-757

diate dynamics Zt−1:t−τ . The calculation of ITCE in758

Eq.(24) involves the division of the entire history of a759
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process into two parts based on a time lag τ , which looks760

similar to the partition of immediate and distant causal761

histories at a first glance. However, they differ in both762

the purposes and the technical details. While ITCE is763

used to infer the Markov order of a process based on764

the smallest τ when ITCE equals to zero in Eq.(24), the765

causal history analysis investigates the contribution from766

both immediate and distant causal histories. The differ-767

ent orientation in the causal history analysis, along with768

its multivariate nature of the analysis, indicate that this769

work adds significantly to the discourse associated with770

such studies.771

All these existing information-theoretic measures (i.e.,772

ITE , IMIT , ICE , IDI and ICDI), except ITCE , quan-773

tify the coupling strengths between two (lagged) vari-774

ables from different perspectives. On the other hand,775

the proposed approach for causal history analysis pre-776

sented in our work is initiated from a different perspec-777

tive. It aims at analyzing how the target is driven by the778

entire evolutionary dynamics, which involves multivari-779

ate interactions in a complex system. By analyzing the780

whole history of the system, it allows the partition of the781

causal history into an immediate and distant components782

as well as quantification of these quantities. Furthermore,783

the instantaneous influence, which is explored in IDI and784

ICDI , is not considered as cause-effect relationship in this785

study. This is because the directionality of such causal786

influence between two contemporaneous nodes is unclear787

and the contemporaneous dynamics is not considered as788

causal ‘history’.789

The quantification of the information from the immedi-790

ate and distant causal histories sketches the memory de-791

pendency of the system, which are illustrated with four792

examples with varying memories. Further, in addition793

to characterizing the memory dependency of a complex794

system, the proposed approach also delineates some key795

features of the complexity associated with its dynam-796

ics, which are not captured by other traditional method797

such as lagged mutual information. First, for the Lorenz798

model and the OU process, while lagged mutual informa-799

tion slowly goes to zero with increasing time lag τ , the800

information from distant causal history D converges to801

a nonzero value with large lags. It implies a persistent802

information influence over long time scale in the system’s803

evolutionary dynamics. Second, we observe that the ana-804

lyzed models have different characteristics of information805

transfer. For instance, while the interaction information806

of distant causal history, ID, flattens out in both the807

Lorenz model and the logistic map, the convergence of808

ID to zero in the Lorenz model suggests that there is809

a balanced synergy and redundancy jointly contributed810

by the self and cross dependencies. However, in the OU811

process, which also has long memory but no strange at-812

tractor, there turns out to be a net synergy effect in the813

distant causal history as ID converges to a positive value.814

Further, the differences in the interaction information of815

the immediate causal history, IJ , also illustrate the var-816

ious dynamics in different systems. The comparison be-817

tween the stream chemistry system with and without the818

influence of flow rate shows that the existence of the flow819

rate is able to enhance the redundnant effect from self820

and cross dependencies in immediate causal history.821

By involving multiple components as well as the causal822

influences among them, the proposed measures address823

an unresolved problem, that of quantifying the causal in-824

fluence on the current state of a variable from the evolu-825

tionary dynamics of the entire system. It is different from826

what has been addressed so far by existing information-827

theoretic measures, which is usually anchored on pairwise828

interactions or multivariate analysis associated with spe-829

cific parts of the system [3, 5, 7, 12]. This uniqueness,830

therefore, facilitates addressing the questions of how the831

complexity of a system is sustained over time, which is832

reflected in varying memory dependency. With the in-833

creasing availability of observations in various domains,834

this work can open up avenues for new data-driven ap-835

proaches for the study of complex system dynamics.836

APPENDIX837

Appendix A: Derivations for Information from838

Immdeidate Causal History, J839

This section provides the derivations of Eqs.(6). We840

separate the immediate causal history C~V⇒Zt into841

two sets: (1) those belonging to the parents of Zt,842

P
C~V⇒Zt
Zt

= PZt ∩ C~V⇒Zt , and (2) the remaining nodes,843

C~V⇒Zt\P
C~V⇒Zt
Zt

. Then, using the chain rule, J defined844

in Eq.(5) can be written as:845

J =I(Zt;P
C~V⇒Zt
Zt

, C~V⇒Zt\P
C~V⇒Zt
Zt

| ~Wτ ) (A1)

=I(Zt;P
C~V⇒Zt
Zt

| ~Wτ ) (A2)

+ I(Zt;C~V⇒Zt\P
C~V⇒Zt
Zt

| ~Wτ , P
C~V⇒Zt
Zt

)︸ ︷︷ ︸
=0

(A3)

=I(Zt;P
C~V⇒Zt
Zt

| ~Wτ ), (A4)

yielding Eq.(6). The chain rule of the conditional mu-846

tual information (CMI) facilitates the transition from847

Eq.(A1) to Eq.(A2). Moreover, in the 2nd term of848

Eq.(A2), I(Zt;C~V⇒Zt\P
C~V⇒Zt
Zt

| ~Wτ , P
C~V⇒Zt
Zt

), the par-849

ents of Zt are contained in the condition set, which850

is the union of P
C~V⇒Zt
Zt

and ~Wτ , including the par-851

ents of Zt in C~V⇒Zt and the remaining parents not852

in the subgraph, respectively. Therefore, due to the853

Markov property, given PZt (included in the union of ~Wτ854

and P
C~V⇒Zt
Zt

), Zt is independent of its non-descendants,855

which contains both C~V⇒Zt\P
C~V⇒Zt
Zt

and the remaining856

nodes in the condition set { ~Wτ , P
C~V⇒Zt
Zt

}, thus leading857

to I(Zt;C~V⇒Zt\P
C~V⇒Zt
Zt

| ~Wτ , P
C~V⇒Zt
Zt

) = 0.858
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(a) (b)

FIG. 9. (color online) Illustration of the estimated lag functions (y-axis: the coupling strength [nats] computed based on
momentary information transfer (MIT) [32]; x-axis: the time lag τ) of the catchment chemistry data by using Tigramite
algorithm for: (a) the logarithm of flow rate and six chemistry variable; and (b) the six chemistry variables with the variation
of the logarithm of flow rate excluded.

FIG. 10. Number of data points for computing D in Eq.(4)
in terms of the time lag τ for each variable in the two time
series graphs constructed in Fig. 9.

Appendix B: Construction of the Time Series Graph859

for Water Chemistry Data860

The catchment chemistry data in the Upper Hafren in861

Wales, sampled and analyzed every 7-h from March 2007862

to Jan 2009, are available as the supporting information863

of [17]. In this study we use, the logarithmic flow rate864

(ln Q) and six water quality variables (i.e., Na+, Cl-,865

Al3+, Ca2+, SO42- and pH), as well as the data with866

flow-dependent variations corrected [17], are used. We867

construct two time series graphs for the raw data and868

the flow rate-corrected one, separately, with the total869

number 2375 data points including gaps for each graph.870

The existence of the gaps in the data would reduce the871

lengths of samples in computing conditional mutual in-872

formation (CMI) or mutual information (MI), thus po-873

tentially worsening the estimation. To minimize this ef-874

fect, we use the whole dataset to get the sample data875

points for estimating MI or CMI and then remove the876

data points containing gaps in the samples [9].877

The time series graph is constructed by using878

Tigramite algorithm [5, 18, 30, 31], which is a modi-879

fied PC algorithm [22] and anchored on the conditional880

independence test to remove any spurious relationship881

between two nodes. We employ the k-nearest-neighbor882

(kNN) CMI-based conditional independence test, with883

the number of nearest-neighbor k = 100 (high k facili-884

tates a low variance of the estimated CMI [4]). Each test885

is conducted based on 100 samples with a significance886

level α = 95%. The graphs are constructed with a maxi-887

mum time lag τmax = 5. The resulting dependencies for888
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FIG. 11. The cardinality of the estimated T , D and J in
Eq.(3), Eq.(4) and Eq.(6), respectively, in terms of the time
lag τ for each variable in the two time series graphs con-
structed in Fig. 9.

FIG. 12. The estimated D in Eq.(4) from the two networks
constructed in Fig. 9 as well as the corresponding threshold
for shuffle test with significance level α = 0.05.

the two networks are shown in Fig. 9, sketching the lag889

function in terms of the momentary information trans-890

fer [32] between each pair of lagged components. Based891

on the two time series graphs, D and T for each variable892

are computed based on Eqs.(4) and (3), respectively, by893

using kNN approach with k = 5. The dimensions of T ,894

D, and J are shown in Fig. 11. As the computation of D895

requires higher dimensions, the numbers of data points896

used for computing D are shown in Fig. 10, where in897

each case more than 1000 are used. Further, to check the898

significance of D, shuffle test is conducted for D with a899

significance level of 95% based on 100 shuffles. The result900

of shuffle tests in Fig. 12 shows most D are statistically901

significant.902
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