
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Master stability functions for complete, intralayer, and
interlayer synchronization in multiplex networks of coupled

Rössler oscillators
Longkun Tang, Xiaoqun Wu, Jinhu Lü, Jun-an Lu, and Raissa M. D'Souza

Phys. Rev. E 99, 012304 — Published  3 January 2019
DOI: 10.1103/PhysRevE.99.012304

http://dx.doi.org/10.1103/PhysRevE.99.012304


Master stability functions for complete, intra-layer and inter-layer

synchronization in multiplex networks of coupled Rösslers
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Abstract

Synchronization phenomena are of broad interest across disciplines and increasingly of interest

in a multiplex network setting. For the multiplex network of coupled Rössler oscillators, here we

show how the Master Stability Function, a celebrated framework for analyzing synchronization on

a single network, can be extended to certain classes of multiplex networks with different intra-

layer and inter-layer coupling functions. We derive three master stability equations that determine

respectively the necessary regions of complete synchronization, intra-layer synchronization and

inter-layer synchronization. We calculate these three regions explicitly for the case of a two-layer

network of Rössler oscillators and show that the overlap of the regions determines the type of

synchronization achieved. In particular, if the inter- or intra-layer coupling function is such that

the inter-layer or intra-layer synchronization region is empty, complete synchronization cannot

be achieved regardless of the coupling strength. Furthermore, for any network structure, the

occurrence of intra-layer and inter-layer synchronization depend mainly on the coupling functions

of nodes within a layer and across layers, respectively. Our mathematical analysis requires that

the intra- and inter-layer supra-Laplacians commute. But we show this is only a sufficient, and not

necessary, condition and that the results can be applied more generally.

Keywords: Multiplex network; master stability function; complete synchronization; intra-layer synchro-

nization; inter-layer synchronization; synchronized region.
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I. INTRODUCTION

Synchronization in a network of connected elements is essential to the proper functioning

of a wide variety of natural and engineered systems, from brain networks to electric power

grids. This has stimulated a large number of investigations into synchronization proper-

ties of complex networks, with small-world, scale-free and other types of topologies [1–15].

Yet many synchronization phenomena, as in electrical power grids, do not involve a sin-

gle network in isolation but rely on the complete synchronization of a collection of smaller

networks. And more generally, beyond single networks, we are now understanding that in-

teractions between networks are increasingly important and that interactions can impact the

dynamical processes [16–21]. One paradigm that captures many real-world interdependent

networks is that of multiplex networks. Here the same set of nodes exist in multiple layers

of networks, where each layer represents a different interaction type, the internal state of

the corresponding nodes in each layer can be distinct, and the connectivity pattern between

nodes in each layer can be distinct [22, 23]. As an example consider the online social system

of a set of individuals. They may interact on Twitter or on Facebook or on Linked-in or

on some combination of all three, and each layer can have its own connectivity pattern, yet

there is typically influence propagated between them [24]. Given the need to study dynam-

ical processes on layered complex networks, and the broad applicability of synchronization,

here we study synchronization phenomena on multiplex networks, an area that has attracted

increasing attention in the past few years.

One of the most important methods to study network synchronization on single networks

is the master stability function (MSF) method proposed by Pecora and Carroll [25]. As

established via the MSF approach, whether or not a network can achieve synchronization

is determined not only by the network structure, but also by the nodal dynamics and by

the inner coupling function which describes the interactions among the different compo-

nents of the state vectors of connected nodes [26–28]. In other words, the nodal dynamics,

the network topology and the inner coupling function are three basic elements in studying

network synchronization. The latter two are paid most main attention, and the former is

generally set as some specific chaotic system. Such as, Lorenz, Chen’s, Chua circuit, and

Rössler systems, and so on. Here Rössler chaotic system is selected as the network nodal

dynamics due to the fact that the system can be implemented by circuits and applied to
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secure communication. More importantly, we focus on the different inner coupling functions

within and across layers in the multiplex network setting, as well as the different intra-layer

topologies.

Current studies of synchronization phenomena in multiplex networks analyze a multiplex

network as a single large composite network with the topology being described by a supra-

Laplacian matrix. This requires that the inner coupling function is the same regardless of

whether the nodes are linked by an intra-layer or inter-layer edge and the MSF framework can

thus be directly applied. The eigenvalues of this supra-Laplacian are then used to analyze the

stability of the state of complete synchronization in multiplex networks. For example, Solé-

Ribalta et al. [29] investigated the spectral properties of the Laplacian of multiplex networks,

and discussed the synchronizability via the eigenratio of the Laplacian matrix. Aguirre et

al. [30] studied the impact of the connector node degree on the synchronizability of two star

networks with one inter-layer link and showed that connecting the high-degree (low-degree)

nodes of each network is the most (least) effective strategy to achieve synchronization. Xu

et al. [31] investigated the synchronizability of two-layer networks for three specific coupling

patterns, and determined that there exists an optimal value of the inter-layer coupling

strength for maximizing complete synchronization in the two-layer networks they analyze.

Li et al. [32] investigated the sychronizability of a duplex network composed of two star

networks with two inter-layer links by giving an analytical expression containing the largest

and the smallest nonzero eigenvalues of the Laplacian matrix, the link weight, as well as the

network size.

In 2012, Sorrentino et al. [33, 34] considered an innovative “hypernetwork” model con-

sisting of one set of N nodes that interact via multiple types of coupling functions. Note

the contrast with a multiplex network, where a set of N nodes exists on each one of M

distinct layers (for a total of M × N nodes), and each node can be in a different state in

each layer. (See for instance, Fig. 1.) In the “hypernetwork” model there are only N nodes

in total and each node can be in only one state at any given time. As such, the focus is on

complete synchronization and three situations are found where the network topology is such

that one can decouple the effects of interaction functions from the structure of the networks

and apply the MSF approach [33, 34]. Extremely recently, del Genio et al. extended this

analysis to a broader range of scenarios, again using an MSF approach [35], and show how

the “hypernetwork” model of [33, 34] is equivalent to a network where nodes have many
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different interaction types (or “layers” of interaction). Although these works consider that

nodes can interact with one another via different coupling functions, they do not capture

the richness of phenomena that can occur in multiplex networks such as intra-layer and

inter-layer synchronization.

Only limited studies thus far have focused on intra-layer and inter-layer synchronization.

For example, Gambuzza et. al [36] analyzed synchronization of a population of oscillators

indirectly coupled through an inhomogeneous medium. The system is formalised in terms

of a two-layer network, where the top layer is composed of disconnected oscillators, and the

bottom layer consists of oscillators coupled according to a given topology, and each node in

the top layer is connected to its counterpart in the bottom layer. By numerical simulations,

they have shown the onset of intra-layer synchronization without inter-layer coherence, that

is, a state in which the nodes of a layer are synchronized between them without being

synchronized with those of the other layer. Shortly afterwards, Sevilla-Escoboza et. al

[37] investigated the inter-layer synchronization in a duplex network of identical layers,

and showed that there are instances where each node in a given layer can synchronize

with its replica in the other layer irrespective of whether or not intra-layer synchronization

occurs. These findings into specific systems provide useful foundations for elucidating a more

fundamental approach to analyzing synchronization phenomena in multiplex networks. In

fact, as we will show herein, master stability equations can be derived to systematically

predict when intra- and inter-layer synchronization are simultaneously supported and when

they are not simultaneously supported for certain classes of multiplex networks.

Based on the above motivations, here we develop a Master Stability Function method

which captures an essential feature of multiplex networks, that the inter-layer coupling

function can be distinct from the intra-layer coupling function. Thus, distinct from previ-

ous approaches, we can analyze different kinds of coherent behaviors, including complete

synchronization, intra-layer synchronization and inter-layer synchronization in multiplex

networks, however, we are restricted to certain classes of topologies. In particular, we de-

rive the master stability equation for a multiplex network where the supra-Laplacian of

intra-layer connections and that of inter-layer connections commute, as defined in detail

below. We further derive two reduced forms of the master stability equation corresponding

to only inter-layer or intra-layer interactions. We then show how three different necessary

regions for synchronization can be calculated from the MSF of the three master stability

4



equations. Finally we show how to explicitly apply the multiplex MSF by analyzing a spe-

cific example of two-layer network of Rössler oscillators with identical intra-layer topological

structures and one-to-one inter-layer connections. For broader applicability of this multi-

plex MSF approach, we further illustrate that the three master stability equations can still

be used to predict the area of synchronization for some classes of multiplex networks with

non-commutative supra-Laplacians.

II. A MASTER STABILITY FUNCTION FRAMEWORK FOR CLASSES OF

MULTIPLEX NETWORKS

A. A multiplex network model

We consider a multiplex network consisting of M layers each consisting of N nodes.

The state of the i-th node in the k-th layer is specified by x
(k)
i = (x

(k)
i1 , x

(k)
i2 , · · · , x

(k)
im)>, an

m−dimensional state vector. The evolution of the full multiplex system can be written as:

ẋi
(k) = f(x

(k)
i )−c

N∑
j=1

l
(k)
ij H(xj

(k))−d
M∑
l=1

dklΓ(x
(l)
i ), i = 1, 2, · · · , N ; k = 1, 2, · · · ,M, (1)

where ẋi
(k) = f(x

(k)
i ) (i = 1, 2, · · · , N ; k = 1, 2, · · · ,M) describes the isolated dynamics

for the i-th node in the k-th layer, and f(·) : Rm → Rm is a well-defined vector function,

H(·) : Rm → Rm and c are the inner coupling function and coupling strength for nodes

within each layer, respectively, and Γ(·) : Rm → Rm and d are the inner coupling function

and coupling strength for nodes across layers, respectively. For simplicity and clarity, here

we let H(x) = Hx and Γ(x) = Γx, namely the coupling functions between nodes are linear

(thus we can also call H and Γ inner coupling matrices). Furthermore, the inner coupling

matrix for nodes within one layer, H, is identical for all layers and the inner coupling matrix

for nodes across two layers, Γ, is the same for all pairs of layers.

Elements l
(k)
ij describe the Laplacian matrix of nodes within the k-th layer. Explicitly, if

the i-th node is connected with the j-th node within the k-th layer, l
(k)
ij = −1, otherwise

l
(k)
ij = 0, and l

(k)
ii = −

∑N
j=1 l

(k)
ij , for i, j = 1, 2, · · · , N and k = 1, 2, · · · ,M. Similarly, if a

node in the k-th layer is connected with its replica in the l-th layer, dkl = −1, otherwise

dkl = 0, and dkk = −
∑M

l=1 dkl, for k, l = 1, 2, · · · ,M.

For simplicity, denote
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x(k) =


x
(k)
1

x
(k)
2

...

x
(k)
N

 , f̃(x(k)) =


f(x

(k)
1 )

f(x
(k)
2 )
...

f(x
(k)
N )

 , x =


x(1)

x(2)

...

x(M)

 , F (x) =


f̃(x(1))

f̃(x(2))
...

f̃(x(M))

 ,

then the evolution of the multiplex network (Eq. 1) can be rewritten as

ẋ = F (x)− c(LL ⊗H)x− d(LI ⊗ Γ)x, (2)

where LL stands for the supra-Laplacian of intra-layer connections and LI for the supra-

Laplacian of inter-layer connections. In detail, LL =
⊕M

l=1 L
(k) =


L(1)

L(2)

. . .

L(M)


and LI = LI ⊗ IN . Here

⊕
is the direct sum operation, IN is the N-by-N identity matrix,

⊗ is the Kronecker product operation, L(k) = (l
(k)
ij )N×N is the Laplacian matrix of nodes

within the k-th layer, and LI = (dkl)M×M represents the inter-layer Laplacian matrix. More

details about supra-Laplacians and multiplex network models can be found in Refs. [18, 23,

29, 31, 32] and references therein.

B. Three master stability equations

The master stability function method [25] is one of the most important methods to study

stability of synchronized coupled identical systems. It simplifies a large-scale networked sys-

tem to a node-size system via diagonalization and decoupling, as long as the inner coupling

functions for all node pairs are identical. Thus, determining whether a network can reach

synchronization can be turned into determining whether all the network characteristic modes

fall into the corresponding synchronized regions. In the following, we will establish a mas-

ter stability framework for multiplex networks with nonidentical inter-layer and intra-layer

inner coupling functions.

According to the idea of the master stability framework [25], to investigate network

synchronization, we can linearize the dynamical equation (2) at 1M ⊗ 1N ⊗ s, where s is

a synchronous state of the network satisfying ṡ = f(s) and 1M denotes an M -dimensional
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vector with all entries being 1. We thus obtain the following variational equation:

ξ̇ = [IM×N ⊗Df(s)− c(LL ⊗H)− d(LI ⊗ Γ)]ξ, (3)

where ξ = x− 1M ⊗ 1N ⊗ s and IM×N is the identity matrix of order M ×N .

Suppose that LL and LI are symmetric matrices, and satisfy LLLI = LILL. After

diagonalization and decoupling (see Appendix B for details), we get the multiplex master

stability equation for a system described by Eq. (1):

ẏ = [Df(s)− αH − βΓ]y, (4)

where α = cλ, β = dµ, λ and µ are the eigenvalues of LL and LI respectively, and satisfy

λ2 + µ2 6= 0.

Since this equation may be a time-varying system, particularly if s(t) is a function of

time, its eigenvalues may not be useful for determining the stability. Therefore, the largest

Lyapunov exponent (LLE) of Eq. (4) is used instead, which is a function of α and β, denoted

σ(α, β) and called the multiplex Master Stability Function for Eq. (1). Please see Appendix

A for more information about Lyaponuv exponents.

When λ 6= 0 and µ = 0, there is no inter-layer couplings regardless of d, for d arbitrarily

chosen in [0, +∞), and Eq. (4) reduces to

ẏ = [Df(s)− αH]y, (5)

It is clear that Eq. (5) becomes exactly the master stability equation of each independent

intra-layer network (no inter-layer couplings).

Similarly, when λ = 0 and µ 6= 0, we can obtain the following equation

ẏ = [Df(s)− βΓ]y, (6)

regardless of coupling strength c, for c arbitrarily chosen in [0, +∞). Eq. (6) becomes

exactly the master stability equation for each independent inter-layer network (no intra-

layer couplings).

For a single layer network, a necessary condition for the synchronization manifold to be

stable is that the largest Lyapunov exponent σ(α) of Eq. (5) less than zero [38]. In analogy

to a single layer, for the multiplex master stability equation (4), σ(α, β) < 0 is a necessary

condition for stability of the synchronization manifold in a multiplex network.
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It is worth noting in particular the case when the intra- and inter-layer coupling functions

are identical. Here H = Γ, and Eq. (4) turns into ẏ = [Df(s) − γH]y, (with γ = α + β).

This is the master stability equation for the corresponding single composite network where

the inner coupling pattern (function) between any two nodes is identical, and a single supra-

Laplacian can describe its topology. That is to say, the master stability equation of the

single composite network is a special case of Eq. (4).

The assumption that LL and LI are symmetric and satisfy the commutativity condi-

tion is an important condition for decoupling the system and restricts our approach from

applying to the full class of multiplex networks. But this assumption can be relaxed, as

it is only a sufficient but not a necessary condition. First we consider the case when LL

and LI are commutative but are nonsymmetric. As shown in AppendixE, the same master

stability equations (4)-(6)(which correspond to Eqs. (E10), (E9) and (E6), respectively) can

be derived provided that the multiplex network has intra-layer topology that is identical on

each layer and that both the intra-layer Laplacian matrix LL and the inter-layer Laplacian

matrix LI can be diagonalizable and have real eigenvalues. There are important classes

of real-world networks that fit this paradigm, such as the Continuously Operating Refer-

ence Stations (CORS) geospatial information infrastructure [39–41] discussed in detail in

Appendix F.

Next we consider the case when LL and LI do not commute. As shown in the simulation

results with two-layer Rössler network with non-commutative supra-Laplacians, the three

master stabilty equations (4)-(6) can be still used to predict network synchronization behav-

iors. In particular, for duplex networks, if the network topology is different on each layer,

but there is one-to-one identical weighted coupling of nodes between layers, we can predict

complete synchronization and intra-layer synchronization. If the topology on each layer is

identical, but the one-to-one weighted coupling is not identical, we can predict complete

synchronization and inter-layer synchronization. (See the simulation part for full details.)

C. Synchronized regions

Using the multiplex master stability equations developed above, we can analyze three

types of synchronization behaviors: complete synchronization, intra-layer synchronization

and inter-layer synchronization. Here we define the regions that support each behavior and
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in the subsequent sections and Supplemental Material we show that it is the overlap of these

regions that determines the type of sychronization pattern displayed by a multiplex network.

For the full multiplex network, from the multiplex master stability equation (4) we can

calculate the region

Rα,β = {(α, β)|σ(α, β) < 0},

which is called the joint synchronized region (which supports complete synchronization of the

network). Whenever σ(α, β) < 0, perturbations transverse to the synchronization manifold

die out, and the network is said to be synchronizable.

From Eq. (5), we can get the region for intra-layer synchronization. The region depends

only on the value of the parameter α, but to later allow comparison across the full parameter

space we explicitly include the parameter β in the definition of the region,

R Intra
α,β = {(α, β)|σ(α) < 0},

where LLE(α) is the largest Lyapunov exponent for master stability equation (5). Similarly,

from Eq. (6), we obtain the region for inter-layer synchronization

R Inter
α,β = {(α, β)|σ(β) < 0}.

We call these regions in the parameter space of (α ≥ 0, β ≥ 0) the corresponding synchro-

nized regions with respect to α and β.

When the network topological structures are specified, we can determine λ and µ (the

eigenvalues of LL and LI) directly, and then the regions Rα,β, R Intra
α,β and R Inter

α,β can be

parameterized simply in terms of coupling strengths c and d, denoted by Rc,d, R
Intra
c,d and

R Inter
c,d . We call these regions the corresponding synchronized regions with respect to cou-

plings c and d.

III. TWO-LAYER NETWORK OF RÖSSLER OSCILLATORS

With the multiplex MSF framework developed, we now analyze in more depth a specific

example of a two-layer network of Rössler oscillators and calculate the different types of

synchronized regions.
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The famous Rössler chaotic oscillator is described as
ẋ = −y − z,

ẏ = x+ ay,

ż = z(x− c) + b ,

(7)

where a = b = 0.2 and c = 9. This is the function f in the multiplex network Eq. (1). That

is, the state of each node in the network is a three-dimensional vector with each component

evolving by Eq. (7). For inner coupling matrices H and Γ, we consider the family of choices

that fit the simplest form Iij ∈ R3×3 (where i, j = 1, 2, 3), which represents a matrix whose

(i, j)-element is one and other elements are zero. The inter-layer topology is set to be one-

to-one connection, that is to say, each node in one layer is connected to a counterpart node

in the other layer.

Next, we first give an outline of the intra-layer and inter-layer synchronization, and then

calculate the parameterized regions of synchronization for the general (unknown) intra-layer

topologies and demonstrate how to determine synchronized regions after specifying the intra-

layer topologies in the final subsection.

A. Intra-layer and inter-layer synchronization

It is well known that complete synchronization means all the nodes in a network come to

an identical state. But for multiplex networks, it is also very significant to study intra-layer

synchronization and inter-layer synchronization. As shown in Fig. 1, intra-layer synchro-

nization means all the nodes within each layer reach an identical state, while inter-layer

synchronization means each node in a layer reaches the same state as its counterparts in

other layers.

B. Synchronized regions for unknown intra-layer topologies

The regions of synchronization calculated from the multiplex MSF are parameterized by α

and β, and thus do not require that the inter- and intra-layer topology are specified. Figure 2

shows the synchronized regions as parameterized by (α, β) for a two-layer multiplex network

of Rössler oscillators with arbitrary topology for different combinations of inter-layer and

intra-layer coupling matrices H and Γ. Here, the green (grey) shading represents the regions
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(a) (b)

c c

d d

FIG. 1. Schematic representation of (a) intra-layer synchronization and (b) inter-layer synchro-

nization, in a multiplex network of two layers.

Rα,β as obtained from the master stability equation (4). The regions R Intra
α,β as obtained from

Eq. (5) are enclosed by the dash-dotted blue lines, and the regions R Inter
α,β as obtained from

Eq. (6) enclosed by the dashed red lines.

Synchronization occurs in the region when the MSF criterion is negative, in other words

when σ(α, β) < 0. Thus from Fig. 2, we can easily obtain the joint synchronized region:

Rα,β ≈ {(α, β)| 0.2 < α + β < 4.6} for H = I11 and Γ = I11,

Rα,β ≈ {(α, β)| 0.23 < α < 4.3, β ≥ 0} for H = I11 and Γ = I13,

Rα,β ≈ {(α, β)| α
0.2

+
β

0.18
> 1, β > h(α)} for H = I11 and Γ = I22

Rα,β ≈ {(α, β)| β > 0.2, α ≥ 0} for H = I13 and Γ = I22,

where h(α) = −10−5α4 + 0.00057α3 − 0.012α2 + 0.12α− 0.35.

In particular, letting β = 0 in Rα,β, we have the interval Rα = (0.2, 4.6) for H = I11,

Rα = ∅ for H = I13, and Rα = (0.18, ∞) for H = I22. Similarly, letting α = 0 in Rα,β, we

have Rβ = (0.2, 4.6) for Γ = I11, Rβ = ∅ for Γ = I13, and Rβ = (0.18, ∞) for Γ = I22. Here,

the intervals Rα , {α|σ(α) < 0} and Rβ , {β|σ(β) < 0} can also be obtained from Eqs.

(5) and (6), respectively.

Consequently, for three types of coupling patterns, i.e., H = I11 and any Γ, H = I13 and

any Γ, and H = I22 and any Γ, we get the following region for intra-layer synchronization,

11



α

β

0.2 1 2 3 4 4.6 5

0.2

1

2

3

4

4.6

5

α

β

0.2 1 2 3 4 4.6 5 6
0

2

4

6

8

10

α

β

0.2 2 4.6 6 8
0

0.5

1

1.5

2

α

β

0 2 4 6 8 10
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1
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(c)

(a) (b)

(d)

FIG. 2. The synchronized regions with respect to α and β, Rα,β painted with green (grey) color,

R Intra
α,β enclosed by the dash-dotted blue lines, and R Inter

α,β enclosed by the dashed red lines. Here

the Rössler oscillator is taken as nodal dynamics, and the intra-layer coupling matrix H and the

inter-layer coupling matrix Γ are chosen as follows: (a) H = I11, Γ = I11, (b) H = I11, Γ = I13,

(c) H = I11, Γ = I22, (d) H = I13, Γ = I22.

respectively.

R Intra
α, β = {(α, β)| 0.2 < α < 4.6, β ≥ 0}, R Intra

α, β = ∅,

and

R Intra
α, β = {(α, β)| 0.18 < α < +∞, β ≥ 0}.

Analogously, we can obtain R Inter
α, β by replacing α with β, and H with Γ in the above R Intra

α, β .

As shown in Fig. 2, for H = I11 and Γ = I11, the regions

R Intra
α, β = {(α, β)| 0.2 < α < 4.6, β ≥ 0} and R Inter

α, β = {(α, β)| 0.2 < β < 4.6, α ≥ 0},
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which are enclosed by the dash-dotted blue and dashed red lines, respectively.

For H = I11 and Γ = I13,

R Intra
α, β = {(α, β)| 0.2 < α < 4.6, β ≥ 0}, and R Inter

α, β = ∅,

where R Intra
α, β is enclosed by the dash-dotted blue lines.

For H = I11 and Γ = I22, R
Intra
α, β is the part enclosed by the dash-dotted blue lines, and

R Inter
α, β is the one above the dashed red line. To be exact,

R Intra
α, β = {(α, β)| 0.2 < α < 4.6, β ≥ 0} and R Inter

α, β = {(α, β)| 0.18 < β < +∞, α ≥ 0}.

For H = I13 and Γ = I22, R
Intra
α, β = ∅, and R Inter

α, β = {(α, β)| 0.18 < β < +∞, α ≥ 0},

which is above the dashed red line.

Generally speaking, a multiplex network with a specified topology can achieve complete

synchronization when all the nonzero network characteristic modes, including those of the

intra-layer and inter-layer Laplacians, fall into the synchronized region. For a two-layer net-

work with identical intra-layer topologies, our theoretical analysis (see Appendix E) further

shows that a duplex network can achieve complete synchronization when all the nonzero

characteristic modes fall into the intersection of Rα,β, R Intra
α, β and R Inter

α, β . Therefore, accord-

ing to the overlapping region, one can determine whether the network achieves complete

synchronization or not after specifying the topology. However, what happens when all the

nonzero characteristic modes do not fall into the intersection? Further simulations shows

that in this case the network could support other coherent dynamical behaviors, such as

intra-layer or inter-layer synchronization.

C. Synchronized regions with given intra-layer topologies

To push the analysis further, we must specify the topology of the two-layer Rössler

oscillator network. For simplicity, assume that the two layers have the same intra-layer

topology, and each node in one layer is connected with its replica in the other layer. Consider

that each layer is a star network consisting of 5 nodes. Then, the intra-layer Laplacian matrix

13



is

L =



4 −1 −1 −1 −1

−1 1 0 0 0

−1 0 1 0 0

−1 0 0 1 0

−1 0 0 0 1


,

and the intra-layer supra-Laplacian matrix is LL =

 L 0

0 L

. The inter-layer Laplacian

matrix LI =

 1 −1

−1 1

, and the inter-layer supra-Laplacian matrix LI = LI ⊗ I5. It

is easy to verify that LLLI = LILL, and the characteristic values of LL and LI are λ =

0, 0, 1, 1, 1, 1, 1, 1, 5, 5 and µ = 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, respectively.

We can calculate the eigenvalues λ and µ directly and parameterize the synchronized

regimes by the coupling strengths c and d (rather than the more general α and β) for all the

different combinations of the inner coupling matrices H and Γ. (See Appendix B for more

details on transforming Rα,β to Rc.d.) Consequently, for H = I11 and Γ = I11, the region

with respect to parameters c and d is

R c,d ≈ {(c, d)| 0.2 < c+ 2d, c+ 0.4d < 0.92}.

Similarly, for H = I11 and Γ = I13, then

R c,d ≈ {(c, d)| 0.23 < c < 0.86, d ≥ 0};

for H = I11 and Γ = I22, then

R c,d ≈ {(c, d)| c
0.2

+
d

0.09
> 1, d > h(c)}

where 1
2
(−625 · 10−5c4 + 0.07125c3− 0.2c2 + 0.6c− 0.35); and for H = I13 and Γ = I22, then

R c,d ≈ {(c, d)| d > 0.1, c ≥ 0}. These regions, Rc,d, are shown in Figs. 3-6 by the solid lines

in panels (c) for the different choices of H and Γ considered.

To test our theoretical predictions we next numerically solve the duplex Rössler networked

system, and identify the parameter regions that support the three different coherent behav-

iors: complete synchronization, intra-layer synchronization and inter-layer synchronization.
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FIG. 3. Network synchronized regions for H = I11 and Γ = I11. (a) the synchronized interval of

the independent intra-layer/inter-layer Rössler network with respect to α/β; (b) the synchronized

region with respect to α and β for Rössler networks; (c) the synchronized region with respect to

couplings c and d for a Rössler duplex consisting of two star layers with one-to-one inter-layer

connections; (d) numerical synchronization areas with respect to couplings c and d, in which the

maroon (deep grey) region represents complete synchronization area, the yellow (medium grey)

is for intra-layer synchronization, and the cyan (light grey) is inter-layer synchronization and the

white region represents non-synchronization.

We quantify that the system has reached the specific type of behavior via the synchroniza-

tion errors as defined in Appendix D. By bounding the values of these errors we develop

three different indicator functions, which identify that the system has achieved macroscopic

order of the form: Id = 3 when the network reaches complete synchronization, Id = 2 for

intra-layer synchronization, Id = 1 for inter-layer synchronization and Id = 0 for none of the

above cases. See Appendix D for full details.
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FIG. 4. Network synchronized regions for H = I11 and Γ = I13. (a) the synchronized interval of

the independent intra-layer/inter-layer Rössler network with respect to α/β; (b) the synchronized

region with respect to α and β for Rössler networks; (c) the synchronized region with respect to

couplings c and d for a Rössler duplex consisting of two star layers with one-to-one inter-layer

connections; (d) numerical synchronization areas with respect to couplings c and d, in which the

maroon (deep grey) region represents complete synchronization area, the yellow (medium grey)

is for intra-layer synchronization, and the cyan (light grey) is inter-layer synchronization and the

white region represents non-synchronization.

Figure 3 shows network synchronized regions for the two-layer star network of Rössler

oscillators for the scenario H = I11 and Γ = I11. In detail, panel (a) displays the synchro-

nized intervals of the independent intra-layer and inter-layer Rössler networks with respect

to α or β, which can be calculated from the master stability equations (5) and (6) (without

consideration of d or c), respectively. Since H = Γ, the two intervals overlap. Panel (b)

gives the synchronized region with respect to α and β for this Rössler network calculated
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from the master stability equation (4). Panel (c) shows the synchronized region as a func-

tion of intra- and inter-layer coupling strength c and d. Panel (d) shows the numerically

calculated indicator function (i.e., the numerically calculated values of synchronization er-

ror as classified in Eq. (D4) given in Appendix D) with respect to couplings c and d for

this duplex Rössler network. Here the maroon (deep grey) area labeled with ’3’ represents

complete synchronization, the yellow (medium grey) area labeled with ’2’ is for intra-layer

synchronization, the cyan (light grey) label with ’1’ is for inter-layer synchronization, and

the white region represents cases otherwise.

Other choices for the coupling functions H and Γ are shown in Figures 4-6 for this same

two-layer star network of Rössler oscillators. The results are analogous to those in Fig. 3. It

is worth noting that in panels (c) of all of these figures the regions of complete, intra-layer

and inter-layer synchronization predicted by the multiplex MSF Eqs. (4) to (6), shown as

the maroon (deep grey), yellow (medium grey) and cyan (light grey) regions respectively,

can capture all of the behaviors exhibited by direct numerical simulations shown in panels

(d).

Next we show how these distinct areas can be determined from the three regions: Rc,d,

RIntra
c,d , and RInter

c,d derived from Eqs. (4), (5), and (6). As a matter of fact, the intersections

of the regions determine the type of coherent behavior that is stable. Specifically, the

intersection of all the three regions determines complete synchronization, the intersection

of Rc,d and RIntra
c,d determines intra-layer synchronization, and the intersection of Rc,d and

RInter
c,d determines inter-layer synchronization.

For example, for the case with H = I11 and Γ = I11, the synchronized region Rc,d =

{(c, d)| c + 2d > 0.2, c + 0.4d < 0.92}, the intra-layer synchronized region RIntra
c,d =

{(c, d)| 0.2 < c < 0.92, d ≥ 0} and the inter-layer synchronized region RInter
c,d = {(c, d)|c ≥

0, 0.1 < d < 2.3 }. The intersection of these three parts is {(c, d)| c > 0.2, d > 0.1, c+0.4d <

0.92}, as labeled by number ‘3’ in panel (c) of Fig. 3, which essentially coincides with the

numerically calculated complete synchronization area in maroon (deep grey) color in panel

(d). Furthermore, the mere intra-layer synchronization (without inter-layer synchronization)

area in yellow (medium grey) in panel (d) coincides with the region labeled as ‘2’ in panel

(c): Rc,d ∩ RIntra
c,d − RInter

c,d = {(c, d)| c > 0.2, 0 ≤ d < 0.1, c + 0.4d < 0.92}, and the mere

inter-layer synchronization (without intra-layer synchronization) area in cyan (light grey)

agrees well with the region labeled as ‘1’ in panel (c): Rc,d ∩ RInter
c,d − RIntra

c,d = {(c, d)| 0 ≤
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FIG. 5. Network synchronized regions for H = I11 and Γ = I22. (a) the synchronized interval of

the independent intra-layer/inter-layer Rössler network with respect to α/β; (b) the synchronized

region with respect to α and β for Rössler networks; (c) the synchronized region with respect to

couplings c and d for a Rössler duplex consisting of two star layers with one-to-one inter-layer

connections; (d) numerical synchronization areas with respect to couplings c and d, in which the

maroon (deep grey) region represents complete synchronization area, the yellow (medium grey)

is for intra-layer synchronization, and the cyan (light grey) is inter-layer synchronization and the

white region represents non-synchronization.

c < 0.2, d > 0.1, c + 0.4d < 0.92}. Similar observations can be obtained in panels (c) and

(d) of Figs. 4-6.

In other words, the actual area for complete synchronization is determined by the inter-

section of Rc,d, R
Intra
c,d and RInter

c,d , that is, Rc,d∩RIntra
c,d ∩RInter

c,d . Moreover, the mere intra-layer

synchronization area is determined by the intersection of synchronized region and intra-layer

snchronized region subtracting the inter-layer synchronized part, that is, Rc,d∩RIntra
c,d −RInter

c,d .
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FIG. 6. Network synchronized regions for H = I13 and Γ = I22. (a) the synchronized interval of

the independent intra-layer/inter-layer Rössler network with respect to α/β; (b) the synchronized

region with respect to α and β for Rössler networks; (c) the synchronized region with respect to

couplings c and d for a Rössler duplex consisting of two star layers with one-to-one inter-layer

connections; (d) numerical synchronization areas with respect to couplings c and d, in which the

maroon (deep grey) region represents complete synchronization area, the yellow (medium grey)

is for intra-layer synchronization, and the cyan (light grey) is inter-layer synchronization and the

white region represents non-synchronization.

The mere inter-layer synchronization area is determined by Rc,d ∩RInter
c,d −RIntra

c,d .

Furthermore, when nodal dynamics and network structures are given, RIntra
c,d and RInter

c,d

are mainly determined by the inner coupling matrices of the intra-layer nodes (H) and

the inter-layer nodes (Γ) respectively, and Rc,d is determined by both. Particularly, if the

inter-layer coupling matrix Γ makes the inter-layer synchronized region RInter
c,d empty, then

the multiplex network cannot achieve inter-layer synchronization, resulting in the failure of

19



c

d

 

 

0.04 0.2 0.4 0.6 0.8 0.92 1

0.1

0.5

1

1.5

2

2.5

c

d

 

 

0.04 0.2 0.4 0.6 0.92 1.2

0.1

1

2

0.04 0.2 0.4 0.6 0.92 1

0.1

0.5

1

1.5

2

2.5

c

d

0.04 0.2 0.4 0.6 0.8 1 1.2

0.1

0.5

1

1.5

2

c

d

(a)

(c) (d)

(b)

1

3 3

1 1

3 31
1

2

2 2

2

FIG. 7. Network synchronized regions for Rössler networks composed of two single-layer fully

connected networks with different H and Γ, H = I11,Γ = I11 for (a) and (b), and H = I11,Γ = I22

(c) and (d). (a) and (c) are the synchronized regions about c and d; (b) and (d) are respectively

corresponding numerical synchronization areas, in which the maroon (deep grey) region represents

complete synchronization area, the yellow (medium grey) is for intra-layer synchronization, and the

cyan (light grey) is inter-layer synchronization and the white region represents non-synchronization.

complete synchronization, as shown in Fig. 4. If the intra-layer coupling matrix H makes

the intra-layer synchronized region RIntra
c,d empty, then the multiplex network cannot achieve

intra-layer synchronization, which also leads to failure of complete synchronization, as shown

in Fig. 6.

In order to verify the previous results on a different multiplex topology, we consider a

duplex network composed of two fully connected network layers with one-to-one inter-layer

connections. The results shown in Figs. 7 and 8 again illustrate the above observations.
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connected networks with different H and Γ, H = I11,Γ = I13 for (a) and (b), and H = I13,Γ = I22

(c) and (d). (a) and (c) are the synchronized regions about c and d; (b) and (d) are respectively

corresponding numerical synchronization areas, in which the maroon (deep grey) region means mere

complete synchronization, the yellow (medium grey) region means mere intra-layer synchronization,

the cyan (light grey) region means inter-layer synchronization and the blue region means non-

synchronization.

IV. TWO-LAYER RÖSSLER NETWORK WITH NON-COMMUTATIVE SUPRA-

LAPLACIANS

So far we have analyzed the case of commutative supra-Laplacians with which we derive

the three master stability equations (4)-(6). However, the commutativity condition restricts

our approach from applying to the full class of multiplex networks, it is only a sufficient but

not a necessary condition, and can be relaxed.
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FIG. 9. The case of non-commutative supra-Laplacian matrices with different intra-layer topologies and

identical inter-layer coupling weights. Network synchronized regions calculated from master stability equa-

tions (a) and the numerical synchronization areas (b)(c)(d) for H = I11 and Γ = I11. The first layer of the

duplex network is the star-type, the second layer is the one generated from the star-type with 1 (b), 2 (c)

and 3 (d) additional edges , respectively. The one-to-one coupling between layers is identical.

Here we consider two cases of non-commutative supra-Laplacians for showing that the

three master stability equations can be still used to predict network synchronization be-

haviors. one is a duplex network that has different topology on each layer and one-to-one

identical weighted coupling of nodes between layers. The other is a duplex network that

has identical topology on each layer and one-to-one nonidentical weighted coupling of nodes

between layers.

For the first case, consider specific duplex networks with 5 nodes on each layer and one-

to-one coupling of nodes between layers, where one layer is the star-type, and the other

is the star-type with 1, 2 or 3 additional edges. In this case, it is easy to verify that the

intra- and inter-layer supra-Laplacian matrices LL =

 L1 0

0 L2

 and LI = LI ⊗ IN do not
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FIG. 10. The case of non-commutative supra-Laplacian matrices with different intra-layer topologies and

identical inter-layer coupling weights. Network synchronized regions calculated from master stability equa-

tions (a) and the numerical synchronization areas (b)(c)(d) for H = I11 and Γ = I22. The first layer of the

duplex network is the star-type, the second layer is the one generated from the star-type with 1 (b), 2 (c)

and 3 (d) additional edges , respectively. The one-to-one coupling between layers is identical.

commute. Here LI =

 1 −1

−1 1

, and the smallest nonzero eigenvalues of the two intra-

layer Lapacian matrices L1 and L2 are equal and their largest eigenvalues are also equal, i.e.

λ2 = 1 and λN = 5.

For the second case, consider specific duplex networks that have identical star-type or

fully-connected topology on each layer, and nonidentical weighted one-to-one coupling be-

tween layers, with the inter-layer supra-Lapalacian matrix being LI = LI⊗diag{2, 1, 1, 1, 1},

where here LI =

 1 −1

−1 1

. In this case, LI ’s smallest nonzero eigenvalue µ2 = 2 and its

largest eigenvalue µN = 4. It is easy to verify that LL and LI do not commute.

Figures 9–12 show results for the above two different classes of duplex networks with

different combinations of H and Γ. We still find that the overlapping regions obtained from
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the three master stability equations closely coincide with the numerically calculated areas for

the three different types of synchronous behaviors. Specifically, the actual area for complete

synchronization is determined by Rc,d ∩RIntra
c,d ∩RInter

c,d for both classes of non-commutative

supra-Laplacians. For duplex networks with different intra-layer topologies (the first class),

the intra-layer synchronization area is determined by Rc,d∩RIntra
c,d . For duplex networks with

nonidentical weighted one-to-one coupling (the second class), the inter-layer synchronization

area is determined by Rc,d ∩ RInter
c,d . These findings shed light on the significant facts that

the difference of the intra-layer topologies can lead to the change of the actual inter-layer

synchronized regions, and nonidentical inter-layer one-to-one coupling weights can lead to

the change of the actual intra-layer synchronized regions.

In other words, even though here the inter- and intra-layer supra-Laplacian matrices do

not commute, the three synchronized regions still predict the actual areas for complete syn-

chronization and intra-layer synchronization, or for complete synchronization and inter-layer

synchronization. Therefore, the commutation condition is not necessary for our findings, it

is only sufficient for our theoretical analysis. Particularly for the case of different intra-layer

topologies, one can apply these three synchronized regions to predict the actual areas for

complete synchronization and intra-layer synchronization. How generally the observation

applies remains an open question.

V. A THREE-LAYER NETWORK OF RÖSSLER OSCILLATORS

Here, consider a three-layer network of Rössler oscillators with identical internal topology

(such as the fully-connected structure) and chain-type coupling between layers. That is, the

intra-layer supra-Laplacian matrix LL = I3 ⊗L, and the inter-layer supra-Laplacian matrix

LL = LI ⊗ IN , where LI =


1 −1 0

−1 2 −1

0 −1 1

.

As shown in Figs. 13 and 14, the three synchronized regions calculated from the three

master stability equations can also predict the actual areas for the three synchronous be-

haviors, further verifying that our findings can apply beyond duplex networks.

24



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

c

d

c

d

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

0 1 2 3
0

0.5

1

1.5

2

c

d

c

d

0 1 2 3
0

0.5

1

1.5

2

1

1

2

(a) (b)

(c) (d)

3

1
1

1

3

33

2

FIG. 11. The case of non-commutative supra-Laplacian matrices. Network synchronized regions from

master stability equations (left) and numerical synchronization areas (right) for Rössler networks with

identical star-type intra-layer topologies and nonidentical one-to-one coupling weights between layers. Here

the inter-layer supra-Laplacian matrix LI = [1 − 1;−1 1] ⊗ diag{2, 1, 1, 1, 1}, H = I11 and Γ = I11 for

(a)(b), and H = I11 and Γ = I22 for (c)(d).

VI. DISCUSSION

In summary, we develop a master stability function framework which captures an essential

feature of multiplex networks, that the intra-layer and inter-layer coupling functions can

be distinct. Here we define a distinct supra-Laplacian matrix for intra-layer connections,

denoted LL, and one for inter-layer connections, denoted LI . If LL and LI commute, the

multiplex network can be easily decoupled and thus the characteristic modes of the intra-

layer Laplacian are separated from those of the inter-layer one. (Note this commutation

condition is a sufficient but not a necessary condition for our theoretical analysis. See Sec.

IV for details.) We can then develop a multiplex master stability equation, Eq. (4), to

establish the necessary region for complete synchronization. In the limit of no inter-layer

coupling the multiplex MSF reduces to a master stability equation for each independent
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FIG. 12. The case of non-commutative supra-Laplacian matrices. Network synchronized regions from

master stability equations (left) and numerical synchronization areas (right) for Rössler networks with

identical fully-connected intra-layer topologies and nonidentical one-to-one coupling weights between layers.

Here the inter-layer supra-Laplacian matrix LI = [1 − 1;−1 1]⊗ diag{2, 1, 1, 1, 1}, H = I11 and Γ = I11 for

(a)(b), and H = I11 and Γ = I22 for (c)(d).

layer, Eq. (5), allowing us to calculate the necessary region for intra-layer synchronization.

In the limit of no intra-layer coupling the multiplex MSF reduces to a master stability

equation for each independent inter-layer network, Eq. (6), allowing us to calculate the

necessary region for inter-layer synchronization.

To explicitly use the multiplex MSF framework requires specifying f(·) (i.e., the internal

nodal dynamics), and the inter- and intra-layer coupling functions (i.e., H and Γ respec-

tively). We consider specifically a two-layer network of Rössler oscillators and various forms

of H and Γ. We find that the different types of coherent behaviors observed in the network

are determined by the intersections of the three necessary regions describing complete syn-

chronization, intra-layer synchronization and inter-layer synchronization. Given a specified

network topology, these regions can then be parameterized by the intra- and inter-layer

coupling strengths (i.e., c and d respectively). Complete synchronization is stable when

26



0.04 0.2 0.4 0.6 0.8 1
0

0.2

0.5

1

1.5

2

c

d

0.04 0.5 0.92 1.5
0

0.2

0.5

1

1.5

2

c

d

c

d

0.04 0.2 0.4 0.6 0.8 1
0

0.2

0.5

1

1.5

2

c

d

0.04 0.5 0.92 1.5
0

0.2

0.5

1

1.5

2
(c) (d)

(b)(a)

3
3

3
31

1

11

2 2

2 2

FIG. 13. The case of a three-layer fully-connected network, the inter-layer linking is a link (layer I —layer

II—layer III) Network synchronized regions from master stability equations (left) and numerical synchro-

nization areas (right) for Rössler networks with different combinations of H and Γ. (a)(c) H = I11 and

Γ = I11, (b)(d) H = I11 and Γ = I22.

both c and d fall into the overlap of the three regions. Intra-layer synchronization is stable

when both c and d fall into the overlap of the joint synchronized region and the intra-layer

synchronized region. Inter-layer synchronization is stable when both c and d fall into the

overlap of the joint synchronized region and the inter-layer synchronized region.

For a given network nodal dynamics, the joint synchronized region is mainly determined

by both inner coupling matrices H and Γ. Similarly, the intra-layer synchronized region is

mainly determined by the intra-layer coupling matrix H, and the inter-layer synchronized

region by the inter-layer coupling matrix Γ. Therefore, in addition to nodal dynamics, the

inner coupling function is an essential factor to determine which kind of synchronization

the network will arrive at. If H is in such a form that the intra-layer synchronized region

is empty, intra-layer synchronization is unstable regardless of however large the intra-layer

coupling strength is. Similarly, if Γ is in such a form that the inter-layer synchronized region
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FIG. 14. The case of a three-layer fully-connected network, the inter-layer linking is a link (layer I —layer

II—layer III) Network synchronized regions from master stability equations (left) and numerical synchro-

nization areas (right) for Rössler networks with different combinations of H and Γ. (a)(c) H = I11 and

Γ = I13, (b)(d) H = I13 and Γ = I22.

is empty, inter-layer synchronization is unstable regardless of however large the inter-layer

coupling strength is. In either case, complete synchronization will not occur regardless of

the coupling strength.

Here we have theoretically and numerically investigated specific duplex networks of

Rössler oscillators where the two layers have the same topological structure. Our approach

can be applied to multiplex networks with different choices for the internal nodal dynamics,

different inter- and intra-layer coupling functions, and more layers.

As this work introduces a systematic approach for analyzing synchronization patterns

in multiplex networks, the focus here is on the simplest case of multiplex networks where

the supra-Laplacian matrix of the intra-layer connections is commutative with that of the

inter-layer connections. Our framework further holds provided that the multiplex network

has intra-layer topology that is identical on each layer and that both the intra-layer Lapla-
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cian matrix LL and the inter-layer Laplacian matrix LI can be diagonalizable and have real

eigenvalues. We verify numerically in section IV that the master stability equations derived

herein can apply to a broader class of multiplex networks with non-commutative supra-

Laplacians, but we can predict only the region of complete synchronization and intra-layer

synchronization, or the region of complete synchronization and inter-layer synchronization,

and we cannot simultaneously predict the overlap of these three synchronization behav-

iors. Establishing the exact minimal conditions under which our framework can be applied

remains an important open question.
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Appendix A: Lyapunov Exponents

The Lyapunov Exponent measures the exponential contraction or expansion rate of in-

finitesimal perturbations. For n-dimensional continuous-time dynamical system

ẋ = G(x) (A1)

Lyapunov Exponents are determined by the linearized equation with respect to the reference

trajectory s(t)

U̇ = J(s(t))U

with initial condition U(0), where J is the Jacobian matrix of G, and s(t) satisfies Eq.(A1).

Let vi(0)(i = 1, 2, · · · , n) is the orthonormal vector of U(0). The Lyapunov Exponents are
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defined as follow

σi = lim
t→∞

1

t
ln ||U(t)vi(0)||,

and the largest one is called the largest Lyapunov exponent (which is greater than zero for

chaotic systems). It plays a key role in the stability analysis of controlled systems. One can

adjust the parameter (here the coupling strength) such that the largest Lyapunov exponent

is less than zero, and thus the system is controlled to the desire trajectory.

Appendix B: Decoupling the multiplex network system

Suppose that supra-Laplacian matrices LL and LI are symmetric matrices, and satisfy

LLLI = LILL, then there exists an invertible matrix P such that

P−1LLP = diag{λ1, · · · , λM , λM+1, · · · , λM×N},

P−1LIP = diag{µ1, · · · , µM , µM+1, · · · , µM×N},

where 0 = λ1 = · · · = λM < λM+1 ≤ · · · ≤ λM×N , µk ≥ 0 (k = 1, 2, · · · ,M × N),

and diag{υ1, · · · , υM} denotes a diagonal matrix whose j-th diagonal element is υj (j =

1, 2, · · · ,M).

By denoting a new vector η = [η>1 ,η
>
2 , · · · ,η>M×N ]> = (P ⊗ Im)−1ξ, we can turn the

variational equation (3) into

η̇ = [IM×N ⊗Df(s)− c(diag{λ1, · · · , λM×N} ⊗H)− d(diag{µ1, · · · , µM×N} ⊗ Γ)]η. (B1)

It further yields

η̇k = [Df(s)− cλkH − dµkΓ]ηk, k = 1, 2, · · · ,M ×N. (B2)

Here, ηk represents the mode of perturbation in the generalized eigenspace associated with

λk and µk. A criterion for the synchronization manifold to be (asymptotically) stable is that

all the transversal Lyapunov exponents of the variational equation (B2) are strictly negative.

Clearly, these Lyapunov exponents depend on the node dynamics f(·), the network intra-

and inter-layer coupling strengths c and d, and the coupling matricesH and Γ. Consequently,

we can get the three master stability equations: Eqs. (4), (5) and (6).
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Appendix C: Calculating synchronized regions R c,d

We can calculate three synchronized regions with regard to parameters α and β: R,

RIntra and RInter from Eqs. (4), (5) and (6), respectively. Furthermore, when the network

topologies are given, we can directly calculate the characteristic values of supra-Laplacian

matrices and parameterize those regions in terms of c and d, since α = cλ and β = dµ.

For example, when H = I11 and Γ = I11, the nonzero characteristic modes α = cλ and

β = cµ should lie in Rα,β = {(α, β)| 0.2 < α + β < 4.6}, and consequently the region with

respect to parameters c and d is

R c,d = {(c, d)| 0.2 < c+ 2d, c+ 0.4d < 0.92}.

For other combinations of H and Γ, the synchronized regions with respect to parameters c

and d can be similarly obtained.

Appendix D: Synchronization errors & Indicator function.

To measure the extent of intra-layer, inter-layer and complete synchronization, we intro-

duce the following indices:

E
(k)
Intra(t) =

1

N

N∑
i=1

‖x(k)i (t)− x(k)(t)‖, k = 1, 2, · · · ,M (D1)

where ‖ · ‖ is a norm operator, and x(k)(t) is the average state of all the nodes in the kth

layer at time t. Thus E
(k)
Intra(t) is the synchronization error of nodes in the kth layer at time

t, namely, the intra-layer synchronization error.

Similarly, the inter-layer synchronization error is defined as

EInter(t) =
1

MN

N∑
i=1

M∑
k=1

‖x(k)i (t)− xi(t)‖, (D2)

and the complete synchronization error is defined as

E(t) =
1

NM

M∑
k=1

N∑
i=1

‖x(k)i (t)− x(t)‖, (D3)

where xi(t) is the average state of the node i in each layer and its counterparts in other

layers, and x(t) is that of all the nodes in the multiplex network.
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With these definitions, we use the following indicator function to represent complete

synchronization, intra-layer synchronization and inter-layer synchronization:

Id =



3, EInter(t) < ε and E
(k)
Intra(t) < ε for all t > T0,

2, EInter(t) ≥ ε and E
(k)
Intra(t) < ε for all t > T0,

1, EInter(t) < ε and E
(k)
Intra(t) ≥ ε for all t > T0,

0, other.

(D4)

Here, T0 is a time threshold value and ε is a given threshold for synchronization errors.

In the simulations, ε = 1.0 × 10−2, and T0 = 0.8Ttotal (Ttotal is the total evolution time).

It is obvious that the network reaches complete synchronization when Id = 3, intra-layer

synchronization when Id = 2, inter-layer synchronization when Id = 1, and none of the

above when Id = 0.

Appendix E: Theoretical analysis for the case of complete synchronization

Consider a duplex network composed of two subnetworks with the same internal topology

and one-to-one inter-layer connectivity between nodes. The dynamical evolution can be

written as: 
ẋi = f(xi)− c

N∑
j=1

lijHxj − dΓ(axi − ayi),

ẏi = f(yi)− c
N∑
j=1

lijHyj − dΓ(byi − bxi),
i = 1, 2, · · · , N. (E1)

Here the inter-layer Laplacian matrix LI =

 a −a

−b b

 (a and b are nonnegative real

constants satisfying a2 + b2 6= 0), indicating that the information exchange between layers

is asymmetric and weighted when a 6= b. Note, the duplex network (E1) with a = b = 1 has

been discussed in the main text. The intra-layer and inter-layer supra-Laplacian matrices,

LL = I2 ⊗ L and LI = LI ⊗ IN satisfy the commutative condition, where L = (lij)N×N is

the intra-layer Laplacian matrix and Im is an identity matrix of order m.

Next, we will theoretically explain how the observed synchronization patterns require the

overlap of the different regions of synchronization from two aspects: the intra-layer syn-

chronization stability equations derived next in Sec. E 1 and the inter-layer synchronization

stability equations derived in Sec. E 2.
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1. Intra-layer synchronization stability equations

Let sx(t) and sy(t) denote the intra-layer synchronous states of the x-layer and y-layer,

respectively, which are dominated by the following equations: ṡx = f(sx)− adΓ(sx − sy),

ṡy = f(sy)− bdΓ(sy − sx).
(E2)

Linearizing the duplex network (E1) at the intra-layer synchronous states sx and sy yields
˙δxi = Df(sx)δxi − adΓ(δxi − δyi)− c

N∑
j=1

lijHδxj,

˙δyi = Df(sy)δyi − bdΓ(δyi − δxi)− c
N∑
j=1

lijHδyj,

i = 1, 2, · · · , N. (E3)

Denote δzi = (δxTi , δy
T
i )T , D̃f(sx, sy) =

 Df(sx) 0

0 Df(sy)

, δz = (δzT1 , δz
T
2 , · · · , δzTN)T ,

then Eq. (E3) can be rewritten as

˙δz = IN ⊗ [D̃f(sx, sy)− d (LI ⊗ Γ)]δz − c(L⊗ (I2 ⊗H))δz. (E4)

Since the Laplacian matrix L = (lij) is symmetric (assuming links within each layer are

undirected), there exists an invertible matrix P such that

P−1LP =


λ1

λ2
. . .

λN

 ,

here 0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λN . Letting ξ = (P ⊗ I2m)−1δz, and ξ = (ξT1 , ξ
T
2 , · · · , ξTN)T ,

we have

ξ̇j = [D̃f(sx, sy)− d (LI ⊗ Γ)]ξj − cλk(I2 ⊗H)ξj, j = 1, 2, · · · , N.

Neglecting the subscript j, we can obtain the general form of the master stability equation

for intra-layer synchronization:

η̇ = [D̃f(sx, sy)− d (LI ⊗ Γ)]η − α(I2 ⊗H)η, (E5)

where α = cλ, and λ is any non-zero eigenvalue of Laplacian matrix L.
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If the duplex network (E1) reaches complete synchronization, it means that the two intra-

layer synchronous states sx and sy converge to the same state s dominated by the isolated

nodal system: ṡ = f(s). Then the variational equation of (E2) at s

δ̇s = [Df(s)− (a+ b)dΓ]δs

should be stable. Since the eigenvalues of LI =

 a −a

−b b

 are µ = 0, a + b, and β =

µd where µ is the nonzero eigenvalue, the above variational equation can be accordingly

transformed into the general form as follow:

δ̇s = [Df(s)− βΓ]δs, (E6)

which is stable for β ∈ RInter
β and any value of coupling strength α. This yields

RInter
β = {β |σ(β) < 0},

where σ(β) is the largest Lyapunov exponent of equation (E6). For convenience, we include

the parameter α into RInter
β , and obtain

RInter
α,β = {(α, β) |σ(β) < 0, α ≥ 0}. (E7)

We call RInter
α,β the inter-layer synchronized region with respect to α and β.

Simultaneously, when the duplex network arrives at complete synchronization, Eq. (E5)

is stable at s, meaning that the following equation is stable at the origin:

η̇ = [I2 ⊗Df(s)− d (LI ⊗ Γ)]η − α(I2 ⊗H)η. (E8)

Diagonalizing the matrix LI =

 a −a

−b b

, and making a simple linear transformation,

we can get the decoupled equations from (E4):

ζ̇1 = [Df(s)− αH]ζ1, (E9)

and

ζ̇2 = [Df(s)− αH − (a+ b)dΓ]ζ2.

Similar to the argument above, replace (a + b)d with β, and the second of the decoupled

equations turns into

ζ̇2 = [Df(s)− αH − βΓ]ζ2. (E10)
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Equation (E9) is stable when α ∈ RIntra
α,β , {α |σ(α) < 0, β ≥ 0}, here σ(α) is the largest

Lyapunov exponent of Eq. (E9) with parameter α. Similarly, Eq.(E10) is stable when

(α, β) ∈ Rα,β , {(α, β) |σ(α, β) < 0}, where σ(α, β) is the largest Lyapunov exponent of

Eq. (E10). For convenience, we call RIntra
α,β , RInter

α,β and Rα,β the intra-layer, inter-layer

and joint synchronized regions, respectively. Given a specified intra-layer network topology,

RIntra
α,β , RInter

α,β and Rα,β can be parameterized by c (the intra-layer coupling strength) and d

(the inter-layer coupling strength), denoted by RIntra
c,d , RInter

c,d and Rc,d, respectively.

In summary, to reach complete synchronization in the duplex network (E1), it is necessary

that three synchronization stability equations, (E6), (E9) and (E10), are simultaneously

stable. Thus, the intra-layer characteristic modes α = λc and the inter-layer characteristic

modes β = µd have to fall into the the overlap of RIntra
α,β , RInter

α,β and Rα,β, i.e. RIntra
α,β ∩

RInter
α,β ∩Rα,β. It indicates that the intra-layer and inter-layer coupling strengths have to fall

into the overlap of RIntra
c,d , RInter

c,d and Rc,d, i.e., RIntra
c,d ∩ RInter

c,d ∩ Rc,d, when the intra-layer

network topology L and the inter-layer linking way LI are specified.

2. Inter-layer synchronization stability equations

In Sec. E 1 we started from the intra-layer synchronization stability equations, we can

also analyze this problem from the inter-layer synchronization approach. Denote si(t)(i =

1, 2, · · · , N) as the inter-layer synchronous states, which are dominated by the following

equations:

ṡi = f(si)− c
N∑
j=1

lijHsj, i = 1, 2, · · · , N (E11)

Linearize the duplex network (E1) at inter-layer synchronous states si, then we obtain
˙δxi = Df(si)δxi − c

N∑
j=1

lijHδxj − adΓ(δxi − δyi),

˙δyi = Df(si)δyi − c
N∑
j=1

lijHδyj − bdΓ(δyi − δxi),
i = 1, 2, · · · , N. (E12)

Denoting δzi = δxi − δyi, we get from Eq.(E12) that

˙δzi = Df(si)δzi − c
N∑
j=1

lijHδzj − (a+ b)dΓδzi, i = 1, 2, · · · , N
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Let δZ = (δzT1 , δz
T
2 , · · · , δzTN)T , we thus obtain the following master stability equation for

inter-layer synchronization:

˙δZ = DF (s1, s2, · · · , sN)δZ − c(L⊗H)δZ − (a+ b)d(IN ⊗ Γ)δZ, (E13)

where

DF (s1, s2, · · · , sN) =


Df(s1)

Df(s2)
. . .

Df(sN)

 .

It is worth noting that Eq.(E11) dominating the inter-layer synchronous state si(t) can

be linearized at s(t) as

˙δsi = Df(s)δsi − c
N∑
j=1

lijHδsj, i = 1, 2, · · · , N (E14)

and can thus be rewritten as

˙δS = [IN ⊗Df(s)− c(L⊗H)]δS, (E15)

where δS = (δsT , δsT , · · · , δsT )T . Diagonalize the Laplacian matrix L = (lij), and we can

get the decoupled equations

ξ̇k = [Df(s)− cλkH]ξk, k = 2, 3, · · · , N, (E16)

where 0 = λ1 < λ2 ≤ λ3 ≤ λN are the eigenvalues of L, and the general form of (E16) is

η̇ = [Df(s)− αH]η. (E17)

Now, if the duplex network (E1) achieves complete synchronization, which means that

si(i = 1, 2, · · · , N) converges to a synchronous state s. It is thus necessary to require that

Eq. (E17) is stable. Obviously, Eq. (E17) is stable at origin when α ∈ RIntra
α,β , {α |σ(α) <

0, β ≥ 0} (σ(α) is the largest Lyapunov exponent of Eq. (E17) ). Given the intra-layer

structure and inter-layer linking way, RIntra
α,β can be parameterized by the coupling strengths

c and d, denoted by RIntra
c,d .

Simultaneously, let s substitute si(i = 1, 2, · · · , N) in Eq. (E13), there is

˙δZ = [IN ⊗Df(s)− c(L⊗H)]δZ − (a+ b)d(IN ⊗ Γ)δZ. (E18)
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Diagonalizing the matrix L, and performing a simple linear transformation, one can get the

following decoupled equations:

ζ̇1 = [Df(s)− (a+ b)dΓ]ζ1,

ζ̇2 = [Df(s)− αH − (a+ b)dΓ]ζ2.

Similar to the handling way in (I), replace (a + b)d with β, the above decoupled equations

can be turned into

ζ̇1 = [Df(s)− βΓ]ζ1, (E19)

ζ̇2 = [Df(s)− αH − βΓ]ζ2. (E20)

Equation (E19) is stable when β ∈ RInter
α,β , {β |σ(β) < 0, α ≥ 0}, here σ(β) is the largest

Lyapunov exponent of Eq. (E19). Similarly, Eq. (E20) is stable when (α, β) ∈ Rα,β ,

{(α, β) |σ(α, β) < 0}, and σ(α, β) is the largest Lyapunov exponent of Eq. (E20). For

convenience, we call RIntra
α,β , RInter

α,β and Rα,β the intra-layer, inter-layer and joint synchronized

regions, respectively. Given a specified intra-layer network topology, RIntra
α,β , RInter

α,β and Rα,β

can be parameterized by c (the intra-layer coupling strength) and d (the inter-layer coupling

strength), denoted by RIntra
c,d , RInter

c,d and Rc,d, respectively.

In summary, to obtain complete synchronization in duplex network (E1), it is necessary

that Eqs. (E17), (E19) and (E20) are simultaneously stable. This works when (α, β) ∈

RIntra
α,β ∩RInter

α,β ∩Rα,β, or when (c, d) ∈ RIntra
c,d ∩RInter

c,d ∩Rc,d after the intra-layer topology and

inter-layer linking way are definitely given. It again verifies that complete synchronization

occurs in the overlap of RIntra
α,β , RInter

α,β and Rα,β.

Appendix F: A real-world example, the CORS system

The network of Continuously Operating Reference Stations (CORS) [39] system consists

of continuously operating Global Navigation Satellite System (GNSS) reference stations, a

communication network and data centers. Through continuous observation by GNSS satel-

lites and GNSS measurement processing, the CORS system is widely applied to various fields

such as: three dimensional positioning, navigation and timing at different accuracy levels,

satellite orbit tracking and determination, maintaining the reference framework of the earth,

geodynamics research such as earthquake and plate movements, and sea level, ionospheric
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and water vapor monitoring. The CORS system is an essential geospatial information in-

frastructure with many countries and regions of the world, such as China, America, Europe

and Australia having established CORS systems.

FIG. 15. A diagram of CORS systems in China’s BeiDou Navigation Satellite System. The below layer is

the physical layer composed of some GNSS receivers, and the top layer is the corresponding data-processing

layer.

The CORS system can be regarded as a multi-layer network composed of a physical layer

and a data layer, as shown in Fig. 15. The physical layer consists of N receivers, tracking the

same m satellites, to receive the positioning data. Because there exist biased clocks between

receivers, these receivers have to adjust their clocks and obtain time synchronization to

improve the precision of positioning [41, 42]. That is to say, intra-layer synchronization with

respect to time is required in the physical layer. However, the processing of the data is not

done by the receivers, but instead by data processing units in Data Centers [40]. These data

processing units respectively link their receivers forming a virtual data layer (top layer in

Fig. 15), and a Synchronous Digital Hierarchy (SDH) Network. Each unit in the Data Layer

needs to achieve data synchronization for accurate positioning, implying that the Data layer

needs to achieve intra-layer synchronization.
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[26] L. Tang, J. A. Lu, J. Lü, and X. Yu, Int. J. Bifurcat. Chaos 22, 1250282 (2012).
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112, 248701 (2014).

[31] M. Xu, J. Zhou, J. A. Lu, and X. Wu, Eur. Phys. J. B 88, 240 (2015).
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