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We numerically study the propagation of reacting fronts through three-dimensional flow fields
composed of convection rolls that include time-independent cellular flow, spatiotemporally chaotic
flow, and weakly turbulent flow. We quantify the asymptotic front velocity and determine its scaling
with system parameters including the local angle of the convection rolls relative to the direction of
front propagation. For cellular flow fields, the orientation of the convection rolls has a significant
effect upon the front velocity and the front geometry remains relatively smooth. However, for
chaotic and weakly turbulent flow fields the front velocity depends upon the geometric complexity
of the wrinkled front interface and does not depend significantly upon the local orientation of the
convection rolls. Using the box counting dimension we find that the front interface is fractal for
chaotic and weakly turbulent flows with a dimension that increases with flow complexity.

I. INTRODUCTION

Reacting fronts that propagate in the presence of
complex three-dimensional fluid flows are ubiquitous
with many implications in science, nature, and technol-
ogy [1, 2]. An improved fundamental understanding of
propagating fronts in complex fluid flows would have a
direct impact upon a number of important challenges
that face us today. Examples include the combustion of
pre-mixed gases in the turbulent flow that occurs in an
internal combustion engine [3–7], the complex patterns
of reagents that occur in many chemical industrial pro-
cesses [1, 2, 8–10], the spread of a forest fire [11–13], the
spatiotemporal dynamics of a species invasion [14], and
the outbreak of an epidemic such as the flu in a moving
population [15, 16].
In these situations, the propagating front can often be

modeled as a reaction that consumes unreacted species
(the unstable phase) in its path while leaving behind only
products (the stable phase). The front dynamics and
geometry are highly nonlinear and depend strongly on
the underlying flow field dynamics.
There has been significant effort studying the dynam-

ics and geometry of propagating fronts in the presence
of fluid motion (c.f. [1, 2]). This has received intense
interest in the area of combustion in a turbulent flow
field [4, 17]. In addition, there has been a broad range of
work on propagating fronts for flow fields that are not tur-
bulent. Examples include the study of fronts in a shaken
layer of liquid exhibiting Faraday waves [18], convective
flows [19–21], Hele-Shaw flows [22], Marangoni flows [23],
and fields of disordered vortices [24, 25] to name a few.
However, the majority of this work has been for fronts

in simple or idealized fluid flows such as cellular flows,
vortex-chains, and vortex arrays. Typically, this allows
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one to quantify the velocity of the propagating front in
terms of system parameters such as the characteristics of
the flow field and the details of the nonlinear reaction. In
many cases, the front velocity is found to exhibit a power-
law scaling with a characteristic velocity of the fluid. For
limiting cases, theoretical predictions are available for the
scaling exponent (c.f. [26, 27]).

Here we explore the more difficult problem of prop-
agating fronts in spatially disordered flows with time-
dependence. We use large-scale parallel numerical sim-
ulations to explore propagating fronts in flow fields over
the range of cellular flow, chaotic flow, and weakly tur-
bulent flow for a three-dimensional layer of fluid for the
precise conditions of the laboratory. In order to gener-
ate these flow fields we use Rayleigh-Bénard convection
which is the buoyancy driven fluid motion of a layer of
fluid [28]. Our findings for the front velocity are also cap-
tured by the power-law scaling ideas that describe ide-
alized flows and we connect our results with theoretical
predictions where possible.

The geometry of a propagating front is well known to
significantly affect the dynamics of the front (cf. [4, 18,
24, 29, 30]). The more wrinkled and intricate the front is,
the larger the interfacial region between the products and
reactants that is available for the reaction to occur. One
well known mechanism to increase the complexity of the
front geometry is through the motion of the underlying
flow field. This has received intense interest in the area
of combustion in a turbulent flow field [4, 17].

An appealing approach to quantify the geometry of
the front is to compute its dimension. For many cases of
interest the geometry of the front has been shown to be a
fractal and even multifractal [17, 31, 32]. An interesting
feature that has emerged is the finding that the fractal
dimension of the front Df is found to be Df ≈ 7/3 for a
wide variety of conditions and flow fields [4, 18, 33, 34].

There have been theoretical ideas presented [4, 33] that
predict Df = 7/3, however these theories rely upon the
specific features and scaling of homogeneous turbulent
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flows. It has also been shown numerically [35] that the
transport of a passive scalar in a chaotic flow field can
exhibit fractal (and even multifractal) behavior without
the presence of small scale fluid structures.
We also compute the dimension of propagating fronts

in chaotic and weakly turbulent flows. Our results yield
fractional values for the dimension of the front. We ex-
plore how the dimension varies with properties of the flow
field to help build our understanding of fronts in complex
flow fields.
Propagating fronts in chaotic Rayleigh-Bénard convec-

tion have been studied in Ref. [20]. This study focussed
upon the spiral defect chaos state in an advection domi-
nated regime. Using a measure of the mean squared dis-
placement of the front, or front spreading, it was shown
that the chaotic flow field enhanced the front propaga-
tion. Furthermore, using a measure of the front area it
was found that the geometry of the fronts become more
complex with increasing flow field complexity.
In this paper, we have probed these issues much fur-

ther by computing the front velocity and dimension for
a wide range of parameters and flow fields. In our study
we have undertaken a methodical approach by exploring
several flow fields of increasing complexity. We inves-
tigate time-independent cellular flow, chaotic flow, and
weakly turbulent flow. In all cases, the main character-
istic of the flow field is that it is composed of convection
rolls of increasing complexity. We first study propagating
fronts through a field of straight and parallel convection
rolls which includes quantifying the fronts propagating
at an angle relative to the convection rolls. We then use
these insights to guide our study of propagating fronts in
chaotic and weakly turbulent flow fields which are com-
posed of dynamic patches of convection rolls at various
orientations that are separated by many defect struc-
tures. Overall, we use our results to build a better phys-
ical understanding of the front dynamics and geometry
for fronts traveling through complex three-dimensional
convective flow fields.
The paper is organized as follows. In §II we discuss our

overall approach. We present the governing equations for
Rayleigh-Bénard convection and the reaction-advection-
diffusion equation and provide some details regarding our
computational approach. In §III we discuss the results
of our numerical exploration. We describe the velocity of
the propagating fronts for no-flow, straight-parallel con-
vection rolls, and then chaotic and weakly turbulent flow.
We then explore the geometry of the propagating front
for these conditions. Lastly, in §IV we present some con-
cluding remarks.

II. APPROACH

A. The Fluid Equations

An integral component of our study is the abil-
ity to quantify front propagation in a range of three-

dimensional flow fields of varying complexity. In order
to accomplish this, we use the canonical pattern forming
system of Rayleigh-Bénard convection [28] to create time
independent, chaotic, and weakly turbulent flow fields.
Rayleigh-Bénard convection is the fluid motion that

occurs when a shallow layer of fluid is heated uniformly
from below in a gravitational field. The fluid motion is
governed by the nondimensional Boussinesq equations

σ−1

(

∂~u

∂t
+ ~u · ~∇~u

)

= −~∇p+∇2~u+RT ẑ, (1)

∂T

∂t
+ ~u · ~∇T = ∇2T, (2)

~∇ · ~u = 0 (3)

which represent the conservation of momentum, energy,
and mass. In our notation, ~u(x, y, z, t) = (u, v, w) is
the fluid velocity vector with components (u, v, w) in the
(x, y, z) directions, respectively. T (x, y, z, t) is the tem-
perature, p(x, y, z, t) is the pressure, t is time, and ẑ is a
unit vector opposing gravity.
These equations have been nondimensionalized in the

typical manner (c.f. [36]) using the depth d of the convec-
tion layer as the length scale, the constant temperature
difference between the hot bottom surface and the cold
top surface ∆T as the temperature scale, and the ther-
mal diffusion time d2/α across the layer depth as the time
scale where α is the thermal diffusivity of the fluid.
The Rayleigh number R = βg∆Td3/(αν) is the ra-

tio of buoyancy to dissipation where β is the coefficient
of thermal expansion, g is the acceleration due to grav-
ity and ν is the kinematic viscosity of the fluid. For an
infinite layer of fluid the critical value of the Rayleigh
number at the onset of convection is Rc ≃ 1707.76 [28].
As the Rayleigh number is increased from zero the fluid
will transition from a no-flow state to time-independent
convection rolls at Rc. Further increases in R will result
in time dependent dynamics including periodic dynam-
ics, chaotic dynamics, and eventually turbulence. We will
use R as the control parameter to vary the complexity of
the underlying flow field.
The Prandtl number σ = ν/α is the ratio of the diffu-

sivities of momentum and heat. In our exploration, we
will always use σ = 1 which is aligned with the Prandtl
numbers often found in compressed gas convection ex-
periments [37, 38].

B. The Reaction-Advection-Diffusion Equation

Although the applications of propagating fronts in
complex fluid flows are extremely broad and rich, the
physics for many cases of interest can be captured with
a general continuum formulation using coupled nonlinear
partial differential equations. We use the nondimensional
reaction-advection-diffusion equation

∂c

∂t
+ ~u · ~∇c = Le∇2c+ ξf(c) (4)
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to describe the propagating front. We have used the same
length and time scales that were used to nondimension-
alize Eqs. (1)-(3).

The concentration c(x, y, z, t) is a single scalar quantity
that represents the ratio of products to reactants where
c = 1 is pure products (no reactants), c = 0 is pure
reactants (no products), and intervening values 0 < c < 1
represent a mixture of products and reactants.

The last term on the right side of Eq. (4) is the produc-
tion term that describes the reaction where ξ is the nondi-
mensional reaction rate. In our computations we use the
Fischer-Kolmorgorov-Petrovskii-Piskunov (FKPP) non-
linearity [39, 40] where f(c) = c(1 − c). This quadratic
nonlinearity is commonly used to model a wide range of
reacting processes [1]. For these types of reactions the
production is proportional to the concentration of prod-
ucts c and to the concentration of reactants (1− c).

It will be important in our upcoming discussions to
clearly define how we will describe the propagating fronts.
For the FKPP nonlinearity a reaction will occur any-
where in the flow field where 0 < c < 1. In all of the
problems we explore, the region where the reaction is oc-
curring is not a sharp feature and the reaction occurs
over a distributed region of space. We will define the re-

action zone as the region of space where 0.1≤c≤0.9. We
will refer to the width of this region as the reaction zone
thickness δ. We will define the front as the level-set con-
tour of the concentration field c at maximum production.
For the FKPP nonlinearity the maximum production oc-
curs at c= 1/2. Therefore the front is the surface that
results from the level-set contour of c=1/2.

In the discussions that follow, we will clearly state the
boundary and initial conditions for each particular sit-
uation of interest. However, they fall into the following
general categories. We use the no-slip boundary condi-
tion ~u = 0 at all material surfaces that are in contact
with the fluid. In some cases, where we have removed
the walls, we instead use periodic boundary conditions
for the fluid velocity. The temperature of the bottom and
top surfaces are always held constant, where the bottom
surface is hot T (z = 0) = 1 and the top surface is cold
T (z = 1) = 0. The thermal boundary conditions for the
sidewalls are either perfectly conducting, periodic or hot
depending upon the particular problem of interest. For
the concentration field c, all material walls are treated
as no-flux surfaces. In some cases we have used periodic
boundary conditions for the concentration as needed.

The initial conditions for the flow field are small ran-
dom perturbations to the temperature field. The simu-
lations are then evolved for a long time to ensure that
all initial transients have decayed to yield the flow field
of interest such as straight parallel convection rolls or
chaotic dynamics. The reaction is initiated by supply-
ing an initial spatial variation to the concentration field
c(x, y, z, t0) where t0 is the time when the reaction starts.
All of our initial conditions are chosen to be sufficiently
steep in order to yield pulled propagating fronts [1].

We use a highly-efficient, parallel, and spectral-element

approach to numerically integrate the coupled equations
given by Eqs. (1)-(3) and (4). We use the open source
solver nek5000 [41, 42]. The computations are third-
order accurate in time and exponentially convergent in
space. For more details describing the use of this ap-
proach for Rayleigh-Bénard convection see Ref. [36] and
for a discussion of computations of passive scalar trans-
port and propagating fronts using this approach see
Refs. [20, 43].
The Lewis number Le is the ratio of mass diffusion to

heat diffusion Le = D/α where D is the mass diffusivity
of the reactants and products. The flow field will have
a stronger effect upon the front dynamics as the Lewis
number is decreased. Using our scaling, the nondimen-
sional time scale for mass diffusion can be expressed as
τD = Le−1.
Although the Damköhler number Da and the Péclet

number do not appear explicitly in Eqs. (1)-(3) and (4)
we will find these nondimensional numbers useful in our
discussion. The Damköhler number can be expressed as
the ratio of the nondimensional fluid flow field time scale
τu to the nondimensional reaction time scale τr. The
flow field time scale is given by τu = U−1 where U is
the nondimensional characteristic velocity describing the
flow field. In fact, using our nondimensionalization the
variable U can be thought of as the thermal Péclet num-
ber. In our computations, we will use the time average of
the maximum value of the fluid velocity magnitude ||~u||
as the characteristic velocity. The reaction time scale
is given by τr = ξ−1. Using these time scales yields
Da = τu/τr = ξ/U .
When Da ≫ 1 the dynamics are reaction dominated

and the reaction zone thickness δ is very thin compared
to a characteristic length L of the flow field. For our con-
vection flow fields we will use the width of a convection
roll as the characteristic length scale where L ∼ O(1).
In the special limit Da ≫ 1 where Le → 0 and τr → 0

while Le/τr remains constant, one reaches the geometric
optics limit. This yields a reaction zone with a finite
speed and zero thickness [2]. This particular limit is very
attractive theoretically, however we do not explore this
limit in our calculations and focus our attention on finite
sized reaction zones with finite speeds of propagation.
Lastly, when Da ≪ 1 the dynamics are advection dom-

inated which yields a distributed reaction zone. In our
investigation, we have focussed upon the regime where
0.1 . Da . 1 which yields reaction zones of finite thick-
ness that are affected significantly by the underlying flow
field.

The Péclet number Pe = U/Le is the ratio of convec-
tion to mass diffusion. In our results we explore the range
0 ≤ Pe . 103 which spans dynamics without fluid flow
to dynamics where the flow field is significant.
We emphasize that in Eqs. (1)-(3) and (4) the dynam-

ics of the flow field (~u, p, and T ) are not affected by the
dynamics of the concentration field c. In other words, we
have not included the backaction from the reaction onto
the flow field. In many systems, such as non-exothermic
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chemical, fluid, or biological systems, this additional cou-
pling is not necessary. A fundamental understanding of
the front dynamics without the backaction is an essential
first step and will have a direct impact upon important
problems of broad appeal. This is the focus of what we
discuss here.
However, our numerical approach is quite general and

this restriction could be removed to allow a study of the
complex interactions that would result from backaction.
This is beyond the scope of the current work and is a
topic of future interest.

III. RESULTS AND DISCUSSION

The parameter space describing propagating fronts in
fluid flows is vast with many interesting limits and spe-
cific cases of fundamental importance. In addition, the
parallel computations are often expensive and care was
needed in deciding how to proceed. Our approach is mo-
tivated by imagining the following experiment. We as-
sume that the fluid properties and the nonlinear reaction
are set and that we want to study how a propagating
front is affected by flow fields of differing complexity by
varying only the Rayleigh number. In this study, we
explore the range 0 ≤ R ≤ 25000 for several different
geometries and configurations for the convective domain.
Furthermore, we explore two different classes of con-

vective flow fields: (i) a flow field of time-independent
straight-parallel convection rolls (a cellular flow); and
(ii) a chaotic or weakly turbulent flow field composed
of rapidly varying convection rolls and defect structures.
We will take advantage of the fact that for some cases
both (i) and (ii) are possible numerically for the same
value of R. In our discussion we will find the insights
from (i) very useful for building a physical understand-
ing of (ii).
We focus our investigation on two different fluids where

the molecular diffusion of one fluid, with Le = 1, is an
order of magnitude larger than that of the other with
Le = 0.1. In all of our simulations, we hold the Prandtl
number constant at σ = 1 and, unless stated otherwise,
we keep the reaction rate constant at ξ = 9. These
choices allow us to explore the dynamics of propagating
fronts for 0 ≤ Pe . 1000 and 0.1 . Da . 30.

A. The Velocity of a Propagating Front

We first quantify the propagating front in the absence
of a flow field. We use this to establish our approach for
computing front velocities while quantifying important
baseline properties. Next, we investigate the dynamics
of a propagating front in a field of straight and parallel
convection rolls where we vary the characteristic velocity
U of the convection rolls. Lastly, we compute the velocity
of propagating fronts in chaotic and weakly turbulent
flow fields using a large cylindrical convection domain.

In the absence of fluid motion where ~u = 0 it is well
known [1, 39, 40] that the long-time asymptotic front
velocity is given by the constant value

v0 = 2
√

Leξ. (5)

A measure of the reaction zone thickness, or width, can
be expressed as [27, 40]

δ0 = 8

√

Le

ξ
. (6)

The reaction zone thickness predicted by Eq. (6) de-
scribes the length scale where 0.1 . c . 0.9. This cor-
responds with the range of concentration values 0.1 ≤
c ≤ 0.9 that we will use to quantify the reaction zones
present in our numerical results. Using our nondimen-
sionalization, a length of unity is the depth of the fluid
layer which is also approximately equal to the width of a
single convection roll.
We first consider the box shaped domain shown in

Fig. 1 with depth d and side lengths Lx and Ly in the x
and y directions, respectively. For this domain, its size
is described using the two aspect ratios Γx = Lx/d and
Γy = Ly/d where we have chosen Γx = 30 and Γy = 5.
The domain is filled with a quiescent fluid such that ~u = 0
and R < Rc. The top (z = 1) and bottom (z = 0) sur-
faces, as well as the sidewalls at the far left (x = 0) and
right (x = 30), are solid surfaces with no-flux boundary

conditions ~∇c · n̂ = 0 where n̂ is an outward pointing unit
normal. The domain has periodic boundary conditions
on all field variables in the y-direction. This is, essen-
tially, a two-dimensional computation since there is no
variation in the y-direction. However, we will find it use-
ful to treat this numerically as the full three-dimensional
problem for clarity of visualization and for comparison
with our computations where this symmetry is broken.

FIG. 1. A schematic of the rectangular domain. The Carte-
sian coordinates (x, y, z) are as shown with the origin at the
lower left corner of the domain where z is opposing the di-
rection of gravity g. The length of the domain is Lx and Ly

in the x and y directions, respectively, and the depth of the
fluid layer is d. The aspect ratios are Γx = Lx/d = 30 and
Γy=Ly/d=5 (figure is drawn to scale).

To initiate the reaction at time t0, the concentration
field is set to c(x, y, z, t0) = e−λx. The steepness of the
initial condition is determined by λ, when λ ≥ λ∗ the
resulting front will be a pulled front [1]. For our problem
λ∗ = v0/(2Le) and we have always used λ > λ∗ in our
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simulations to generate pulled fronts that propagate from
left to right.
We are interested in studying reaction zones of finite

thickness that may have a complex spatial and temporal
dependence. As a result, the determination of the instan-
taneous front velocity vf (t) must be handled with some
care. We will use the idea of the bulk burning rate [44]
as one way to compute the front velocity. For a propa-
gating front traveling in the positive x-direction this can
be expressed as

vf (t) =

∫

1

0

dz

∫

Γx

0

dx
∂c

∂t
. (7)

This definition of the front velocity has been shown to
be mathematically and physically reasonable for a vari-
ety of general situations [26, 27, 44]. Equation (7) cor-
rectly quantifies the velocity of traveling wave solutions
while also capturing the velocity of fronts in more com-
plicated situations where such solutions may not exist
and it does not require any assumptions about the re-
acting region [44]. Furthermore, the approach extends in
a straightforward manner to the complex fronts we will
discuss shortly.
A further complication is that the velocity vf (t) of

pulled fronts slowly approach their long-time asymptotic
values v̄f where v̄f = limt→∞ vf (t). This slow conver-
gence is universal and scales algebraically as O(t−1) [45].
In light of this, we use the following equation

vf (t) = v̄f −
b

t
(8)

to determine values of v̄f from our finite-time data for
vf (t). This is of direct importance to our study, in part,
because it determines how large the spatial extent of our
fluid domains need to be in order to determine a value of
the asymptotic front velocity v̄f .
Figure 2(a) shows representative numerical results for

a propagating front for a fluid with Le = 1 in a container
with no fluid motion ~u = 0. The symbols represent nu-
merical values of vf (t) computed using Eq. (7). The solid
line is a curve-fit through the data using Eq. (8) which is
used to determine the long-time value of the front speed
v̄f .
For these conditions, the theoretical value of the front

speed is v0 = 6 and our numerical simulation yields v̄f =
6.03 which is in excellent agreement. For times t & 5 the
sidewall on the right hand side of the domain affects the
front dynamics and therefore we do not include this in our
estimate for v̄f . These results also suggest that a domain
with Γx & 30 is sufficiently large for us to compute v̄f in
this parameter regime.
For a front traveling in the absence of a fluid flow, the

front can be identified as the location in the x-direction
where c = 1/2 which is independent of z. The front ve-
locity can then be determined as the time rate of change
of the front location. Computing a front velocity in this
manner for our numerical results yields an asymptotic
front velocity of v̄f = 5.99.

To check the consistency of using Eq. (8) to curve-fit

the data, we show in Fig. 2(b) the variation of b̃(t) with

time t where b̃(t) = t(v̄f − vf (t)). The horizontal dashed
line is the value of b determined from the entire curve-fit
shown in panel (a) where b = 0.59. Figure 2(b) illustrates

only a small variation in b̃(t) with time which suggests
that Eq. (8) does capture the time variation of the front
velocity. We have not explored further the particular
shape of the curve shown in Fig. 2(b). We have validated
our approach and computations for a range of parameters
to ensure the accuracy of these findings.

1 2 3 4
5.4

5.6

5.8

6

1 2 3 4
0.56

0.58

0.6

0.62

FIG. 2. (a) The time variation of the front velocity vf (t) for
the case of a quiescent fluid with Le=1, ξ=9 and using the
rectangular geometry shown in Fig. 1. The front was initiated
at the left wall and propagates to the right. vf (t) is computed
using Eq. (7). The solid line is a curve-fit using Eq. (8) which
yields v̄f = 6.03 and b = 0.59. For these conditions v0 = 6

as given by Eq. (5). (b) The time variation of b̃ where b̃ =
t(v̄f − vf (t)). The dashed line represents the value b= 0.59
that is determined from the curve-fit shown in panel (a).

1. Fronts Propagating in Straight-Parallel Convection Rolls

We next explore propagating fronts in the presence of
a flow field composed of straight and parallel convection
rolls. We use the box domain shown in Fig. 1 but this
time with a value for the Rayleigh number that is above
the critical threshold R > Rc. We again use periodic
boundary conditions for all of the field variables in the
y-direction.
To create a field of time-independent counter-rotating

convection rolls that are stacked in the x-direction
(i.e. with their roll axes pointing in the y-direction), we
use a hot sidewall boundary condition for the left and
right walls such that T (x=0, y, z, t)=T (x=Γx, y, z, t)=
1. The hot sidewalls cause fluid to rise near the sidewall
(for all values of R) which initiates the formation of x-
rolls that propagate inward to fill the entire fluid domain.
We continue the simulation until all initial transients
have decayed and the result is a field of time-independent
convection rolls.
A typical flow field is shown in Fig. 3 for R = 3000.

The color contours represent the temperature of the fluid
where red is hot rising fluid and blue is cold falling fluid.
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A sideview of the flow field is shown in Fig. 3(a) using
a x−z projection at y = Γy/2. A top view is shown
in Fig. 3(b) using a x−y projection at z = 1/2. It is
clear that the flow field contains 30 convection rolls (15
pairs of counter rotating rolls) where the width of a single
convection roll is unity.

FIG. 3. A cellular flow field composed of straight and parallel
convection rolls in a box domain for R = 3000 (see Fig. 1).
(a) Color contours of the temperature field in the x−z plane at
y=Γy/2. Red is hot rising fluid and blue is cold falling fluid.
(b) Color contours of the temperature field in the x−y plane
at z=1/2. In this panel the location of the center of a convec-
tion roll is green and this layer contains 30 counter-rotating
convection rolls. The walls at the left and right ends are hot
T (x = 0, y, z, t)=T (x = Γx, y, z, t) = 1 which causes the for-
mation of straight parallel convection rolls. The boundary
conditions in the y-direction are periodic.

Figure 4 shows the spatial variation of the fluid velocity
in a region containing several counter-rotating convection
rolls. Figure 4 is an x−z projection at y = Γy/2 show-
ing a close-up view of the flow field shown in Fig. 3(a).
The arrows are fluid velocity vectors ~u and the color con-
tours are of the magnitude of the fluid velocity where red
represents large values and blue represents small values.

FIG. 4. A close-up view of the fluid velocity composing the
counter-rotating convection rolls from Fig. 3. An x−z pro-
jection is shown at y = Γy/2. The arrows are fluid velocity
vectors and the color contours are of the fluid velocity mag-
nitude where red is large and blue is small.

The characteristic velocity of the fluid U plays an im-
portant role when describing the effect of the fluid mo-
tion on the propagating front. We use the time average
of the maximum value of the fluid velocity magnitude at
the horizontal mid-plane (away from the hot sidewalls)
as the characteristic velocity U of the flow field. For the
flow field shown in Figs. 3-4 this yields U = 10.81.

Using our nondimensionalization, we have Re = U/σ
where Re is the Reynolds number of the fluid flow. In
all of our computations we have used σ = 1 which yields
Re = U . Our numerical results therefore explore the
range of Reynolds numbers 0 ≤ Re . 100.

The variation of U with the reduced Rayleigh number
ǫ is shown in Fig. 5 where ǫ = (R−Rc)/Rc. Each square
symbol (blue) is from a numerical simulation in the box
domain shown in Fig. 1 where we have also been careful
to keep the number of convection rolls constant at 30 for
all values of ǫ. The box domain with hot sidewalls is
stabilizing for convection rolls lined up in the x-direction
which makes this possible.

For larger values of ǫ where ǫ & 3 the straight paral-
lel convection rolls eventually become unstable through
a skew-varicose instability if we allow the simulation to
continue for a long time. However, for our purposes we
only require the straight and parallel convection rolls to
persist for the duration of the front propagation that
we study which is t . 10. For all of our simulations
of fronts propagating in straight parallel convection rolls
this requirement is met. Figure 5 also includes data from
numerical simulations for chaotic and weakly turbulent
flows represented as circles (red) which will be discussed
in more detail in §III A 3.

The solid black line in Fig. 5 is a power-law curve fit
through the data of the form U = 12.85ǫ0.54. This is
in agreement with the dependence U ∝ ǫ1/2 which is
expected near the convective threshold ǫ ≪ 1 [28]. How-
ever, it is interesting that this scaling behavior persists
in our computations for ǫ much larger than this.

After establishing the straight and parallel convection
rolls, a propagating front is initiated that travels from left
to right through the convection rolls. Images showing the
propagating front are given in Fig. 6 for the case of Le=1.
The concentration field is plotted as color contours at the
horizontal mid-plane c(x, y, z = 1/2, t) at three different
times where t is measured from the initiation of the front
at the left wall. The front is propagating from left to
right where red is pure products, blue is pure reactants,
and the reaction zone is located in-between. The black
lines indicate the center lines of the underlying convection
rolls for reference.

It is clear that the thickness of the reaction zone is fi-
nite and that it is larger than the roll width for these con-
ditions. This is expected since the reaction zone thickness
in the absence of the flow for these conditions is predicted
by Eq. (6) to be δ0 = 2.67. The reaction zone shows a
smooth transition from red to blue across the front. This
is expected due to the significant amount of diffusion that
occurs for this case.

The propagating front for Le=0.1 is shown in Fig. 7.
In this case, the thickness of the reaction zone is smaller
as expected for a smaller value of Le as given by Eq. (6).
In addition, it is clear that the underlying fluid motion of
the convection rolls now has more of an impact upon the
reaction zone as illustrated by the non-smooth transition
from the red to blue across the front. This indicates the
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FIG. 5. The variation of the characteristic fluid velocity U
with the reduced Rayleigh number ǫ. The squares (blue) are
for a flow field of straight parallel convection rolls in a rectan-
gular domain and the circles (red) are for chaotic and weakly
turbulent flow fields in a large cylindrical convection domain.
The lines are power-law curve fits through the data where
U = 12.85ǫ0.54 (solid) and U = 16.61ǫ0.59 (dashed).

presence of more complicated structure of the reaction
zone in the vertical z-direction.
The vertical structure of the reaction zones in Figs. 6-7

is shown in Fig. 8. A close-up view of the region near the
front is shown using a x−zprojection of the concentration
field c(x, y = Γy/2, z, t). The arrows represent the fluid
velocity vectors of the underlying convection rolls. Fig-
ure 8(a) shows the front for Le = 1 and panel (b) shows
the front for Le = 0.1. The influence of the convection
rolls is evident in both images. However, the influence is
strongest in Fig. 8(b) as indicated by the spiraling of the
reaction into the core region of the convections rolls.
These interesting features of the geometry of the prop-

agating front can be visualized by plotting the level-set
contour of c = 1/2 as shown in Fig. 9. Figure 9(a)-(d)
shows a front traveling left to right through straight and
parallel convection rolls for R = 3000 and Le = 1. Each
panel is a close-up view of a region of the flow field con-
taining a pair of counter-rotating convection rolls in the
center. The arrows represent the vectors of the fluid ve-
locity. The propagating front is shown as the solid line
which is a contour of c = 1/2 at a particular instant of
time. The bending and distortion of the front is clearly
visible due to the underlying convective flow field. Fig-
ure 9(e)-(h) illustrates a propagating front for R = 3000
and Le = 0.1. In this case, the flow field has a much
stronger affect upon the front geometry resulting in the
cusp and spiral structures that are shown.
Once we have identified the location of the front, as

shown in Fig. 9, it is straightforward to compute a front

FIG. 6. A propagating front in a field of straight parallel con-
vection rolls for R = 3000 and Le = 1. The color contours are
of the concentration at the mid-plane c(x, y, z = 1/2, t) where
red is pure products (c = 1) and blue is pure reactants (c = 0).
The region in-between indicates the location of the reaction
zone which is traveling from left to right. The black lines are
contours of the temperature field at T = 1/2 which indicate
the center-line of the convection rolls. Three instances of time
are shown (a) t = 1, (b) t = 2 and (c) t = 3 where t is mea-
sured as the time since the initiation of the front at the left
wall. (Additional parameters: U=Pe=10.81, Da = 0.83.)

FIG. 7. A propagating front in straight parallel convection
rolls for R = 3000 and Le = 0.1 using the same conventions
as Fig. 6 where (a) t = 1, (b) t = 2 and (c) t = 3. These im-
ages show that for this smaller value of the Lewis number the
front and its dependence upon the flow field is more complex.
(Additional parameters: U = 10.81, Pe = 100.81, Da = 0.83.)

velocity as the time derivative of the front position. In
order to account for the z variation of the front we first
compute the front velocity at a position z and then com-
pute the spatial average over all z to yield a single num-
ber for the front velocity vf (t). Such an approach is well
suited for the front shown in Fig. 9(a)-(d). The front
velocity computed in this way for this case is shown in
Fig. 10 as the blue square symbols.

For the front shown in Fig. 9(e)-(h) there are instances
of time where there are multiple locations of the front at
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FIG. 8. A close-up view of the x−z projection of the propagat-
ing fronts in Figs. 6 and 7. Color contours of c(x, y=Γy/2, z, t)
are shown of the region near the reaction zone where red is
pure products c = 1 and blue is pure reactants c = 0. The
black arrows are the fluid velocity vectors which indicate the
counter-rotating convection rolls. (a) Le=1, (b) Le=0.1.

FIG. 9. A close-up view of propagating fronts traveling left
to right in a cellular flow field of convection rolls (R=3000).
The arrows represent the fluid velocity vector field and the
horizontal extent of each panel is chosen to roughly include
a single pair of counter-rotating convection rolls. The prop-
agating front is the solid line which represents the c = 1/2
level-set. (a)-(d) Le = 1, and (e)-(h) Le = 0.1. The time
between successive panels is 0.1 time units.

a single position z. In particular, this is clearly the case
in Fig. 9(f) and (h). In this case, we track the average
position of the front at a particular value of z. We then
use these front positions to compute the front velocity as
a function of z at a particular time. Finally, the front
velocity at time t is computed by averaging these values
over the z-direction. The time variation of the front ve-
locity vf (t) computed in this way for the front shown in
Fig. 9(e)-(h) is shown in Fig. 10 using the blue diamond
symbols.
We are interested in using the bulk burning rate ap-

proach to compute the front velocity for very complex
fronts where it would be difficult to proceed by tracking
the time variation of the intricate front position which is
expected to be multivalued and disconnected in space.

We next demonstrate that the bulk burning rate ap-
proach accurately captures the front velocity for this case
where it is also straightforward to track the front posi-
tion.
We use the bulk burning rate idea, see Eq. (7), to

compute the velocity of the propagating fronts shown
in Figs. 6-9. Despite the vertical structure of the fronts
shown in Figs. 8-9 we find that it is not necessary to com-
pute the integral over the depth of the fluid layer when
computing vf (t). Rather, the value of the front velocity
computed using only data from the horizontal mid-plane
slice at z = 1/2 is sufficient. In particular, we will com-
pute the front velocity using

vf (t) =

∫

Γx

0

∂c

∂t

∣

∣

∣

z=1/2
dx. (9)

For the fronts shown in Fig. 6-7 the error in using Eq. (9)
is less than 0.2% when compared with the full calculation
that includes the integral over the depth.
Overall, for more complicated fronts we find that the

error can be slightly larger reaching values of several per-
cent when determining vf (t). However, using Eq. (9)
drastically reduces the amount of data needed to com-
pute the front velocity and we will use this approach in
all of our computations.
The time variation of vf (t) computed using Eq. (9) is

shown in Fig. 10 using the red symbols where the circles
are for Le = 1 and the triangles are for Le = 0.1. The
dashed and dash-dotted lines indicate the front velocity
in the absence of fluid flow v0. Overall, the agreement be-
tween the front velocity computations using the tracked
fronts and using the bulk burning rate idea at the mid-
plane is very good. In the remainder of our calculations
we will use the bulk burning rate approach to compute
the front velocity.
Figure 10 illustrates that the front velocity vf (t) in-

creases rapidly at small times t . 1 and then slowly ap-
proaches an asymptotic value. Using Eq. (8) for t ≥ 1 we
obtain values for the asymptotic front speeds v̄f . These
results clearly indicate enhancement to the front velocity
due to the underlying flow field where v̄f/v0 = 1.26 for
Le = 1 and v̄f/v0 = 2.61 for Le = 0.1. As expected, the
enhancement is more significant when the Lewis num-
ber is smaller where the role of molecular diffusion is less
important.
Figure 11 shows the effectiveness of using Eq. (8)

to determine v̄f for several results of vf (t) for fronts
traveling in straight parallel rolls with Le = 0.1. Re-
sults are shown for the three different Rayleigh numbers
R = (3000, 3600, 4200) as squares (blue), circles (green),
and triangles (red). The solid lines are curve fits through
the data using Eq. (8).
Using this approach we computed the variation of the

asymptotic front velocity v̄f in a field of straight parallel
rolls for a large range of values of the characteristic ve-
locity U . Results for Le = 1 are shown in Fig. 12. Each
symbol is v̄f computed from a separate simulation where
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FIG. 10. The time variation of the front velocity vf (t) in the
field of straight parallel convection rolls at R = 3000 shown
in Fig. 3. The blue symbols are vf (t) computed using the
spatially averaged velocity of the level-set contours for c=1/2
shown in Fig. 9 with squares (Le=1) and diamonds (Le=0.1).
The solid lines and red symbols are vf (t) computed using the
bulk-burning-rate approach with circles (Le=1) and triangles
(Le = 0.1). The dashed and dash-dotted lines indicate the
front velocity in the absence of a flow field where v0 = 6.0
(Le=1) and v0=1.9 (Le=0.1), respectively. For these results
v̄f =7.57 (Le=1) and v̄f =4.96 (Le=0.1).

each value of U is the result of changing the Rayleigh
number for the convective flow field.

The data of Fig. 12 is separated into two differ-
ent groups. The circles (blue) are results where the
Damköhler number Da > 1 and the squares (red) are
where Da< 1. Since Le= 1 we also have U =Pe for the
results in this figure.
The circles (blue) represent the regime where Da> 1

and Pe.10 which can be described as a fast reaction and
slow advection regime. The squares (red) represent Da<
1 and Pe&10 which can be described as a slow reaction
and fast advection regime. As a result, the variation of
v̄f in these two regimes is quite different and there is a
clear transition as the value of U is increased.

The line through the circles representing the slow
advection regime is a curve fit of the form v̄f/v0 =
1 + 0.09(U/v0)

2. These results suggest the quadratic
dependence v̄f/v0 ∝ (U/v0)

2 that is in agreement with
the Clavin-Williams relation [46]. This quadratic depen-
dence can be recovered by expanding the concentration c
in the small parameter U and solving Eq. (4) using sim-
ple free slip boundary conditions and a cellular flow. The
line through the squares representing the fast advection
regime is a curve fit of the form v̄f/v0 = 1.06(U/v0)

0.31.

Figure 13 shows the variation of v̄f/v0 with U/v0 for
the case where Le=0.1 and the fluid motion is expected

1 2 3 4

4.5

5

5.5

FIG. 11. Determination of the asymptotic front velocity v̄f
from vf (t) in a field of straight and parallel convection rolls.
Results are shown for vf (t) where Le = 0.1 at three differ-
ent values of the Rayleigh number R = (3000, 3600, 4200)
using squares (blue), circles (green), and triangles (red), re-
spectively. The symbols are values of vf (t) computed using
Eq. (7). The solid lines are curve fits through the data using
Eq. (8) which yield v̄f =4.98, 5.44, and 5.79. The velocity in
the absence of fluid flow is v0=1.9 from Eq. (5).

to have a larger impact upon the propagating front. For
these results, the Damköhler numbers remain the same as
in Fig. 12, however the Péclet numbers are now an order
of magnitude larger since Pe=10U . The results of Fig. 13
are also collected into the two groups indicated by the
circles (blue) where Da> 1 and the squares (red) where
Da< 1. The solid line is a curve fit through the square
symbols and is of the form v̄f/v0 = 1.30(U/v0)

0.40. For
this case it is numerically difficult to probe the regime
where U/v0 < 1 and, as a result, we do not have values
yielding a quadratic dependence here.
For fronts traveling through an idealized cellular flow

in the limit where Pe ≫ 1 and DaPe ≫ 1, which rep-
resents propagating fronts where the flow velocity is im-
portant and the diffusion time scale is the largest, the-
oretical predictions yield scaling behavior of the form
v̄f ∝ Uαf [26, 27].
In the slow reaction limit where Da≪1, the predicted

scaling exponent is αf =1/4 [26, 27, 47–50]. The physi-
cal insight behind this result is that the front propagation
can be described as enhanced diffusion with a diffusion
coefficient that varies as the square root of the flow veloc-
ity. From rather general arguments it can be shown that
v̄f has an upper bound that varies as the square root of
this effective diffusion coefficient which then yields the
exponent αf =1/4.
In the fast reaction regime where Da≫ 1 the scaling

exponent is αf = 3/4 [26, 27]. In this case, the effec-
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FIG. 12. The variation of v̄f/v0 with U/v0 for a front
traveling through straight and parallel convection rolls with
Le=1. Each data symbol is the result from a distinct numer-
ical simulation. The circles (blue) indicate Da > 1 and the
squares (red) indicate Da < 1. The solid lines are curve fits
through the data where v̄f/v0 = 1 + 0.09(U/v0)

2 for Da> 1
and v̄f/v0 = 1.06(U/v0)

0.31 for Da < 1. For these results
0.375≤Da≤4.9, 0<Pe≤25, DaPe=9, v0=6, and Pe=U .

tive diffusion argument remains valid however there is
a renormalization of the time scales. The reaction zone
thickness is now small compared to the length scale de-
scribing the cellular flow δ ≪ L. As a result, the reac-
tion zone fills each vortex while spiraling inward on the
advective time scale τU . The enhanced transport result-
ing from this convective time scale leads to the exponent
αf =3/4.
Although our results are not for the same conditions as

that of Refs. [26, 27], it is insightful to compare with these
predictions. An important difference is that the flow field
of Refs. [26, 27] is an idealized cellular flow where the si-
nusoidal fluid velocity reaches a maximum at the bottom
and top surfaces. For Rayleigh-Bénard convection this
would more closely correspond to free slip boundary con-
ditions at the bottom and top boundaries. In our simu-
lations we have used no-slip boundary conditions where
the fluid velocity at all walls is zero. It is interesting to
point out that recent experiments studying propagating
fronts in cellular electroconvective flows probed the role
vortex structure by using rigid and free boundaries and
found that the fronts were faster for free boundary con-
ditions [21]. In addition, the nondimensional parameters
of our simulations span a range of values that include
regions where the approximations of the theoretical pre-
dictions become questionable.
A good portion of our results fall into the regime that

could be expected to be described by theoretical predic-
tions for the slow reaction limit where Da ≪ 1 which
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FIG. 13. The variation of v̄f/v0 with U/v0 for a front traveling
through straight and parallel convection rolls with Le = 0.1.
Circles (blue) indicate Da> 1, squares (red) indicate Da< 1,
and the solid line is a curve fit through the squares using
v̄f/v0 = 1.30(U/v0)

0.40. For these results 0.375 ≤ Da≤ 4.9,
0<Pe≤250, DaPe=90, and v0=1.9.

yields αf =1/4. This limiting situation is most relevant
to the squares of Figs. 12 and 13 where we find scaling
exponents of αf =0.31 (Le=1) and αf =0.40 (Le=0.1),
respectively.
In our study, when we decrease Le for a particular

flow field the result is the increased importance of ad-
vection as captured by the increase in Pe. In light of
this, it is reasonable to expect our scaling exponents to
increase with decreasing Lewis numbers. However, it is
interesting to point out that our scaling exponents are
slightly larger than the predicted values for the idealized
flow field. This may be due, in part, to the variation of
the vortex structure of the cellular flow for the different
boundary conditions as explored in Ref. [21].
Our results do not capture the fast reaction limit that

requires Da≫1 while also satisfying Pe≫1. The circles
of Figs. 12 and 13 quantify the range 1 . Da . 26. In
Fig. 12, where Pe . 10 and U/v0 . 1.5, we find a very
rapid increase in the front velocity with an increase in
the flow velocity that yields an exponent of αf = 2 for
the case Le = 1. However, in Fig. 13 where Pe . 100
and U/v0.5, we find that the scaling yields αf ≈0.4 for
Le=0.1.
We probe these ideas further by exploring the varia-

tion of the scaling exponent αf with the reaction rate ξ
at a fixed value of Le. In Fig. 14 we show results for a
flow field of straight parallel rolls with Le=0.1 where we
investigate the range of reaction rates 1 ≤ ξ ≤ 22. For
each value of ξ we performed seven numerical simula-
tions to quantify the front velocity v̄f through convec-
tion rolls for a range of U by using the Rayleigh numbers
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3900≤R≤ 5700. From these simulations we determined
the scaling exponent by fitting the results to v̄f ∝ Uαf

for that particular value of ξ. Figure 14 shows results
obtained in this manner for six different values of ξ.
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FIG. 14. The variation of the scaling exponent αf of the front
velocity with the reaction rate ξ for fronts traveling though
straight-parallel convection rolls at Le=0.1. αf at a particu-
lar value of ξ was determined by conducting seven numerical
simulations for different values of U and then fitting the re-
sults with v̄f ∝Uαf .

Figure 14 clearly indicates that the scaling exponent
αf increases with increasing reaction rate ξ. For all of
the results in this figure 145. Pe. 205 which is in the
large Péclet number regime. However, the Damköhler
number varies significantly where it takes on its smallest
values of Da ≈ 0.05 for ξ = 1 and its largest values of
Da ≈ 1 for ξ = 22. It is interesting that our value of
αf ≈0.3 for ξ=1 is similar to the prediction [26, 27] that
αf =1/4 for Da≪ 1 and DaPe≫ 1 despite the fact that
our results do not satisfy this latter constraint where we
have DaPe=10.

For our results, the largest reaction rate we have ex-
plored is ξ = 22 where Pe > 100 and Da ≈ 1. We are
not aware of a theoretical prediction for this regime.
However, we would expect the increasing trend of αf

with ξ to approach αf ≈ 3/4 for ξ ≫ 1 in agreement
with the theoretically predicted value for Da ≫ 1 and
DaPe≫ 1 [26, 27]. The large ξ regime is difficult to ex-
plore numerically using our approach for several reasons.
One difficulty is the increased front velocity as indicated
by Eq. (5) and another is that the reaction zone becomes
very sharp as indicated by Eq. (6). We have not explored
this regime further.

2. The orientation of straight parallel rolls

Our discussion up to this point has quantified the ve-
locity of a propagating front in a field of straight and
parallel convection rolls where the front is propagating
in the direction perpendicular to the axis of the convec-
tion rolls. In this case, this direction is parallel to the
wave vector ~q of the convection rolls. However, in a more
complex flow field the propagating front will encounter
rolls at arbitrary angles relative to the front.
As a measure to quantify the front speed as a function

of its direction of propagation relative to the orientation
of the convection rolls, we will use the reaction zone angle
φ. We define the reaction zone angle φ as the angle be-
tween the local wave vector ~q of the convection rolls and
the radial direction in the region of the reaction zone. In
all of our computations we will be interested in quanti-
fying the velocity of the propagating front in the radial
direction. As a result, it will be useful to describe the
front using the polar coordinates (r, θ) where the origin
is at the center of the domain and 0≤θ≤2π.
In order to compute the radial velocity of the propa-

gating front vr for all reaction zone angles φ from a single
numerical simulation we use the configuration shown in
Fig. 15. We use a large square convection domain con-
taining a field of straight parallel convection rolls. The
aspect ratio of this domain is Γ=Ls/d=30 where Ls is
the side length of the square domain. Again we use hot
sidewalls at the left (x=0) and right (x=Γ) edges of the
domain to create the time independent pattern of x-rolls.
The center line of the convection rolls are indicated by
the black solid lines.
There is a limited range of Rayleigh numbers Rc≤R.

2400 where such a large field of parallel rolls remain sta-
ble. This restricts the values of U that can be explored
using this approach. However, it is insightful to quantify
the variation of vr with respect to φ for the convection
patterns we have been discussing where possible. Fur-
thermore, these insights for fronts propagating through
straight and parallel convection rolls will be useful when
we discuss propagating fronts in chaotic flow fields.
After establishing the pattern of convection rolls we

initiate the propagating front at the center of the domain
with an initial condition of the form

c(r, θ, z, t0) = e−r2 (10)

where t0 is the time at which the initial condition is ap-
plied. This initial condition is steep enough to generate
a pulled front [1]. The front then propagates outward
radially towards the sidewalls of the domain. In Fig. 15
the color contours are of the concentration field where
red is products, blue is reactants, and the reaction zone
is indicated by the color variation in-between where the
time shown is after its initiation t>t0.
Figure 16 illustrates the geometry of the propagating

fronts at three different times for the same conditions as
Fig. 15. The front is visualized as the level-set contour
of the concentration field where c=1/2 and is shown by
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the green ribbon-like structures. The fronts are traveling
from the center of the domain outward. The fronts shown
in Fig. 16 clearly reflect the influence of the underlying
convection rolls. The front geometry is more complex in
Fig. 16(b) as expected since these results are for a smaller
Lewis number.
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FIG. 15. Propagating fronts in a spatially extended field of
straight and parallel convection rolls for R=2400, Γ=30 with
(a) Le=1, t=1.5 and (b) Le=0.1, t=2.0 where t is measured
from the initiation of the front. The front is initiated at the
center of the domain and is propagating outward. The color
contours are of the concentration field c where red is pure
products and blue is pure reactants. The solid black lines in-
dicate the pattern of the convection rolls. The front is slightly
elliptical for Le = 1 as indicated by the weak dependence of
the front on the local convection roll orientation. For Le=0.1
the effect of the convection roll orientation is significant and
results in an elliptical front with higher eccentricity.

FIG. 16. The spatial structure of the propagating fronts
shown in Fig. 15 where (a) Le = 1 and (b) Le = 0.1. In
each panel the front is shown at three different times where
the front is represented as the level-set surface where c=1/2
where the front is propagating from the center of the do-
main outward. The image is tilted at a small angle in or-
der to improve visualization of the front. (a) t=1.0, 1.5, 2.0,
(b) t=1.0, 2.0, 3.0.

We compute vr(θ, t) using the bulk burning rate idea
which we now apply to the radially propagating front
where

vr(θ, t) =

∫

Γ

0

∂

∂t
c(r, θ, z=1/2, t)dr. (11)

Due to the symmetry of the problem, each quadrant of
the square convection domains shown in Fig. 15 contains
a propagating front over the range of the reaction zone
angle of 0≤φ≤π/2.

The spatial variation of the reaction zone angle is
shown explicitly in Fig. 17 using color contours. Regions
where the direction of front propagation is perpendicular
to the axis of the convection rolls are blue (φ=0) and re-
gions where the front is traveling parallel to the roll axis
are red (φ=π/2). The reaction zone angle is shown for
any location in space where the concentration is within
the range 0.1≤ c≤ 0.9. This threshold is not meant to
capture the geometry of the front interface, but rather,
to include the spatial region that contributes significantly
to the front velocity computation using Eq. (11). In ad-
dition, this threshold is also chosen to align with Eq. (6)
which describes the thickness of the reaction zone in the
absence of fluid motion. We will use the front geometry
captured by the c=1/2 level-set, for example see Fig. 16,
in §III B when we quantitatively explore the geometry of
the front. Using results of the type shown in Fig. 17, we
will represent the front velocity as vr(〈φ〉, t) where 〈φ〉 is
the radially averaged value of the reaction zone angle φ
at a particular value of the polar angle θ.
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FIG. 17. The spatial variation of the reaction zone angle φ
for the fronts traveling through the convection rolls shown
in Fig. 15. φ is computed where the concentration is in the
range 0.1≤ c≤ 0.9. The black lines indicate the location of
the convection rolls. (a) Le=1 and (b) Le=0.1.

Figure 18 shows the variation of the front velocity
with the radially averaged reaction zone angle 〈φ〉 for
the fronts shown in Fig. 15. For a reaction zone angle
of 〈φ〉 = π/2 there is no fluid velocity in the direction
of the propagating front. As a result, the front velocity
will asymptotically approach the bare front velocity in
this direction such that v̄r(〈φ〉= π/2) = v0 as expected.
The case of 〈φ〉=0 is what is shown in Figs. 6-13 where
vr(〈φ〉=0, t) is the largest front velocity and the under-
lying fluid velocity has the largest effect.
Figure 18(a) shows results for Le = 1 where molecu-

lar diffusion is significant relative to advection. For this
case, the flow field weakly affects the front velocity and,
as a result, the increase in the radial front velocity for
decreasing reaction zone angle is small.
Figure 18(b) shows the variation of the instantaneous

front velocity with the reaction zone angle for Le = 0.1
where advection is now significant. In this case the front
velocity increases by a factor of two when going from
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FIG. 18. The variation of the instantaneous radial front
velocity vr with the radially averaged reaction zone angle
〈φ〉 for the fronts shown in Fig. 15 where (a) Le = 1 and
(b) Le=0.1. The dashed lines are Gaussian curve fits of the

form (a) vr = 5.54+0.93e−〈φ〉2 and (b) vr = 2.03(1+e−2〈φ〉2 ).

〈φ〉 = π/2 to 〈φ〉 = 0. The oscillations in the data with
〈φ〉 are related to the wavelength of the underlying con-
vection rolls. These oscillations are more significant for
Le=0.1 where the impact of advection is more significant.
The dashed lines in these figures are Gaussian curve fits
through the data which capture the overall trend. We
currently do not have a theoretical justification for this
particular functional form.

3. Fronts in Chaotic Flow Fields

We next explore the propagation of fronts in the pres-
ence of chaotic and weakly turbulent flow fields. In this
case, we use a large cylindrical convection domain with
an aspect ratio of Γ = r0/d= 40 where r0 is the radius
of the cylindrical domain. A schematic of the cylindrical
convection domain is shown in Fig. 19.

FIG. 19. The cylindrical domain used for our simulations of
chaotic and weakly turbulent convection. The radius of the
domain is r0, the depth of the fluid layer is d, the directions
of the Cartesian coordinates (x, y, z) are shown, and g is the
acceleration due to gravity. The bottom wall is held at a
constant hot temperature, the top wall is held at a constant
cold temperature, and the lateral sidewalls are perfect thermal
conductors. The aspect ratio of the domain is Γ= r0/d=40
(figure is drawn to scale).

A typical chaotic flow field is shown in Fig. 20 for the
case of R = 9000. Figure 20 shows four different repre-
sentations of the same flow field using color contours of
different variables at the horizontal mid-plane z = 1/2.

For all of the panels of Fig. 20 we have set the mini-
mum and maximum values of the color bars to reflect
the minimum and maximum values of the variable that
is plotted.

Figure 20(a) shows the typical convention of represent-
ing the convective flow field using color contours of the
temperature field where red is hot rising fluid and blue
is cold falling fluid. In this representation the complex
pattern of convection rolls is visible. Figure 20(b) shows
color contours of the vertical component of the veloc-
ity field w where red is a large positive value indicating
upward fluid motion and blue is a large negative value in-
dicating downward fluid motion. It is clear by comparing
panels (a) and (b) that the temperature field T and the
vertical velocity field w are very similar as expected. The
vertical component of the velocity is the largest compo-
nent of the velocity for these convective flows.

Figure 20(c) shows color contours of the magnitude of
the fluid velocity in the x-y plane |~u⊥| where ~u⊥=(u, v).
Red is a large magnitude, blue is a small magnitude, and
the black contours represent the center line of the un-
derlying convection rolls for reference. It is no longer
possible to discern the convection roll pattern from the
color contours of |~u⊥|. The magnitude of the velocity in
the x-y plane is very complicated and disordered with lo-
calized regions of large magnitude. The localized regions
of large magnitude are often located near defect struc-
tures in the flow field patterns but this is not always the
case. Although the magnitude of |~u⊥| is smaller than
that of |w| shown in panel (b) it is clear that the in-plane
velocity is significant. The localized regions of large mag-
nitude of |~u⊥| are dynamic and change with the pattern
dynamics.

Lastly, in Fig. 20(d) the magnitude of |~u| is shown us-
ing color contours. Overall, using this representation it
is possible to determine the convection roll pattern while
also identifying localized regions of large fluid velocity.
It is clear that regions of large velocity occur both near
defect structures and also in regions of straight parallel
convection rolls. Figure 20 illustrates the spatially disor-
dered flow field of chaotic convection that we will use to
explore front propagation.

Typical images of the flow fields are shown in Fig. 21
for the range of Rayleigh numbers 3000≤R≤25000 using
color contours of the temperature field at the horizontal
mid-plane T (x, y, z=1/2) at a particular time t. These
flow fields are primarily composed of convection rolls and
the magnitude of the velocity field for any of these images
can be determined from Fig. 5.

As the Rayleigh number is increased the flow becomes
more complex. For these conditions, it has been shown
that the convective dynamics are chaotic which yields a
spectrum of positive Lyapunov exponents [51, 52]. For
example, using the results of [51] the Kaplan-Yorke di-
mension [53] of the attractor describing the dynamics of
the flow field shown in Fig. 21(b) can be estimated to be
Dλ ≈ 400. Furthermore, the convective dynamics we ex-
plore here is also expected to be in the extensively chaotic
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FIG. 20. Several representations of a flow field of chaotic con-
vection in a large cylindrical domain with Γ=40 for R=9000
using color contours at the horizontal mid-plane z = 1/2.
(a) Contours of the temperature field where red is hot rising
fluid and blue is cold falling fluid. (b) Contours of the fluid
velocity w in the z-direction where red is an upward velocity
representing rising fluid and blue is a downward velocity rep-
resenting falling fluid. (c) The magnitude of the fluid velocity
in the x-y plane |~u⊥| where red is a large magnitude and blue
is a small magnitude. (d) The magnitude of the fluid velocity
|~u| where red is large and blue is small.

regime [51, 52].
Although the flow fields of Fig. 21 are mostly composed

of convection rolls, they are significantly more compli-
cated than the flow fields we have explored so far. There
is a now a complex spatial and temporal variation to the
patterns. In addition, the patterns now contain many
defect structures that nucleate and annihilate which play
in integral role in the overall dynamics.
For R . 104 this is the spiral defect chaos state of

Rayleigh-Bénard convection [54]. Furthermore, for R&
104 (for example, see Fig. 21(d)) the flow fields also ex-
hibit an oscillatory instability which results in small scale
features that travel axially along the convection rolls [55].
Although all of our flow fields in the cylindrical convec-

tion domains are chaotic and have at least one positive
Lyapunov exponent [52], we will sometimes refer to the
chaotic flow fields that have also undergone the oscilla-
tory instability as weakly turbulent flow fields. We use
weakly turbulent to indicate that the spatial structure of
the convection rolls has begun to deteriorate which would
continue toward the eventual generation of plume struc-

FIG. 21. Chaotic and weakly turbulent flow fields for con-
vection in a large cylindrical domain where Γ = 40. Color
contours are shown of the temperature field at the horizon-
tal mid-plane T (x, y, z = 1/2, t) at a specific time t. Red is
hot rising fluid and blue is cold falling fluid. (a) R = 3000,
(b) R=6000, (c) R=9000, and (d) R=25000.

tures at much larger Rayleigh numbers. In the following
we quantify and explore how these additional complexi-
ties of the flow field affect a propagating front.

We first establish a flow field where all initial tran-
sients have decayed. This requires long-time numerical
simulations of the Boussinesq equations on the order one
horizontal diffusion time τh where τh=Γ2. We next ini-
tiate the reaction at the center of the domain using an
initial condition of the form given by Eq. (10). This cre-
ates a pulled front propagating from the center of the
domain toward the lateral sidewalls.

Images of propagating fronts for R=9000, R=13000,
and R = 25000 are shown in Fig. 22 for Le = 1. The
color contours are of the concentration field c using our
convention where red is products, blue is reactants, and
the reaction zone is in-between. The solid black lines in-
dicate the complex pattern of the underlying convection
rolls.

Figure 23 illustrates the front for R = 9000 and R =
13000 for Le=0.1. The front is now much more compli-
cated due to the stronger influence of advection. Using
our numerical approach, R = 13000 was the largest value
of the Rayleigh number we could explore for Le=0.1. For
small values of the Lewis number the reaction zone fea-
tures become very intricate and difficult to resolve which
would require a more sophisticated numerical approach
using specialized filters or particle tracking approaches



15

which we have not pursued here [56, 57].
Figure 24 illustrates the geometry of the propagating

front for the conditions shown in Fig. 23(b). In Fig. 24
the propagating front is represented as the c=1/2 level-
set contour. The three green ribbon-like structures show
the propagating front at three different times as it travels
from the center of the domain outward. The entire image
has been rotated to make it possible to visualize the in-
tricate nature of the propagating front surface. The front
geometry is now quite complex and wrinkled due to the
underlying chaotic flow field dynamics.
The characteristic velocity of the fluid U for these

chaotic flows are represented as the circles (red) in Fig. 5.
Although the flow field is chaotic, the coefficient of varia-
tion of U is less than 3% for the entire range of Rayleigh
numbers we have explored here. It is interesting to point
out that at the same value of R the characteristic fluid
velocity is larger for the chaotic flow fields than it is for
the straight parallel convection rolls. The regions in the
chaotic flow fields where the fluid velocity is large is con-
nected in a complicated manner to the rapidly varying
patterns of convection rolls. Regions of large fluid ve-
locity occur both near the defect structures and within
patches of parallel convection rolls.
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FIG. 22. Propagating fronts in chaotic and weakly turbulent
flow fields for Le=1 where (a) R=9000, (b) R=13000, and
(c) R=25000. The solid black lines indicate the location of
the convection rolls. Color contours of the concentration field
are plotted at the horizontal mid-plane c(x, y, z=1/2, t) where
red indicates c=1 (pure products), blue indicates c=0 (pure
reactants), and the region in-between indicates the reaction
zone. The fronts are shown at a time t after the initiation of
the front where (a) t=3, (b) t=3, and (c) t=2.5.

For the propagating fronts in the chaotic flow fields
we compute the radial velocity of the front vr(θ, t) using
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FIG. 23. Propagating fronts in a chaotic flow for Le = 0.1
where (a) R = 9000 and t = 4 and (b) R = 13000 and t = 3
using the same conventions as Fig. 22.

FIG. 24. The propagating front surface in a chaotic flow for
Le = 0.1 and R = 13000. The level-set of the concentration
field at c(x, y, z, t) = 1/2 is shown in green at three different
instances of time t where t=1, 2, 3. The front is propagating
from the center outwards and the domain is shown at an angle
to show the spatial features of the front. This particular front
is also represented in Fig. 23(b).

Eq. (11) evaluated at the horizontal mid-plane z=1/2 for
a particular value of the polar coordinate θ. The front
velocity at any time vf (t) is the azimuthal average of
vr(θ, t) and the long-time asymptotic front velocity v̄f is
again found using Eq. (8).

We have found that using only the horizontal mid-
plane to compute the front velocity results in an error of
approximately 1% when compared to using the full three-
dimensional front for this calculation. As a result of the
significant reduction in the cost of the computation, all
of our results for the front velocities are based upon the
effective two dimensional front traveling outward at the
mid-plane as shown in Figs. 22-23.

Figure 25 illustrates the variation of the asymptotic
front velocity over a wide range of conditions including
chaotic flow fields and flow fields of time-independent
straight parallel convection rolls. Figure 25(a) shows the
variation of v̄f with the characteristic fluid velocity U
and (b) presents the same data scaled to show v̄f/v0 ver-
sus Pe on a log-log scale.

The circles (red) and diamonds (green) are results for
a front propagating in a chaotic flow field where Le=1.
The squares (blue) and triangles (green) are chaotic flow
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FIG. 25. The variation of the asymptotic front velocity v̄f
with the characteristic velocity U of the underlying flow field.
Open symbols are for fronts traveling through straight paral-
lel convection rolls in the rectangular domain (c.f Figs. 6-7).
Filled symbols (red, blue and green) are for fronts traveling
through chaotic flow fields in a large cylindrical domain (c.f
Figs. 22-23). For the chaotic flow field results, each data point
is the average of 3 numerical simulations where the standard
deviation about the mean value is shown as the error bars.
Circles and diamonds are for Le=1 and squares and triangles
are for Le=0.1. The diamonds and triangles (green) indicate
flow fields that exhibit the oscillatory instability. The solid
and dashed lines are power-law curve fits that are described
in the text. (a) The front velocity v̄f versus the characteristic
fluid velocity U . (b) The same data plotted as the normalized
front velocity versus the Péclet number Pe.

field results where Le=0.1. Each filled data symbol is the
average value of v̄f from three separate numerical simula-
tions performed at these parameters. The diamonds and
triangles (green) indicate results where the flow field is
above the threshold for the oscillatory instability (U &40
and R & 104). The standard deviation of the results

about their mean value are represented as error bars.
For reference, the open circles and open squares repre-
sent the previously discussed asymptotic front speeds for
fronts traveling through fields of straight parallel con-
vection rolls with a reaction zone angle of zero in the
rectangular geometry of Fig. 1 for Le = 1 and Le = 0.1,
respectively.
All of the lines through the data points in Fig. 25 are

power-law curve fits of the form v̄f ∝ Uαf . The scaling
exponents αf for several cases of particular interest are
collected in Table I.

Cellular flow Chaotic flow
Le αf αf

1 0.31 0.27
0.1 0.40 0.48

TABLE I. The scaling exponents αf for several cases where
v̄f ∝ Uαf . These four cases are shown as the power-law curve
fits in Fig. 25.

We first discuss the results for a front propagating in a
chaotic flow field when Le=1. We again find a power-law
scaling for the variation of the front velocity with the un-
derlying fluid velocity. The solid line through the circles
in Fig. 25(a) is a curve fit of the form v̄f = 3.77U0.27.
There is a significant increase in the front velocity due to
the oscillatory instability as indicated by the diamonds
and these values are not included in this fit.
It is interesting to highlight that the fronts propagat-

ing in spiral defect chaos (filled circles) are always slower
than the fronts traveling with a reaction zone angle of
zero through a time independent field of straight paral-
lel rolls with the same value of U (open circles). The
dash-dotted line through the open circles is the power-
law curve fit through the results for a front propagating
in straight parallel rolls where v̄f ∝ U0.31 (see Fig. 12).
This suggests that one effect of the chaotic pattern of
convection rolls is to lower the front velocity by chang-
ing the orientation of the convection rolls relative to the
radial front velocity.
However, there is a significant increase in the front ve-

locity at the onset of the oscillatory instability as shown
by the diamonds. The velocity of the front in the weakly
turbulent flow eventually surpasses that of the extrap-
olated value for the straight parallel rolls for U & 80
(R& 25000). The oscillatory instability results in mak-
ing the front geometry much more complex and wrinkled
which we explore further in §III B.
Similar trends are found for Le=0.1 which are shown

using the squares and triangles. The solid line through
the squares (blue) is a power-law curve fit of the form
v̄f =1.29U0.48. Again, the presence of spiral defect chaos
slows down the front when compared with a front travel-
ing through straight parallel convection rolls with 〈φ〉=0.
However, in this case, the front velocity is more sensitive
to the onset of the oscillatory instability and the front
velocity in the chaotic flow field surpasses the extrapo-
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lated value for U & 50 (R & 13000). The dashed line is
the power-law curve fit for the results of a front prop-
agating through straight parallel convection rolls where
v̄f ∝U0.4.
In order to quantify the influence of the roll orientation,

relative to the radial front propagation, for the chaotic
flow fields we again compute the variation of the front
velocity with the reaction zone angle φ. For these disor-
dered flow fields, quantifying the reaction zone angle is
more complicated than for the case of the straight and
parallel rolls shown in Fig. 17.
For the chaotic flow fields, we use the local wave vector

~q(x, y, t)=(qx, qy) to determine the local roll orientation.
The local wave vector is evaluated at the horizontal mid-
plane where qx and qy are the components of the wave
vector in the x and y directions, respectively. It is com-
puted using spatial derivatives of the temperature field
T (x, y, z = 1/2, t) as described by Egolf et al. [58]. The
basic idea of the local wave vector diagnostic is the as-
sumption of a sinusoidally varying temperature field com-
posing the convection rolls that may be time varying and
may have a complicated distribution in space. The result
is a vector ~q that yields spatially localized information
about the pattern of convection rolls.
From the local wave vector it is straightforward to

define a local orientation field for the convection rolls
θl(x, y, t) using θl = tan−1(qy/qx) where θl is defined to
be over the range 0≤ θl ≤ π. At any time t we identify
the location of the radially propagating reaction zone as
the region where 0.1 ≤ c ≤ 0.9. At the spatial regions
identified to contain the reaction zone, we also compute
the local orientation of the underlying convection rolls.
The reaction zone angle φ is then defined at these regions
to be

φ =







min
(

θ̃,
∣

∣

∣
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∣
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)
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∣
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∣

∣

∣
,
∣

∣

∣
2π − θ̃

∣

∣

∣

)

, for π < θ ≤ 2π
(12)

where θ̃ = |θ−θl|. Using Eq. (12) the reaction zone angle
is over the range 0≤φ≤π/2.
The spatial variation of the reaction zone angle φ for

fronts traveling through chaotic flow is shown in Fig. 26.
The color contours are of φ computed using Eq. (12) and
the black lines indicate the pattern of convection rolls.
Figure 26(a)-(b) are for a chaotic flow field with R=

3000. In this case, the flow field pattern contains patches
of straight and curved convection rolls that are disordered
in space. There are also some defect structures in the flow
field such as dislocations, wall foci, grain boundaries, and
spiral structures.
Figure 26(a) is for Le=1 which shows that the reaction

zone is thick in the radial direction and overall quite an-
nular in shape. In addition, the reaction zone angle varies
rather smoothly in the radial and azimuthal directions.
Panel (b) shows a front for the same flow conditions but
where Le=0.1. In this case, the reaction zone is thinner,
its overall shape is more complicated, and there is more
azimuthal variation of the reaction zone angle.
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FIG. 26. The spatial variation of the reaction zone angle φ
for fronts traveling through chaotic convection rolls. Color
contours are of φ and the black lines indicate the underly-
ing pattern of convection rolls. The reaction zone angle is
computed over the region where the concentration is within
the range 0.1 ≤ c≤ 0.9. The top row is for R = 3000 where
(a) Le=1 and (b) Le=0.1. The bottom row is for R=9000
where (c) Le=1 and (d) Le=0.1.

Figure 26(c)-(d) shows the variation of the reaction
zone angle for a more chaotic flow field where R=9000
for Le = 1 and Le = 0.1, respectively. The flow field is
now significantly more disordered with fewer regions of
parallel roll patches and many more defect structures.
The spatial variation of the reaction zone angle is now
much more complex both in the radial and azimuthal
directions.

These spatial variations of the reaction zone angle are
probed further in Fig. 27 which shows the variation of
the reduced radial front velocity vr/v0 with the radially
averaged reaction zone angle 〈φ〉. Results are shown for
chaotic convection where panel (a) is for R = 3000 and
panel (b) is for R = 9000 using circles (red) for Le = 1
and squares (blue) for Le = 0.1. The data indicates a
significant amount of scatter. Overall, the variation in
the data is much larger for Le=0.1 as expected since the
flow field has a stronger influence. In fact, for Le = 0.1
in Fig. 27(b) there are several instances where vr < 0
indicating a local fluctuation in the front velocity back
towards the center of the domain.

Figure 27(a) indicates the weak trend where the mag-
nitude of the front velocity decreases with increasing re-
action zone angle. This suggests a weak dependence of
the front velocity on the reaction zone angle for this flow
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FIG. 27. The variation of the instantaneous scaled radial front
velocity vr(t)/v0 with the radially averaged reaction zone an-
gle 〈φ〉 for a chaotic flow field where the circles (red) are for
Le=1 and the squares (blue) are for Le=0.1. (a) R=3000,
(b) R=9000.

field. This trend is in agreement with the results shown
in Fig. 18 for straight parallel convection rolls.

In Fig. 27(b), however, there is no clear trend in the
data as a function of the reaction zone angle as shown by
the relatively uniformly scattered distribution of the data
points. These results suggest that the reaction zone angle
is not related in a significant way to the front velocity.
This is reasonable for this flow field which is much more
disordered where patches of parallel rolls are not common
and the role of defects are more important.

The absence of front velocity values near 〈φ〉 ≈ 0 and
〈φ〉 ≈ π/2 in Fig. 27(b) are the result of the significant
variations of φ in the radial direction. This causes the
radial average 〈φ〉 to have values away from these bounds.
For example, a value of 〈φ〉=π/2 would require φ=π/2
over the entire radial slice across the front at that value
of θ. It is apparent in Fig. 26(c)-(d) that this does not
occur. However, in Fig. 26(a)-(b) this does occur which
results in values of 〈φ〉 near 0 and π/2 in Fig. 27(a).

It is interesting that there are values of vr that are
much larger than the rest in Fig. 27. Upon closer in-
spection it is found that these local spikes in the front
velocity occur in regions where the local fluid velocity is
large. Regions that have a large fluid velocity are the re-
sult of complex spatial and temporal interactions of the
flow field patterns that vary over length scales of several
roll widths. As a result, the local topology of the flow
field pattern is not sufficient to predict where these large
fluid velocities may occur and, as a result, the regions
of large fluid velocity may occur anywhere in the flow
field including near defect structures and near patches of
parallel rolls.

It is important to recall that the propagating fronts
represented in Figs. 26-27 have asymptotic front veloci-
ties v̄f that are smaller than the front velocity that would
occur for a front traveling through a field of straight par-
allel convection rolls with the same value of the charac-
teristic fluid velocity U and with a reaction zone angle
of zero (see Fig. 25). For example, for the Le=1 results
(circles) in Fig. 27(b), the asymptotic front velocity in

the chaotic flow field is v̄f/v0 = 1.68. This is approxi-
mately equal to the average value of all of the circles in
Fig. 27(b) since these results are for a particular time in
the front evolution toward its asymptotic velocity. Using
the power-law scaling result for a front traveling through
straight parallel rolls with the same value of U yields
v̄f/v0=1.89. The front velocity through the straight par-
allel rolls is larger, on average, than the front traveling
through the chaotic flow field. However, there are quite a
few instances where the front velocity in the chaotic flow
field is locally faster than the asymptotic front velocity
through the straight parallel convection rolls.
The trends are similar for the Le = 0.1 results of

Fig. 27(b) where v̄f/v0 = 3.70 for a front traveling
through the chaotic flow field and v̄f/v0=4.32 for a front
traveling through straight parallel convection rolls with
the same value of U . In this case, the fluctuations in the
front velocity are even larger for the front in the chaotic
flow.
Overall, these results suggest the presence of two com-

peting mechanics that affect the front velocity in these
disordered flows. These are the local convection roll ori-
entation and the geometry of the reaction zone between
the reactants and the products. These are competing be-
cause reaction zone angles away from zero slow down the
front whereas the increased complexity of the reaction
zone is expected to increase the front velocity.
For the weakly chaotic flow fields, such as the results

for R = 3000, the flow has effectively shuffled the orienta-
tion of the convection rolls relative to the radially prop-
agating front. As a result, the propagating front is now
faced with convection rolls of many different orientations
as it propagates outward. The resulting front velocity,
as a result, is less than it would be for the optimum case
of a reaction zone angle of zero through straight parallel
convection rolls.
However, the flow fields of Fig. 21 are more com-

plex than fields of convection rolls at different orienta-
tions through the defect structures and time dependence.
These effects cause the scatter in Fig. 27 as opposed to
the much smoother trends shown in Fig. 18.
As the Rayleigh number increases, the spatial structure

of the flow field becomes more complicated. The number
of defects increases significantly and the area covered by
patches of parallel convection rolls decreases. As a result,
the influence of roll orientation decreases and the influ-
ence of the complex flow field increases. This results in
the more uniformly distributed values of the front veloc-
ity with the reaction zone angle in Fig. 27(b). However,
the interface of the front geometry is now more complex.
The front velocity is expected to increase as the interface
between the reactants and products increases.

B. The Geometry of the Front

We next explore the complex geometry of the prop-
agating fronts in the chaotic and weakly turbulent flow
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fields. Our approach is to use the level-set where the
concentration field is c=1/2 at the horizontal mid-plane
z=1/2 to identify and locate the front. Images illustrat-
ing the front geometry found in this manner are shown in
Fig. 28 for several chaotic flow fields. The top row is for
Le= 1 where (a) R=9000 and (b) R=25000. The bot-
tom row shows fronts for Le=0.1 where (c) R=9000 and
(d) R=13000. The front is colored black and white in-
dicates the absence of the front. In each panel of Fig. 28
the front is shown at three different instances of time
to illustrate its variation as it propagates from the cen-
ter of the domain outward. It is clear that the front
is quite complicated in structure and varies spatially and
includes non-contiguous pieces which appear as small iso-
lated black regions.

FIG. 28. The geometry of propagating fronts in chaotic flow
fields. The top row is for Le = 1 where (a) R = 9000 and
(b) R = 25000. The bottom row is for Le = 0.1 where
(c) R = 9000 and (d) R = 13000. The front is shown at
the horizontal mid-plane using a black contour of the level-
set c(x, y, z = 1/2) = 1/2. For each panel the front is shown
for three different instances of time which appear as the three
separate concentric objects. The front is shown at the follow-
ing times: (a) t= 2, t= 3, t= 3.7; (b) t= 1.5, t= 2, t= 2.4;
(c) t=3, t=4, t=4.7; (d) t=2, t=3, t=4.

By inspection of Fig. 28 it is clear that the fronts ap-
pear more geometrically complex for Le = 0.1. This is
evident by comparing Fig. 28(a)-(c) where R=9000 and
the only difference between the two results is the value
of the Lewis number.
In order to quantify the complexity of the front geom-

etry, as defined using the approach to generate the im-
ages of Fig. 28, we will use the box counting dimension
Db [59]. The box counting dimension is advantageous for
our purposes because it can be applied to complex, and

not necessarily self-similar, geometries in two and three
dimensions. Many natural examples exist of objects that
yield fractional values of the box counting dimension in-
cluding fluid turbulence, complex networks of blood ves-
sels in the human body, cracking structures in a solid and
the shapes of clouds, coastlines and mountains to name
a few [60].

The essential idea is to compute the minimum number
of boxes N(ǫb) of size ǫb that are required to cover the ge-
ometrical object in question where features smaller than
ǫb are ignored. Using this approach for different values
of ǫb one then determines how N(ǫb) scales with ǫb as
ǫb → 0. If this limit exists, the box counting dimension
is given by

Db = lim
ǫb→0

lnN(ǫb)

ln(1/ǫb)
. (13)

In practice, we compute N(ǫb) over the range of numer-
ically accessible values of ǫb and use lnN(ǫb)∝ ln(1/ǫb) to
determine if Db has converged to a value for our small-
est values of ǫb. We have conducted many tests using
our numerical approach to ensure that our computations
yield the expected result for well known examples such
as Euclidean areas, volumes, and various fractals such as
the von Koch curve.

In all of our spectral element numerical simulations
of propagating fronts in chaotic flow fields we have used
3072 hexahedral spectral elements with 16th order Gauss-
Lobatto-Legendre polynomials. In essence, this yields
that the smallest spatial feature that can be resolved in
our computations has a length scale of approximately
0.08. Therefore, the smallest box size we use is ǫb≈0.08
in our computations of the box counting dimension.

Figure 29 provides an example of the results generated
using this approach for a front propagating in a chaotic
flow field where R=13000 and Le=0.1 (see Fig. 28(c)).
In this figure we have plotted the variation of N(ǫb) with
ǫ−1

b on a log scale. As the value of ǫb decreases the re-
sults approach the straight dashed line. The slope of this
line provides the value of Db(t) which for these results
is Db(t) = 1.15. We then compute the time variation of
the box counting dimension of the front as it propagates
outward toward the sidewalls.

We have found that Db(t) quickly approaches a steady
value, on average, with small fluctuations about this
mean value. This example is typical of all of our calcu-
lations of Db(t). In Figure 30 we show an example that
demonstrates this trend for the case of R = 13000 and
Le=0.1 which represents the most complex front we have
explored here. Figure 30(a) shows the time-variation of
the box counting dimension using the front that has been
identified at the horizontal mid-plane z=1/2. The front
is located as the c=1/2 level-set as shown in Fig. 28(d).
The box counting dimension Db(t) fluctuates about its
mean value of 〈Db〉 = 1.15 which is represented as the
dashed line. The fluctuations about the mean have root-
mean-squared value of 0.02.
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FIG. 29. The variation of N(ǫb) with ǫb for a front propagat-
ing in a chaotic flow field with R= 13000 and Le = 0.1 at a
time t=3.6 since the initiation of the front. The dashed line
is a curve fit through the points which yields a box counting
dimension of Db(t)=1.15 using Eq. (13).

In Fig. 30(b) we show the variation of the box counting
dimension with the value of z that is used to determine
the location of the front. Results are presented for three
different times during the front propagation where the
front velocity has reached a steady value where circles
(blue) are for t=2, triangles (green) are for t=2.5, and
squares (red) are for t = 3.0. We have computed the
box counting dimension at 11 equally spaced values of z
over the range of 0≤ z ≤ 1. The results indicate only a
weak dependence on the value of Db with the value of
z used to determine location of the front. The front is
actually the two dimensional ribbon structure shown in
Fig. 24, however these results indicate that it is possible
to estimate the box counting dimension of the front using
only the slice of the front located at the mid-plane. This
greatly reduces the amount of computations required to
compute the box counting dimension of the fronts and
we will use this approach in our analysis that follows.
We have computed the box counting dimension of all of

the fronts in the chaotic and weakly turbulent fluid flows
that we have discussed. Figure 31 shows the variation of
D̄b with the reduced Rayleigh number ǫ. We define D̄b

using

D̄b = 〈Db〉t − 1 (14)

as a measure of the long-time average complexity of the
front geometry. The term 〈Db〉t is the long-time aver-
age value of Db(t). The circles (red) and the diamonds
(green) are the results for Le=1 and the squares (blue)
and triangles (green) are for Le=0.1. The diamonds and
triangles (green) are for the weakly turbulent flows where
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FIG. 30. (a) The variation of the box counting dimension
Db with time t using the front located at the horizontal mid-
plane where z = 1/2. The dashed line is the time averaged
value of 〈Db〉t = 1.15. The root-mean-squared value of the
fluctuations about the mean value is 0.02. (b) The variation
of Db with the vertical coordinate z. Results are shown for
three different times after the front has reached a steady front
velocity where circles (blue) t=2.0, triangles (green) t=2.5,
and squares (red) t=3.0. For the results R=13000, Le=0.1,
and images of the front are shown in Fig. 28(d).

the value of ǫ is above the threshold for the oscillatory
instability. The error bars are the standard deviation of
the dimension about its mean value. The variation of the
dimension with the reduced Rayleigh number is described
by the power-law scaling D̄b ∝ ǫαb where the scaling ex-
ponent is αb ≈ 0.7 for Le = 1 and αb ≈ 0.2 for Le = 0.1.
The curve fits are shown as the solid and dashed lines.
It is clear that the box counting dimension exhibits an

increasing trend with increasing ǫ. This is expected since
the flow field becomes more complex with ǫ. Also, D̄b

for Le = 0.1 is always larger than D̄b for Le = 1. This
indicates that the stronger influence of the flow field for
a smaller Lewis number translates into a more geometri-
cally complex front.
For both the Le=1 and Le=0.1 results, the asymptotic

front velocities v̄f for the three largest values of ǫ shown
in Fig. 31 exceed the front velocity through straight and
parallel convection rolls with a reaction zone angle of
zero. Figure 31 suggests that this front velocity enhance-
ment is due, at least in part, to the increased complexity
of the front geometry.
This enhancement to the front velocity is expected to

increase as ǫ is increased further. However, using our
results it is unclear if the power-law curve fits continue
to be useful for much larger values of ǫ since the flow
field characteristics are expected to change significantly
as turbulence is approached. This would be interesting to
pursue, however we have not explored this limit further.
It is interesting to compare our results with the results

in the literature that find fractal dimensions of Df =7/3
for a wide range of conditions and flow fields [4, 18, 33,
34]. A value of Df = 7/3 would be equivalent to D̄b =
1/3 using our notation. There is an increasing trend in
our results that does not appear to be approaching a
steady value for large ǫ. Although it is possible that our
results may also approach a value of 1/3 at larger ǫ, we
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FIG. 31. The variation of the reduced box counting dimension
D̄b with the reduced Rayleigh number ǫ. The squares (blue)
and triangles (green) are for Le = 0.1 and the circles (red)
and diamonds (green) are for Le=1. Errors bars are included
which represent the standard deviation about the mean value.
The solid and dashed lines are power-law curve-fits through
the data where D̄b=0.02ǫ0.7 and D̄b=0.08ǫ0.23 , respectively.
An oscillatory instability is present for ǫ & 4.85 which are
indicated as the triangles and diamonds (green).

are not able to make any quantitative predictions using
our present results and this interesting question remains
open.

IV. CONCLUSIONS

We have studied the velocity and geometry of propa-
gating pulled fronts traveling through a range of convec-
tive flow fields. Using large scale computations we have
done this for an experimentally accessible flow field using
a FKPP nonlinearity for the reaction. We have focussed
upon fronts with a finite reaction zone thickness and fi-

nite speed which aligns well with the types of fronts that
are often found in nature and in experiment. Using this
approach we have provided new physical insights into
the dynamics of fronts for conditions beyond the reach of
current theoretical descriptions.
Our results do not fall into the well understood lim-

iting cases of Da ≫ 1 or Da ≪ 1 where Pe ≫ 1 and
Da Pe ≫ 1. However, our results still yield power-law
scalings for the asymptotic front velocity as a function
of the characteristic fluid velocity for both cellular and
chaotic flow. For Le = 1 we find that the scaling ex-
ponent is roughly unchanged when considering cellular
or chaotic flow where αf ≈ 0.3. On the other hand, for
Le=0.1 where the advection is more important, we find
that the scaling exponent is larger for chaotic flow where
its value is αf ≈ 0.5. Furthermore, we have quantified
the variation of the front velocity as a function of the
convection roll orientation relative to the direction of the
propagating front.
We have found that weakly chaotic fluid motion can

slow down a propagating front, on average, when com-
pared to the front velocity through a cellular flow with
the same characteristic fluid velocity. However, with the
onset of the oscillatory instability the front velocity in a
weakly turbulent flow eventually overtakes the front ve-
locity in the equivalent cellular flow. Our results suggest
that this increase in front velocity is due to the wrinkling
of the front interface due to the fluid motion. We have
found that the front geometry is fractal for chaotic and
weakly turbulent flow and that its dimension increases
with increasing values of the Rayleigh number.
Our numerical approach is quite general and it would

be interesting to explore a number of situations. This in-
cludes the dynamics of pushed fronts, more sophisticated
models for the nonlinear reaction, the role of backaction,
and higher Rayleigh number flows in order to study the
propagation of fronts as turbulence is approached.
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