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In this paper we show that an autoregressive fractionally integrated moving average (ARFIMA)
time series model can identify two types of motion of membrane proteins on the surface of mam-
malian cells. Specifically we analyze the motion of the voltage-gated sodium channel Nav1.6 and
beta 2 adrenergic receptors. We find that the autoregressive (AR) part models well the confined dy-
namics whereas the fractionally integrated moving average (FIMA) model describes the non-confined
periods of the trajectories. Since the Ornstein-Uhlenbeck process is a continuous counterpart of the
AR model, we are also able to calculate its physical parameters and show their biological relevance.
The fitted FIMA and AR parameters show marked differences in the dynamics of the two studied
molecules.

PACS numbers: 02.50.Ey, 87.15.K-, 87.15.Vv, 05.40.Jc

I. INTRODUCTION

The advent of single-molecule techniques over the past
two decades has revolutionized molecular biophysics.
Amongst these techniques, single-particle tracking (SPT)
has emerged as a powerful approach to study a vari-
ety of dynamic processes [1–4]. Individual trajectories
have been obtained for diverse biological systems, in-
cluding measurements in cell membranes [5–12], the cy-
toplasm [13–17], and the cell nucleus [18–22]. The dy-
namics of molecules in living cells typically exhibit com-
plex behavior with a high degree of temporal and spatial
heterogeneities, due to different factors such as spatial
constraints and complex biomolecular interactions [23].
Each mechanism governing the diffusion process has dif-
ferent characteristics, which can give important informa-
tion regarding the biological system [4, 24–27].
A phenomenon often observed in single-molecule ex-

periments is subdiffusion, with a characteristic sublin-
ear mean-squared displacement (MSD), which largely de-
parts from the classical Brownian motion (BM). Deter-
mining the mechanisms underlying anomalous diffusion
in complex fluids, e.g., in the cytoplasm of living cells
or in controlled in vitro experiments [28–30], is a chal-
lenging problem. Subdiffusion can be rooted in differ-
ent physical origins including immobile obstacles, bind-
ing, crowding, and heterogeneities [31]. Some of the
theoretical models employed to describe subdiffusion are
the continuous-time random walk [8], obstructed diffu-
sion [32, 33], fractional Brownian motion (FBM) [29, 34],
diffusion in a fractal environment [35, 36], fractional
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Lévy stable motion (FLSM) [37], and fractional Langevin
equation (FLE) [16, 34, 38].

A discrete-time model that generalizes the above frac-
tional models is the autoregressive fractionally integrated
moving average (ARFIMA) process [39, 40]. From the
physical point of view, it is a discrete-time analogue of
FLE that incorporates the memory parameter d [41].
Other popular models of subdiffusive dynamics like FBM
and FLSM are the limiting cases of the ARFIMA with
different noises [42]. ARFIMA exhibits power-law long-
time dependencies, similar to FBM and FLSM. Long-
time dependencies result in anomalous diffusion, evident
in a non-linear MSD [37]. In contrast to FBM and FLSM,
ARFIMA can also describe various light- and heavy-
tailed distributions and an arbitrary short-time depen-
dence.

ARFIMA was previously suggested as an appropriate
model for SPT dynamics for various biological experi-
ments, namely the motion of individual fluorescently la-
beled mRNA molecules in bacteria [43, 44] and transient
anomalous diffusion of telomeres in the nucleus of eu-
karyotic cells [45]. A special case of the ARFIMA pro-
cess, namely FIMA was proposed as a useful tool for
estimating the anomalous diffusion exponent for parti-
cle tracking data with measurement errors [46]. FIMA
was also useful in introducing so-called calibration sur-
faces, which are an effective tool for extracting both the
magnitude of the measurement error and the anomalous
exponent for autocorrelated processes of various origins
[47]. Since ARFIMA models were successful in analyzing
data in other fields (econometrics, see 2003 Nobel Prize
in Economic Sciences for C.W.J. Granger and R. Engel;
finance and engineering [48–50]), many statistical tools
and computer packages are readily available, e.g., ITSM
[51].
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In this article, we focus on two types of motion in the
plasma membrane, namely free and confined. Transient
confinement within membrane domains is a very com-
mon feature in the plasma membrane [23]. Here, we fo-
cus on confinement within stable clusters. We propose
the ARFIMA as a suitable model to characterize both
types of dynamics. In Sec. II we discuss basic build-
ing blocks of the ARFIMA process: the autoregressive
(AR), fractionally integrated (FI) and moving average
(MA) parts. We show that the AR process is a discrete
counterpart of the continuous-time Ornstein-Uhlenbeck
(O-U) process. We also study the relationship between
the ARFIMA and mean-squared displacement (MSD). In
Sec. III our fitting procedure (presented in detail in Ap-
pendix B) is applied to the motion of individual voltage-
gated Na channels and beta 2 adrenergic receptors on
the surface of live mammalian cells. In the described ex-
amples, we show that the increments of the non-confined
parts of the trajectories are well-described by the FIMA
process whereas the confined parts can be modeled by the
AR. The analysis also suggests that the beta 2 receptors
appear to be more subdiffusive in the free state and have
a lower autoregressive parameter in the confined state.
Finally, the distribution of the estimated ARFIMA noise
sequence appears to change from Gaussian in the free
state to non-Gaussian in the confined state.

II. ARFIMA MODEL

The autoregressive fractionally integrated moving av-
erage (ARFIMA) process is a generalization of the classi-
cal autoregressive moving average (ARMA) process that
introduces the fractionally integrated (FI) part with the
long memory parameter d [39, 40], see Appendix A for a
presentation of general ARFIMA processes.
In this paper we concentrate on a special case of

the ARFIMA proces, namely on the ARFIMA with
AR and MA parts of order 1, which is denoted by
ARFIMA(1, d, 1). The ARFIMA(1, d, 1) process X(t) for
t = 0,±1, . . . is defined as a stationary solution of the
fractional difference equation [51]

(1−B)d (X(t)− φX(t− 1)) = Z(t)− ψZ(t− 1), (1)

where Z(t) is the noise (i.i.d. sequence usually Gaussian
or in general belonging to the domain of attraction of
Lévy stable law), |φ| < 1 and |ψ| < 1 are autoregressive
and moving average parameters, respectively, and B is
the backshift operator: BX(t) = X(t−1). The fractional
difference operator (1 − B)d is defined by means of the
binomial expansion, namely (1 − B)d =

∑
∞

j=0 bj(d)B
j ,

where bj(d) =
Γ(j−d)

Γ(j+1)Γ(−d) and Γ is the Gamma function.

In the finite variance case we assume that the memory
parameter |d| < 1/2 and for the general Lévy α-stable
case we assume that α > 1 and |d| < 1− 1/α [53].
Let us emphasize here a very convenient ‘build-

ing block structure’ of the ARFIMA (1, d, 1) model:

TABLE I. Physical ( with and without measurement noise)
and corresponding ARFIMA(1, d, 1) models.

Physical model ARFIMA(1, d, 1)

Confinement by a potential well (O-U) AR(1)

O-U + noise ARMA(1,1)

Brownian motion (BM) MA(0)

BM + noise MA(1)

FBM FI(d)

FBM + noise FIMA(d, 1)

ARFIMA(1, d, 1) = AR(1) + FI(d) + MA(1), where the
AR(1), FI(d) and MA(1) are defined by the following
equations:

X(t)− φX(t− 1) = Z(t), (2)

(1−B)dX(t) = Z(t), (3)

X(t) = Z(t)− ψZ(t− 1), (4)

respectively.
The FI(d) part, which is related to the fractional differ-

ence operator, leads to the regularly varying (power-law)
correlations which are related to the classical definition of
long-range dependence (long memory): lack of summa-
bility of correlations [54]. In this paper we will call all
processes with power-law correlations long-range depen-
dent even if the correlations are summable in contrast to
the exponentially (so much faster) decaying correlations.
Long-memory processes are often used to describe the
dynamical behavior of complex systems. Consequently,
ARFIMA models have already emerged in the physical
literature, e.g., in the modeling of soft X-ray solar emis-
sions [55, 56], heartbeat interval changes, air temperature
changes [57], and the motion of molecules in live cells [43–
45, 47].
The ARFIMA(1, d, 1) process offers a lot of flexibility

in modeling long (power-law) and short (exponential or
finite-time) dependencies by choosing the memory pa-
rameter d in the FI part, and appropriate AR(1) and
MA(1) process parameters (φ and ψ). Hence, they can be
tailored to different empirical data. To illustrate it, let us
recall three standard models used in the biophysics liter-
ature: confinement by a potential well, FBM and Brown-
ian motion. These models correspond to different compo-
nents of the ARFIMA(1, d, 1) process, namely the AR(1)
part, FI(d) part and partial sum process of MA(0) (which
is MA(1) with ψ = 0, so a pure white sequence), respec-
tively. Furthermore, the MA(1) which introduces a one-
lag dependence can be associated with the measurement
noise [46]. When added to the FI(d) process, we obtain
the FIMA(d, 1) model: (1−B)dX(t) = Z(t)−ψZ(t− 1),
which corresponds to FBM with noise [46]. This leads to
an efficient algorithm for extracting the magnitude of the
measurement error for fractional dynamics based on the
FIMA processes [47]. The relations between the different
models are summarized in Table I.
If the sample comes from an ARFIMA(1, d, 1) pro-
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cess with noise belonging to the domain of attraction
of Lévy α-stable law, then for large sample lengths the
time-averaged mean-squared displacement (MSD) δ2(τ)
behaves like

δ2(τ)∼τa, (5)

where the bar stands for the time average, ∼ denotes
asymptotic behavior and a = 2d+ 1 [37]. Therefore, the
memory parameter d controls the extent of the diffusion
anomaly regardless of the underlying distribution. If d <
0, the process is subdiffusive, and if d > 0, the character
of the process changes to superdiffusive.
Single-particle tracking data are commonly analyzed

by the MSD of the trajectories. However, past work has
shown that MSDs can be susceptible to errors and biases.
To improve accuracy in single particle studies guidelines
with respect to measurement length and maximum time
lags have been proposed [58].
In this article, for the purpose of identifying diffusive

motions in single-particle trajectories we apply two spe-
cial cases of the ARFIMA(1, d, 1) model, namely AR(1)
and FIMA(d, 1). FIMA(d, 1) is characterized by three
parameters: fractional d giving rise to the long mem-
ory, the parameter ψ of the MA(1) part corresponding
to the one-lag dependence, and the distribution of the
noise sequence, which in the case of the Gaussian white
noise is fully characterized by its variance σ2. The sec-
ond model is AR(1), which is characterized by the AR
parameter φ and the distribution of the noise sequence.
This model is a discrete analogue of the continuous-time
Ornstein-Uhlenbeck (O-U) process X(t) defined by the
overdamped Langevin equation

dX(t)

dt
= −kX(t)

γ
+ ξ(t), (6)

where ξ(t) is white Gaussian noise with 〈ξ(t)ξ(t′)〉 =
2Dδ(t− t′). A discretization of equation (6) gives

X(t) = −
(
k

γ
∆t− 1

)

︸ ︷︷ ︸

φ

X(t− 1) + ∆tξ(t)
︸ ︷︷ ︸

Z(t)

, (7)

which is the AR(1) model equation with φ = −(k∆t/γ−
1) and Gaussian white noise Z(t) = ∆tξ(t) with variance
σ2 = 2D∆t.

III. ANALYSIS OF INDIVIDUAL MEMBRANE
PROTEIN TRAJECTORIES

Single-particle tracking on the plasma membrane of
mammalian cells indicates that often molecules are
subjected to transient confinement. Here we em-
ploy ARFIMA models to characterize the motion of
Nav1.6 channels in the soma of transfected cultured
rat hippocampal neurons and beta 2 adrenergic recep-
tors (B2AR) in transfected human embryonic kidney

(HEK-293) cells. Nav1.6 channels were biotinylated
at an extracellular site and labeled with streptavidin-
conjugated CF640R. The B2AR were tagged with HA
and labeled with anti-HA antibody conjugated to CF640.
Transfected cells were imaged by total internal reflec-
tion microscopy at 20 frames/s and individual fluorescent
molecules were tracked with the u-track algorithm [59].
Experimental details about cell culture, transfection, and
imaging were published previously [36, 60].

Following Ref. [61], we employed an automated al-
gorithm to detect changes in molecule dynamics. This
algorithm was based on a sliding-window MSD. As a re-
sult, we obtained trajectories belonging to two states:
free and confined. Figure 1 depicts two representative
free and two representative confined trajectories. Tra-
jectories from the free state resemble Brownian diffusion
whereas confined-state trajectories appear as realizations
of a stationary process.

We selected five long representative trajectories corre-
sponding to each motion (free and confined). The short-
est were 174 (free state) and 153 (confined state) points
for the the Nav1.6, and 84 (free state) and 300 (con-
fined state) points for the beta 2 receptors. We focused
on the X-coordinate of the motions. We first fitted the
ARFIMA(d, 1) model to the increments of free-state tra-
jectories. The simplest well-fitted model common to all
trajectories is FIMA(d, 1). Figures 2 and 3 show a scatter
plot of the estimated d and ψ parameters with the cor-
responding 95% confidence intervals obtained by Monte
Carlo simulations. For the beta 2 receptor trajectories,
the memory parameter d and the moving average param-
eter ψ are usually lower than for Nav1.6 trajectories. The
MSD anomalous exponent a = 2d+1 is also shown in the
right axis of Figure 2. The detailed results of the FIMA
identification and validation procedure are presented in
the Supplemental Material [52].

To check the goodness of fit of the FIMA model, we cal-
culated the mean-squared displacement (MSD) for 1000
simulated trajectories of the model with parameters given
in the Supplemental material [52] and compared the re-
sults with the MSD values of the analyzed representative
trajectories. We can see in Fig. 4 that the fitted FIMA
processes reproduce the sample MSD well. Some of the
empirical MSD values fall outside the interquantile range
but they are always contained in the 95% confidence in-
terval [62], see Figure S1 in the Supplemental material
[52]. By examining the width of the boxplots, we can
also observe that the variability of the MSD exponent in
the beta 2 receptor case seems bigger than in the Nav1.6
case, which suggests another difference between Nav 1.6
and beta 2 receptor dynamics.

We also checked the distribution of the model residuals.
First, following the procedure in Appendix D we found
that the residuals belong to the domain of attraction of
the normal law. Next, it appeared that the residuals can
be treated as Gaussian since the test was rejected only
for one trajectory from the confined state. Hence we
conclude that the increments of the trajectories in the
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FIG. 1. Representative Nav1.6 (left panel) and beta 2 receptor (right panel) trajectories. The top panel illustrates the receptor
dynamics in 3D, where the z-axis corresponds to time. The (upper) blue trajectories show molecules in the free state and the
(lower) red trajectories show molecules in the confined state.
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FIG. 2. Fitted d parameter (with the 95% confidence interval)
of the FIMA(d, 1) model to the increments of the free state
Nav1.6 and beta 2 receptor five representative trajectories.

free state can be modeled by the Gaussian FIMA(d, 1).
Recall that this model represents a Gaussian fractional
process with power-law memory, which corresponds to
fractional Brownian motion with Hurst indexH = d+1/2
[42].

We performed the same analysis for the confined case
and we found that a simpler ARFIMA model describes
well the data, namely AR(1). Its estimated parameters
are depicted in Figure 5 with the corresponding 95% con-
fidence intervals obtained by Monte Carlo simulations.
Hence, with the use of the ARFIMA model we are able
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FIG. 3. Fitted ψ parameter (with the 95% confidence inter-
val) of the FIMA(d, 1) model to the increments of the free
state Nav1.6 and beta 2 receptor five representative trajecto-
ries.

to distinguish between these two different states. More-
over, we can see that for beta 2 receptor trajectories the
autoregressive parameter is usually lower than for the
Nav1.6 trajectories. The detail results of the AR iden-
tification and validation procedure are presented in the
Supplemental Material [52].
As we showed in Section II, AR(1) corresponds to the

O-U process. From a physical point of view, this model
describes the motion of a Brownian particle in a har-
monic potential with restoring force F = −kx and damp-
ing coefficient γ (Eq. 7). Therefore, we calculated the
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corresponding O-U parameters and, in turn, the corre-
sponding physical parameters that characterize the pro-
tein motion (Tables II-III). Namely, the diffusion is
D = σ2/(2∆t), where σ2 is the variance of the noise
term Z(t) and, in our time series, ∆t = 0.05 s. By con-
sidering the Einstein-Smoluchowski relation, γ = kBT/D
with kBT being thermal energy at 37◦C. Next the param-
eter φ yields the constant k = γ(1 − φ)/∆t. At last, by
equipartition, the variance of the particle position, i.e.,
the square of the characteristic radius of the confining
domain, is found,

〈
X2

〉
= kBT/k = σ2/[2(1 − φ)]. We

note that in the analyzed trajectories, the confining ra-
dius of Nav1.6 channels is larger than the confining radius
of B2AR, where the former yields a mean of 53 nm, while
the latter has a mean of 23 nm.
To check the goodness of fit of the AR model, we cal-

culated the mean-squared displacement (MSD) for 1000
simulated trajectories of the model with parameters given
in the Supplemental material [52] and compared the re-
sults with the MSD values for the analyzed representa-

tive trajectories. We can see in Fig. 6 that the fitted
AR processes reproduce the sample MSD well. Some of
the empirical MSD values fall outside the interquantile
range but they are always (even beta 2 receptor trajec-
tory no. 3) contained in the 95% confidence interval [62],
see Figure S2 in the Supplemental material [52]. By ex-
amining the width of the boxplots, we can also observe
that the variability of the MSD exponent in the Nav 1.6
case seems bigger than in the beta 2 receptor case, which
suggests another difference between Nav 1.6 and beta 2
receptor dynamics.
We also checked the distribution of the model resid-

uals. Following the procedure in Appendix D, first we
found that they belong to the domain of attraction of
the normal law. However, in contrast to the free state,
Gaussianity was rigorously rejected for almost all tra-
jectories. NIG and t location-scale distributions were
not rejected for most of the trajectories. In order to
make a rigorous conclusion about the model residuals
one should analyze more trajectories. Hence we conclude
that the confined state trajectories can be modeled by the
non-Gaussian AR(1).
For the detailed goodness-of-fit analysis of identified

AR(1) and FIMA (d, 1) models we refer the reader to
the Supplemental Material [52].

IV. DISCUSSION AND CONCLUSIONS

In this paper we demonstrated that the
ARFIMA(1, d, 1) model can identify two types of
motions of membrane proteins. We analyzed five repre-
sentative trajectories chosen from each of two categories:
free and confined states of Nav1.6 and beta 2 adrenergic
receptors. We found that the two special cases of the
model, FIMA(d, 1) and AR(1), fully identify the free
and confined state dynamics, respectively. These results
allowed us to propose a new unified methodology to
detect certain types of motion in complex systems.
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TABLE II. Ornstein-Uhlenbeck process parameters for the representative confined state Nav1.6 trajectories.

Traj. φ σ2(nm2) D(µm2/s) γ (10−8 kg/s) k (pN/µm)
〈

X2
〉

(nm2)

1 0.30 1948 0.019 22.0 3.08 1391

2 0.18 7966 0.080 5.4 0.88 4857

3 0.23 4319 0.043 9.9 1.53 2804

4 0.14 4053 0.041 10.6 1.82 2356

5 0.11 6105 0.061 7.0 1.24 3430

In the free state, the beta 2 receptors appear to be
more subdiffusive and, moreover, the moving average pa-
rameter is lower. In the confined state the autoregres-
sive parameter for the beta 2 receptor trajectories seems
to be lower than for Nav1.6 trajectories. Furthermore,
the distribution changes from being Gaussian in the free
to non-Gaussian in the confined state. Since the AR(1)
is a discrete-time counterpart of the Ornstein-Uhlenbeck
(O-U) process, we calculated the parameters of the cor-
responding O-U processes which, we found, are biolog-
ically meaningful. We note that the estimated FIMA
memory parameters provide more accurate information
on the subdiffusion type than the MSD exponents since
they are more robust with respect to the measurement
noise.

We would like to point out that a very popular model
for subdiffusion continuous-time random walk (CTRW)
[63] is not considered here, but it can be represented
in the form of subordinated O-U process, i.e., AR with
randomized time described by the inverse stable process
[64, 65].

Accurate motion analysis often requires a transient
motion classification [66, 67]. Many transient motion
analysis algorithms employ either rolling windows anal-
ysis [68, 69] or hidden Markov modeling [70, 71]. Our
studies show that one can also consider the ARFIMA
model as a possible tool for such classification.

We believe that our methodology provides a simple
unified way to gain deeper information into processes

leading to anomalous diffusion in single-particle tracking
experiments. Finally, we note that in order to model the
whole trajectories (free and confined parts of the trajecto-
ries together) the ARFIMA process is not enough. One
possible extension is ARFIMA with noise described by
the generalized autoregressive conditional heteroskedas-
ticity (GARCH) model [72, 73]. Such models can be
useful in description of changing diffusivity which re-
sults in so-called transient anomalous diffusion [74, 75].
ARFIMA combined with GARCH can describe both
power-law decay of the autocorrelation function with ar-
bitrary finite-lag effects (ARFIMA part) and changing
diffusion exponent (GARCH part). This is a subject of
ongoing work.
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TABLE III. Ornstein-Uhlenbeck process parameters for the representative confined state beta 2 receptor trajectories.

Traj. φ σ2(nm2) D(µm2/s) γ (10−8 kg/s) k (pN/µm)
〈

X2
〉

(nm2)

1 0.02 553 0.006 77.4 15.18 282

2 -0.05 1327 0.0013 32.3 6.77 632

3 0.07 1485 0.015 28.8 5.36 799

4 0.09 1696 0.017 25.2 4.59 932

5 0.33 252 0.003 169.9 22.76 188

Appendix A: General ARFIMA model

The ARFIMA(p, d, q) process X(t) for t = 0,±1, . . . is
defined as a solution of the equation

(1−B)dΦp(B)X(t) = Ψq(B)Z(t),

where Z(t) is the noise sequence (Gaussian or, in general,
in the domain of attraction of Lévy stable law) and B
is the backshift operator, i.e. BX(t) = X(t − 1) and
BjX(t) = X(t− j) [40, 51]. Moreover the Φp and Ψq are
AR and MA polynomials respectively, known in classical
time series theory:

Φp(B)X(t) = X(t)− Φ1X(t− 1)− . . .− ΦpX(t− p),

Ψq(B)Z(t) = Z(t)− ψ1Z(t− 1)− . . .− ψqZ(t− q).

The crucial part of the above definition of ARFIMA series
is the fractional difference operator (1−B)d defined as a
power series

(1−B)d =

∞∑

j=0

(
d

j

)

(−B)j =

∞∑

j=0

bj(d)B
j ,

where bj(d) = Γ(j−d)
Γ(j+1)Γ(−d) with asymptotic behavior

bj(d) ∼ Γ(−d)−1j−d−1 and Γ is the Gamma function.
In the finite variance case we assume that |d| < 1/2

and for the general Lévy α-stable case we assume that
α > 1 and |d| < 1− 1/α [53]. The assumption about the
exponent d ensures a proper definition of the operator
for the Gaussian ARFIMA processes. The parameter
d is called the memory parameter. From the physical
point of view, it is known that ARFIMA is a discrete
time analogue of the fractional Langevin equation that
takes into account the memory parameter [41, 56].
In the Gaussian case, the autocovariance function r(k)

of the ARFIMA process decays as k2d−1. Moreover, for
d > 0 we have

∑
∞

k=0 |r(k)| = ∞, which serves as a classi-
cal definition of long memory [54]. For the Lévy α-stable
case with α < 2 the covariance does not exist and one has
to replace it, e.g., with the codifference (see [76]). The
codifference of the ARFIMA process was studied in [53],
where it was proved that for d > 1 − 2/α the ARFIMA
possesses long-term dependence in the classical sense.
A partial sum of the ARFIMA process is asymptoti-

cally self-similar with the Hurst index equal to d + 1/α,
where α is the index of stability [77]. As a consequence
Gaussian ARFIMA(0, 0, 0), which is just the pure white

noise sequence, corresponds, in the limit sense, to BM.
Similarly, ARFIMA(0, d, 0) corresponds to FBM with
H = d+ 1/2. For more information about the ARFIMA
processes with their applications to biophysics see, e.g.,
Refs. [43, 47].
The ARFIMA process (in the literature also called

FARIMA) is a generalization of the classical stationary
discrete-time ARMA process to account for the long-
range dependence (power-like decaying autcorrelation
function) [51, 54].
The ARMA models provide a general framework

for studying stationary short memory phenomena, i.e.,
processes with exponentially decaying autocovariance.
These models consist of two broad classes of time se-
ries processes, namely the autoregressive (AR) and the
moving average (MA). The ARMA is usually referred to
as the ARMA(p, q) model where p is the order of the au-
toregressive part and q the order of the moving average
part.
Let us now concentrate on the ARMA(1, 1) case which

is sufficient for many studies. The process X(t) is
ARMA(1, 1) if it is stationary and satisfies (for every t)
a linear difference equation with constant coefficients:

X(t)− φX(t− 1) = Z(t)− ψZ(t− 1), (A1)

where t = 0,±1, . . .
The basic building blocks of the model are the AR(1):

X(t) = φX(t − 1) + Z(t) and MA(1): X(t) = Z(t) −
ψZ(t− 1) processes, where φ and ψ are real parameters
and Z(t) is the noise term [51]. AR(1) stands for the
autoregression and the explanatory variable is the obser-
vation immediately prior to our current observation. Its
autocorrelation function r(k) decays as φk〈X2(t)〉. The
MA(1) part introduces one-lag dependence in the time
series, namely X(t) is a stationary 1-correlated time se-
ries: X(s) andX(t) are independent whenever |t−s| > 1.
The dependence is fully controlled by the parameter ψ. A
stationary solution of ARMA(1, 1) equation exists if and
only if φ 6= ±1. If |φ| < 1, then a unique stationary solu-
tion exists and is causal, since X(t) can be expressed in
terms of the current and past values Z(s), s ≤ t. Other-
wise, if |φ| > 1, then the solution is not causal since X(t)
is then a function of Z(s), s ≥ t. Moreover, if |ψ| < 1
then X(t) is invertible, so the noise process Z(t) can be
expressed in terms of past values X(s), s ≤ t [51]. For
the noise process Z(t) we only assume that it belongs to
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the domain of attraction of Lévy α-stable law for α ≤ 2
[76, 78]. It can be a finite variance white noise (uncor-
related random variables with mean zero and variance
σ2, e.g., Gaussian or t-Student) or infinite variance i.i.d.
sequence (e.g., Lévy α-stable with α < 2 or Pareto).
The ARFIMA process is a d-differenced ARMA pro-

cess, where d is a fractional memory parameter. As a
consequence, ARFIMA(1, d, 1) process X(t) is defined as
a stationary solution of the fractional difference equation
[51]

(1 −B)d (X(t)− φX(t− 1)) = Z(t)− ψZ(t− 1). (A2)

Appendix B: ARFIMA parameter estimation

In order to estimate the ARFIMA parameters one
can apply the maximum likelihood estimation method,
which is implemented, e.g., in ITSM [51], or its approx-
imation given by the Whittle estimator [79, 80]. The
Whittle estimator is particularly simple to implement in
any computer software and it benefits from the elemen-
tary form of the ARFIMA spectral density. Briefly, let
{x1, x2, . . . , xN} be a trajectory of length N . For the
model FIMA(d, 1), we estimate the vector β = (φ, d).
We denote the normalized periodogram by

ĨN (λ) =

∣
∣
∣
∑N

t=1 xte
−iλt

∣
∣
∣

2

∑N
t=1 x

2
t

, −π ≤ λ ≤ π. (B1)

The Whittle estimator is defined as the vector argument
(φ, d) for which the following function attains its mini-
mum value:

∫ π

0

ĨN (λ)W(λ, φ)(2 − 2 cosλ)ddλ, (B2)

where

W (λ, φ) =
(
1− 2φ cosλ+ φ2

)
. (B3)

For the AR(1) the estimator minimizes

∫ π

0

ĨN (λ)
(
1− 2φ cosλ+ φ2

)
dλ. (B4)

Appendix C: ARFIMA model validation

Having fitted the ARFIMA process, the next step is
to investigate the residuals obtained either by fractional
differencing the data [81] or as prediction errors [51].

• If there is no dependence among the residuals, we
can regard them as observations of independent
random variables and there is no further model-
ing to be done except to estimate their mean and
variance [51].

• If there is a significant dependence among the resid-
uals, we need to evaluate a more complex station-
ary time series model for the noise that accounts
for the dependence, e.g. the generalized autoregres-
sive conditional heteroskedasticity (GARCH) pro-
cess [72, 73].

We now recall some simple tests for checking the hy-
pothesis that the residuals are observed values of inde-
pendent and identically distributed (i.i.d.) random vari-
ables. If they are, we conclude the model describes the
data well.
First, we plot the sample autocorrelation function with

its 95% confidence interval. In the Gaussian case about
95% of the sample autocorrelations should fall between
the bounds ±1.96/

√
n. The same can be done for squares

of the observations to check for a dependence in vari-
ance. Next, we apply the Ljung-Box, and McLeod-Li
tests, which are portmanteau tests [51]. The Ljung-Box
test relies on the sample autocorrelation function, which,
at lag h, has a chi-squared distribution with h degrees
of freedom. The McLeod-Li test is similar but on the
squared data.

Appendix D: ARFIMA residual distribution

Having found an appropriate ARFIMA model describ-
ing the data, we can identify the distribution underlying
the noise sequence. Information about the distribution
is helpful in determining confidence intervals for the es-
timated parameters and also in construction of predic-
tion intervals. We now investigate the distribution of the
residuals.
Following [82], we first check if the underlying distribu-

tion belongs to the domain of attraction of the Gaussian
or non-Gaussian Lévy-stable distributions by examining
its rate of convergence.

• If the results suggest the Gaussian domain of
attraction, we consider three typical light-tailed
probability distributions for the residuals of the
ARFIMA model, namely Gaussian, t location-scale
and normal inverse Gaussian (NIG).

• If the non-Gaussian Lévy stable domain of attrac-
tion is suggested, we test for Lévy α-stable distri-
butions.

The t location-scale distribution generalizes ordinary
student’s t distribution. The probability density function
(PDF) of this distribution is given as

ft(x) =
n−

1
2

σB
(
n
2 ,

1
2

)

{

1 +
[(x − µ)/σ]

2

n

}
−

n+1

2

, (D1)

where B is the beta function B (x, y) =
∫ 1

0
tx−1(1 −

t)y−1dt and n denotes the degrees of freedom parameter.
This distribution is useful for modeling data with heavier
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tails than the normal. It approaches the Gaussian distri-
bution as n approaches infinity and smaller values of n
yield heavier tails.

A random variableX is said to have a NIG distribution
if it has a PDF

fNIG(x) =
αδ

π
eδ
√

α2
−β2+β(x−µ)

K1

[

α
√

δ2 + (x − µ)2
]

√

δ2 + (x− µ)2
.

(D2)
The NIG distribution, introduced in Ref. [83], is de-
scribed by four parameters (α, β, δ, µ), where α stands for
tail heaviness, β for asymmetry, δ is the scale parameter,
and µ is the location. The normalizing constant Kλ(t)
in (D2) is the modified Bessel function of the third kind

with index λ, also known as the MacDonald function.
The NIG distribution is more flexible than the Gaussian
distribution since it allows for fat-tails and skewness. The
Gaussian distribution arises as a special case by setting
β = 0, δ = σ2α, and letting α→ ∞.
In order to check the goodness of fit of the distributions

considered here, we apply the Anderson-Darling test [84],
which is based on the A2 statistic:

A2 = N

∫
∞

−∞

[FN (x)− F (x)]
2

F (x) [1− F (x)]
dF (x), (D3)

where FN (x) and F (x) denote the empirical and theoret-
ical distribution functions, respectively. The test is one
of the most powerful statistical tools for detecting most
departures from normality [84].
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